Borja Navarro

Also published as: Borja Navarro-Colorado, B. Navarro


2024

Language produced by Public Administrations has crucial implications in citizens’ lives. However, its syntactic complexity and the use of legal jargon, among other factors, make it difficult to be understood for laypeople and certain target audiences. The NLP task of Automatic Text Simplification (ATS) can help to the necessary simplification of this technical language. For that purpose, specialized parallel datasets of complex-simple pairs need to be developed for the training of these ATS systems. In this position paper, an on-going project is presented, whose main objectives are (a) to extensively analyze the syntactical, lexical, and discursive features of the language of English-speaking ombudsmen, as samples of public administrative language, with special attention to those characteristics that pose a threat to comprehension, and (b) to develop the OmbudsCorpus, a parallel corpus of complex-simple supra-sentential fragments from ombudsmen’s case reports that have been manually simplified by professionals and annotated with standardized simplification operations. This research endeavor aims to provide a deeper understanding of the simplification process and to enhance the training of ATS systems specialized in administrative texts.

2016

In order to analyze metrical and semantics aspects of poetry in Spanish with computational techniques, we have developed a large corpus annotated with metrical information. In this paper we will present and discuss the development of this corpus: the formal representation of metrical patterns, the semi-automatic annotation process based on a new automatic scansion system, the main annotation problems, and the evaluation, in which an inter-annotator agreement of 96% has been obtained. The corpus is open and available.

2015

2011

2010

2009

2007

2004

2003