Brandon Lwowski


2022

Text classifiers are applied at scale in the form of one-size-fits-all solutions. Nevertheless, many studies show that classifiers are biased regarding different languages and dialects. When measuring and discovering these biases, some gaps present themselves and should be addressed. First, “Does language, dialect, and topical content vary across geographical regions?” and secondly “If there are differences across the regions, do they impact model performance?”. We introduce a novel dataset called GeoOLID with more than 14 thousand examples across 15 geographically and demographically diverse cities to address these questions. We perform a comprehensive analysis of geographical-related content and their impact on performance disparities of offensive language detection models. Overall, we find that current models do not generalize across locations. Likewise, we show that while offensive language models produce false positives on African American English, model performance is not correlated with each city’s minority population proportions. Warning: This paper contains offensive language.

2020

While pre-trained word embeddings have been shown to improve the performance of downstream tasks, many questions remain regarding their reliability: Do the same pre-trained word embeddings result in the best performance with slight changes to the training data? Do the same pre-trained embeddings perform well with multiple neural network architectures? Do imputation strategies for unknown words impact reliability? In this paper, we introduce two new metrics to understand the downstream reliability of word embeddings. We find that downstream reliability of word embeddings depends on multiple factors, including, the evaluation metric, the handling of out-of-vocabulary words, and whether the embeddings are fine-tuned.
Public health surveillance and tracking virus via social media can be a useful digital tool for contact tracing and preventing the spread of the virus. Nowadays, large volumes of COVID-19 tweets can quickly be processed in real-time to offer information to researchers. Nonetheless, due to the absence of labeled data for COVID-19, the preliminary supervised classifier or semi-supervised self-labeled methods will not handle non-spherical data with adequate accuracy. With the seasonal influenza and novel Coronavirus having many similar symptoms, we propose using few shot learning to fine-tune a semi-supervised model built on unlabeled COVID-19 and previously labeled influenza dataset that can provide in- sights into COVID-19 that have not been investigated. The experimental results show the efficacy of the proposed model with an accuracy of 86%, identification of Covid-19 related discussion using recently collected tweets.