Antonio Moreno Ribas

Univ. Rovira i Virgili

Also published as: Antonio Moreno

Other people with similar names: Antonio Moreno-Ortiz (Univ. of Málaga), Antonio Moreno-Sandoval (NYU, Univ. Autónoma de Madrid)


2018

This paper describes our system that has been used in Task1 Affect in Tweets. We combine two different approaches. The first one called N-Stream ConvNets, which is a deep learning approach where the second one is XGboost regressor based on a set of embedding and lexicons based features. Our system was evaluated on the testing sets of the tasks outperforming all other approaches for the Arabic version of valence intensity regression task and valence ordinal classification task.

2017

This paper describes SiTAKA, our system that has been used in task 4A, English and Arabic languages, Sentiment Analysis in Twitter of SemEval2017. The system proposes the representation of tweets using a novel set of features, which include a bag of negated words and the information provided by some lexicons. The polarity of tweets is determined by a classifier based on a Support Vector Machine. Our system ranks 2nd among 8 systems in the Arabic language tweets and ranks 8th among 38 systems in the English-language tweets.