Berthold Crysmann


2015

2012

2011

2009

2008

Large-scale grammar-based parsing systems nowadays increasingly rely on independently developed, more specialized components for pre-processing their input. However, different tools make conflicting assumptions about very basic properties such as tokenization. To make linguistic annotation gathered in pre-processing available to “deep” parsing, a hybrid NLP system needs to establish a coherent mapping between the two universes. Our basic assumption is that tokens are best described by attribute value matrices (AVMs) that may be arbitrarily complex. We propose a powerful resource-sensitive rewrite formalism, “chart mapping”, that allows us to mediate between the token descriptions delivered by shallow pre-processing components and the input expected by the grammar. We furthermore propose a novel way of unknown word treatment where all generic lexical entries are instantiated that are licensed by a particular token AVM. Again, chart mapping is used to give the grammar writer full control as to which items (e.g. native vs. generic lexical items) enter syntactic parsing. We discuss several further uses of the original idea and report on early experiences with the new machinery.

2007

2006

We describe a method for the automatic extraction of a Stochastic Lexicalized Tree Insertion Grammar from a linguistically rich HPSG Treebank. The extraction method is strongly guided by HPSG-based head and argument decomposition rules. The tree anchors correspond to lexical labels encoding fine-grained information. The approach has been tested with a German corpus achieving a labeled recall of 77.33% and labeled precision of 78.27%, which is competitive to recent results reported for German parsing using the Negra Treebank.

2004

2003

2002

2000