Alan Huang


2025

Automated meme understanding requires systems to demonstrate fine-grained visual recognition, commonsense reasoning, and extensive cultural knowledge. However, existing benchmarks for meme understanding only concern narrow aspects of meme semantics. To fill this gap, we present MemeQA, a dataset of over 9,000 multiple-choice questions designed to holistically evaluate meme comprehension across seven cognitive aspects. Experiments show that state-of-the-art Large Multimodal Models perform much worse than humans on MemeQA. While fine-tuning improves their performance, they still make many errors on memes wherein proper understanding requires going beyond surface-level sentiment. Moreover, injecting “None of the above” into the available options makes the questions more challenging for the models. Our dataset is publicly available at https://github.com/npnkhoi/memeqa.

2024

We present LawBench, the first evaluation benchmark composed of 20 tasks aimed to assess the ability of Large Language Models (LLMs) to perform Chinese legal-related tasks. LawBench is meticulously crafted to enable precise assessment of LLMs’ legal capabilities from three cognitive levels that correspond to the widely accepted Bloom’s cognitive taxonomy. Using LawBench, we present a comprehensive evaluation of 21 popular LLMs and the first comparative analysis of the empirical results in order to reveal their relative strengths and weaknesses. All data, model predictions and evaluation code are accessible from https://github.com/open-compass/LawBench.