Alan Guo


2021

Conversational semantic parsers map user utterances to executable programs given dialogue histories composed of previous utterances, programs, and system responses. Existing parsers typically condition on rich representations of history that include the complete set of values and computations previously discussed. We propose a model that abstracts over values to focus prediction on type- and function-level context. This approach provides a compact encoding of dialogue histories and predicted programs, improving generalization and computational efficiency. Our model incorporates several other components, including an atomic span copy operation and structural enforcement of well-formedness constraints on predicted programs, that are particularly advantageous in the low-data regime. Trained on the SMCalFlow and TreeDST datasets, our model outperforms prior work by 7.3% and 10.6% respectively in terms of absolute accuracy. Trained on only a thousand examples from each dataset, it outperforms strong baselines by 12.4% and 6.4%. These results indicate that simple representations are key to effective generalization in conversational semantic parsing.

2020

We describe an approach to task-oriented dialogue in which dialogue state is represented as a dataflow graph. A dialogue agent maps each user utterance to a program that extends this graph. Programs include metacomputation operators for reference and revision that reuse dataflow fragments from previous turns. Our graph-based state enables the expression and manipulation of complex user intents, and explicit metacomputation makes these intents easier for learned models to predict. We introduce a new dataset, SMCalFlow, featuring complex dialogues about events, weather, places, and people. Experiments show that dataflow graphs and metacomputation substantially improve representability and predictability in these natural dialogues. Additional experiments on the MultiWOZ dataset show that our dataflow representation enables an otherwise off-the-shelf sequence-to-sequence model to match the best existing task-specific state tracking model. The SMCalFlow dataset, code for replicating experiments, and a public leaderboard are available at https://www.microsoft.com/en-us/research/project/dataflow-based-dialogue-semantic-machines.