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Abstract

Natural Language Processing (NLP) for low-
resource languages remains fundamentally con-
strained by the lack of textual corpora, stan-
dardized orthographies, and scalable annota-
tion pipelines. While recent advances in large
language models have improved cross-lingual
transfer, they remain inaccessible to underrep-
resented communities due to their reliance on
massive, pre-collected data and centralized in-
frastructure. In this position paper, we argue
for a paradigm shift toward open-ended, inter-
active language discovery, where AI systems
learn new languages dynamically through dia-
logue rather than static datasets. We contend
that the future of language technology, particu-
larly for low-resource and under-documented
languages, must move beyond static data collec-
tion pipelines toward interactive, uncertainty-
driven discovery, where learning emerges dy-
namically from human-machine collaboration
instead of being limited to pre-existing datasets.
We propose a framework grounded in joint
human-machine uncertainty, combining epis-
temic uncertainty from the model with hesita-
tion cues and confidence signals from human
speakers to guide interaction, query selection,
and memory retention. This paper is a call
to action: we advocate a rethinking of how
AI engages with human knowledge in under-
documented languages, moving from extrac-
tive data collection toward participatory, co-
adaptive learning processes that respect and
empower communities while discovering and
preserving the world’s linguistic diversity. This
vision aligns with principles of human-centered
AI, emphasizing interactive, cooperative model
building between AI systems and speakers.

1 Introduction

The recent progress in Natural Language Process-
ing (NLP) has been largely shaped by a data-driven
paradigm. Foundation models, built on large-scale
internet corpora and empowered by scaling laws,

have unlocked impressive generalization across
tasks and languages (Kaplan et al., 2020; Brown
et al., 2020; Scao et al., 2023). However, this tra-
jectory has come at a cost: the assumption that per-
formance improves with ever more data and com-
pute has made cutting-edge research increasingly
inaccessible, especially to researchers and commu-
nities in the Global South (Sambasivan et al., 2021;
Schwartz et al., 2020).

Despite efforts to democratize NLP, a stark im-
balance persists. African languages, which make
up over 30% of the world’s linguistic diversity,
account for less than 1% of NLP research out-
put (Joshi et al., 2020). These languages typi-
cally lack large-scale text corpora, parallel datasets,
and standardized annotation practices. Transfer
learning, active learning, self-supervised and semi-
supervised learning, have all been proposed to ad-
dress this data scarcity (Howard and Ruder, 2018;
Devlin et al., 2019; Ein-Dor et al., 2020; Dossou
et al., 2022; Dossou, 2025; Dossou et al., 2025), but
even these methods depend on the availability of
some unlabeled or previously seen language data.
In environments where data is extremely scarce or
non-digitized, such assumptions break down.

Moreover, while recent Large Language Mod-
els (LLMs) have demonstrated impressive cross-
lingual abilities, their success is closely tied to data
scale, computational resources, and increasingly
centralized infrastructure. As scaling laws plateau
and operational costs rise, the current paradigm
risks becoming both unsustainable and exclusive,
limiting participation from underrepresented com-
munities and preventing scalable solutions for the
languages that need them most (Strubell et al.,
2019; Bender et al., 2021; Pouget et al., 2024).

We argue that NLP must now evolve beyond
static, data-hungry training regimes. Inspired by
recent work in open-ended discovery and self-
improving AI (Hughes et al., 2024; Lu et al., 2025),
we propose a shift toward interactive, uncertainty-



driven language learning. In our vision, AI sys-
tems learn languages not from vast corpora, but
through natural dialogue, identifying gaps in their
understanding, asking questions, and incorporating
feedback in real time.

Imagine an AI system that only understands En-
glish, but receives a human input in Fon (Dos-
sou and Emezue, 2020, 2021a; Dossou and Sabry,
2021; Dossou and Emezue, 2021b; Dossou et al.,
2023). Instead of guessing or ignoring it, the sys-
tem responds: “I do not recognize this language.
Could you help me understand it?” From this first
exchange, it starts acquiring the new linguistic con-
cepts interactively. Over time, through repeated ex-
posure and correction, the system transitions from
total ignorance to conversational fluency in the
new language. This vision shifts the emphasis from
training on what we have to learning from what
we do not yet understand, as humans do.

In this position paper, we explore the tech-
nical and conceptual foundations for such sys-
tems. We argue that open-ended language learning,
grounded in epistemic uncertainty, dialogue, and
human-in-the-loop adaptation, represents a scal-
able and inclusive path forward for low-resource
NLP, especially in contexts where static data is not
available, representative, or sufficient. We also out-
line a set of open challenges that arise from this
vision, including the need for reliable uncertainty
estimation, continuous learning mechanisms, and
equitable access to interaction data. We discuss
both the promise and the risks of this approach,
including the question of whether such systems can
acquire meaningful language competence without
sufficient exposure or human feedback, and what
architectures, incentives, or evaluation schemes
would be required to support them.

2 Background and Related Work

2.1 Low-Resource Languages

Africa is one of the most linguistically diverse con-
tinents, home to over 3,000 indigenous languages
(Epstein and Kole, 1998; Eberhard et al., 2024),
which account for about one-third of the world’s
7,159 living languages (Eberhard et al., 2024). In
an increasingly digital world, where today’s AI
advancement such as LLMs offer unprecedented
possibilities, the non-integration of these languages
into the technological landscape not only exacer-
bates social inequalities but also poses a serious
threat to the survival of entire linguistic cultures.

As inclusion and diversity gain global impor-
tance, commendable efforts have been made by
researchers to identify available, albeit scarce, data
sources (e.g., the Bible in Fon). Moreover, there are
growing efforts for datasets creation (sometimes
done manually and on a voluntary basis). These
datasets have been used to create machine transla-
tion models that produce acceptable results (Dos-
sou and Emezue, 2020; Adelani et al., 2022a). As
a result, some of the very low-resource languages
such as Fon, Ewe have been recently integrated
into Google Translate,1 for textual translations.

