Armando Suárez

Also published as: A. Suárez, Armando Suarez


2025

This paper presents a novel multi-agent system for automatically generating graph database schemas from tabular data, strategically integrating rule-based analytics with large language models (LLMs). The framework leverages a lightweight rule system to select the most suitable analytic methods based on column data types, providing targeted insights that guide schema generation.

2023

Generative language models achieve the state of the art in many tasks within natural language processing (NLP). Although these models correctly capture syntactic information, they fail to interpret knowledge (semantics). Moreover, the lack of interpretability of these models promotes the use of other technologies as a replacement or complement to generative language models. This is the case with research focused on incorporating knowledge by resorting to knowledge bases mainly in the form of graphs. The generation of large knowledge graphs is carried out with unsupervised or semi-supervised techniques, which promotes the validation of this knowledge with the same type of techniques due to the size of the generated databases. In this review, we will explain the different techniques used to test and infer knowledge from graph structures with machine learning algorithms. The motivation of validating and inferring knowledge is to use correct knowledge in subsequent tasks with improved embeddings.

2010

2009

2007

2004

2002

2001

2000