Andreas Maletti


2021

Tree-adjoining grammar (TAG) and combinatory categorial grammar (CCG) are two well-established mildly context-sensitive grammar formalisms that are known to have the same expressive power on strings (i.e., generate the same class of string languages). It is demonstrated that their expressive power on trees also essentially coincides. In fact, CCG without lexicon entries for the empty string and only first-order rules of degree at most 2 are sufficient for its full expressive power.

2019

2018

We investigate the computational complexity of various problems for simple recurrent neural networks (RNNs) as formal models for recognizing weighted languages. We focus on the single-layer, ReLU-activation, rational-weight RNNs with softmax, which are commonly used in natural language processing applications. We show that most problems for such RNNs are undecidable, including consistency, equivalence, minimization, and the determination of the highest-weighted string. However, for consistent RNNs the last problem becomes decidable, although the solution length can surpass all computable bounds. If additionally the string is limited to polynomial length, the problem becomes NP-complete. In summary, this shows that approximations and heuristic algorithms are necessary in practical applications of those RNNs.

2016

2015

2014

A novel variation of modified KNESER-NEY model using monomial discounting is presented and integrated into the MOSES statistical machine translation toolkit. The language model is trained on a large training set as usual, but its new discount parameters are tuned to the small development set. An in-domain and cross-domain evaluation of the language model is performed based on perplexity, in which sizable improvements are obtained. Additionally, the performance of the language model is also evaluated in several major machine translation tasks including Chinese-to-English. In those tests, the test data is from a (slightly) different domain than the training data. The experimental results indicate that the new model significantly outperforms a baseline model using SRILM in those domain adaptation scenarios. The new language model is thus ideally suited for domain adaptation without sacrificing performance on in-domain experiments.

2013

2012

2011

2010

2009