Alp Öktem

Also published as: Alp Oktem


2025

We present the manual correction of the Tamazight portions of the FLORES+ and OLDI Seed datasets to improve the quality of open machine translation resources for the language. These widely used reference corpora contained numerous issues, including mistranslations, orthographic inconsistencies, overuse of loanwords, and non-standard transliterations. Overall, 36% of FLORES+ and 40% of Seed sentences were corrected by expert linguists, with average token divergence of 19% and 25% among changed items. Evaluation of multiple MT systems, including NLLB models and commercial LLM services, showed consistent gains in automated evaluation metrics when using the corrected data. Fine-tuning NLLB-600M on the revised Seed corpus yielded improvements of +6.05 chrF (en→zgh) and +2.32 (zgh→en), outperforming larger parameter models and LLM providers in en→zgh direction.

2024

2022

We develop machine translation and speech synthesis systems to complement the efforts of revitalizing Judeo-Spanish, the exiled language of Sephardic Jews, which survived for centuries, but now faces the threat of extinction in the digital age. Building on resources created by the Sephardic community of Turkey and elsewhere, we create corpora and tools that would help preserve this language for future generations. For machine translation, we first develop a Spanish to Judeo-Spanish rule-based machine translation system, in order to generate large volumes of synthetic parallel data in the relevant language pairs: Turkish, English and Spanish. Then, we train baseline neural machine translation engines using this synthetic data and authentic parallel data created from translations by the Sephardic community. For text-to-speech synthesis, we present a 3.5-hour single speaker speech corpus for building a neural speech synthesis engine. Resources, model weights and online inference engines are shared publicly.

2020

Research in NLP lacks geographic diversity, and the question of how NLP can be scaled to low-resourced languages has not yet been adequately solved. ‘Low-resourced’-ness is a complex problem going beyond data availability and reflects systemic problems in society. In this paper, we focus on the task of Machine Translation (MT), that plays a crucial role for information accessibility and communication worldwide. Despite immense improvements in MT over the past decade, MT is centered around a few high-resourced languages. As MT researchers cannot solve the problem of low-resourcedness alone, we propose participatory research as a means to involve all necessary agents required in the MT development process. We demonstrate the feasibility and scalability of participatory research with a case study on MT for African languages. Its implementation leads to a collection of novel translation datasets, MT benchmarks for over 30 languages, with human evaluations for a third of them, and enables participants without formal training to make a unique scientific contribution. Benchmarks, models, data, code, and evaluation results are released at https://github.com/masakhane-io/masakhane-mt.
The COVID-19 pandemic is the worst pandemic to strike the world in over a century. Crucial to stemming the tide of the SARS-CoV-2 virus is communicating to vulnerable populations the means by which they can protect themselves. To this end, the collaborators forming the Translation Initiative for COvid-19 (TICO-19) have made test and development data available to AI and MT researchers in 35 different languages in order to foster the development of tools and resources for improving access to information about COVID-19 in these languages. In addition to 9 high-resourced, ”pivot” languages, the team is targeting 26 lesser resourced languages, in particular languages of Africa, South Asia and South-East Asia, whose populations may be the most vulnerable to the spread of the virus. The same data is translated into all of the languages represented, meaning that testing or development can be done for any pairing of languages in the set. Further, the team is converting the test and development data into translation memories (TMXs) that can be used by localizers from and to any of the languages.

2017

This paper presents a methodology to extract parallel speech corpora based on any language pair from dubbed movies, together with an application framework in which some corresponding prosodic parameters are extracted. The obtained parallel corpora are especially suitable for speech-to-speech translation applications when a prosody transfer between source and target languages is desired.
Search
Co-authors
Fix author