Aryan Singhal


2025

Large language models (LLMs) have demonstrated potential in fact-checking claims, yet their capabilities in verifying claims in multilingual contexts remain largely understudied. This paper investigates the efficacy of various prompting techniques, viz. Zero-Shot, English Chain-of-Thought, Self-Consistency, and Cross-Lingual Prompting, in enhancing the fact-checking and claim-verification abilities of LLMs for Arabic claims. We utilize 771 Arabic claims sourced from the X-fact dataset to benchmark the performance of four LLMs. To the best of our knowledge, ours is the first study to benchmark the inherent Arabic fact-checking abilities of LLMs stemming from their knowledge of Arabic facts, using a variety of prompting methods. Our results reveal significant variations in accuracy across different prompting methods. Our findings suggest that Cross-Lingual Prompting outperforms other methods, leading to notable performance gains.

2024

Due to the recent rise in digital misinformation, there has been great interest shown in using LLMs for fact-checking and claim verification. In this paper, we answer the question: Do LLMs know multilingual facts and can they use this knowledge for effective fact-checking? To this end, we create a benchmark by filtering multilingual claims from the X-fact dataset and evaluating the multilingual fact-checking capabilities of five LLMs across five diverse languages: Spanish, Italian, Portuguese, Turkish, and Tamil on our benchmark. We employ three different prompting techniques: Zero-Shot, English Chain-of-Thought, and Cross-Lingual Prompting, using both greedy and self-consistency decoding. We extensively analyze our results and find that GPT-4o achieves the highest accuracy, but zero-shot prompting with self-consistency was the most effective overall. We also show that techniques like Chain-of-Thought and Cross-Lingual Prompting, which are designed to improve reasoning abilities, do not necessarily improve the fact-checking abilities of LLMs. Interestingly, we find a strong negative correlation between model accuracy and the amount of internet content for a given language. This suggests that LLMs are better at fact-checking from knowledge in low-resource languages. We hope that this study will encourage more work on multilingual fact-checking using LLMs.