Beatriz Busaniche


2025

Most resources for evaluating social biases in Large Language Models are developed without co-design from the communities affected by these biases, and rarely involve participatory approaches. We introduce HESEIA, a dataset of 46,499 sentences created in a professional development course. The course involved 370 high-school teachers and 5,370 students from 189 Latin-American schools. Unlike existing benchmarks, HESEIA captures intersectional biases across multiple demographic axes and school subjects. It reflects local contexts through the lived experience and pedagogical expertise of educators. Teachers used minimal pairs to create sentences that express stereotypes relevant to their school subjects and communities. We show the dataset diversity in term of demographic axes represented and also in terms of the knowledge areas included. We demonstrate that the dataset contains more stereotypes unrecognized by current LLMs than previous datasets. HESEIA is available to support bias assessments grounded in educational communities.

2023

Approaches to bias assessment usually require such technical skills that, by design, they leave discrimination experts out. In this paper we present EDIA, a tool that facilitates that experts in discrimination explore social biases in word embeddings and masked language models. Experts can then characterize those biases so that their presence can be assessed more systematically, and actions can be planned to address them. They can work interactively to assess the effects of different characterizations of bias in a given word embedding or language model, which helps to specify informal intuitions in concrete resources for systematic testing.