Despite these important advances, several major
challenges persist that existing solutions do not,
and arguably cannot address. In particular, current
approaches still rely heavily on larger amounts of
textual data (Adelani et al., 2022a; Dossou et al.,
2022; Nekoto et al., 2020), resources that are ex-
tremely scarce or absent for many African lan-
guages and dialects (Nekoto et al., 2020; Joshi
et al., 2020). Due to this reliance, existing so-
lutions only cover a tiny fraction (≈1%) of the
languages, typically selected based on speaker pop-
ulation size or researchers’ ties (Adelani et al.,
2022a,b). These choices overlook the existing di-
versity and will ineluctably reinforce existing so-
cial inequalities and discrimination. For instance,
Nigeria alone has over 500 indigenous languages
(Eberhard et al., 2024), most of which severely lack
written resources. Even more concerning is the
practical impact of current solutions. In fact, most
low-resource languages exist solely through oral
traditions, meaning that the vast majority of native
speakers can only speak them and struggle to read
written versions, if such versions exist at all (Dos-
sou and Emezue, 2021a; Olatunji et al., 2023b,a).
Therefore, solutions that rely on textual translations
are fundamentally misaligned with how these lan-
guages are actually used, making them ineffective
for real-world communication needs.

2.2 Human Uncertainty Estimation

Incorporating human uncertainty into interactive
learning frameworks has emerged as a critical com-
plement to model uncertainty, as human feedback is
often non-deterministic and can significantly shape
model learning dynamics. Collins et al. (2023) ex-
plore concept-level interventions where humans
provide feedback on intermediate concepts rather
than final labels. They show that capturing the

1https://translate.google.com/?sl=en&tl=fon
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confidence or uncertainty of these interventions,
through soft labels or probabilistic feedback, im-
proves model robustness and generalization.

Mendes et al. (2025) study the relationship be-
tween human-perceived and model-predicted un-
certainties, finding only limited correlation be-
tween the two. This indicates that model uncer-
tainty alone is insufficient to assess ambiguity in
real-world settings. Explicitly modeling human un-
certainty, for example, through elicited confidence
scores or inter-annotator variance, can lead to more
calibrated and reliable learning.

From a broader perspective, Bhatt et al. (2021)
argue that exposing both human and model un-
certainties enhances transparency and mutual un-
derstanding in human-AI collaboration. Similarly,
collaborative annotation frameworks such as CoAn-
notating (Li et al., 2023) leverage these uncertainty
estimates to decide when to defer to human exper-
tise or proceed autonomously, improving both effi-
ciency and reliability in human-in-the-loop learn-
ing pipelines.

2.3 Model Uncertainty Estimation
In machine learning models, uncertainty estimation
plays a crucial role in determining whether a model
can respond confidently or should request clarifi-
cation from the user. We denote by fθ : X → Y a
parametric model with parameters θ, input x ∈ X ,
and predictive distribution pθ(y|x). D is the train-
ing dataset.

Kendall and Gal distinguish two types of un-
certainty: aleatoric uncertainty (Ua) and epistemic
uncertainty (Ue). Most literature works focus on
Ue which is approximated by:

Ue(x) = Vp(θ|D)[Ep(y|x,θ)[y]]

This is Ue because directly tied to limited data or
lack of model knowledge. The two most common
ways of estimating Ue are the following:

With Bayesian Neural Networks BNNs
(MacKay, 1992; Neal, 1996) define a posterior
over weights:

p(θ|D) ∝ p(D|θ)p(θ),

and predictive uncertainty as:

p(y|x,D) =
∫

p(y|x, θ)p(θ|D) dθ.

In practice, this integral is untractable, and approx-
imated using variational inference (Blundell et al.,

2015) or Monte Carlo sampling (Gal and Ghahra-
mani, 2016).

With Deep Ensembles Given M independently
trained models {fθm}Mm=1, predictive uncertainty
is quantified via:

Um(x) =
1

M

∑
m

H(fθm(y|x)),

where H(·) is Shannon entropy.
In summary, while advances in uncertainty esti-

mation have improved model reliability (Kendall
and Gal; Gal and Ghahramani, 2016; Kirsch et al.,
2019) and recent work has explored uncertainty in
human feedback (Collins et al., 2023; Mendes et al.,
2025), current AI systems still learn predominantly
from static datasets or treat user input as determinis-
tic corrections. This creates two major limitations:
(i) uncertainty from humans and models is rarely
considered jointly, reducing the system’s ability
to assess when to seek clarification or defer deci-
sions, and (ii) learning processes remain largely
offline, without mechanisms to dynamically adapt
to evolving user input.

To address these shortcomings, we introduce an
interactive learning system that moves beyond
passive, data-driven training. Instead of relying
solely on pre-collected corpora, the system engages
directly with users, identifies gaps in understanding,
requests clarification when uncertainty is high, and
incorporates feedback into its evolving knowledge
state. This approach aims to fuse human and model
uncertainties to guide the dialogue flow, enabling
real-time, adaptive, and more sample-efficient lan-
guage acquisition.

3 Proposed Approach

Our proposed framework enables AI systems to
acquire language competence through open-ended,
interactive learning. This process is illustrated in
Figure 1 through interactions between a human
and the AI system (agent). Rather than training
on large static corpora, the system learns by en-
gaging with users in real time, identifying gaps in
its knowledge, soliciting clarification, and integrat-
ing feedback. The methodology consists of three
core components: (1) modeling interactional uncer-
tainty, (2) language acquisition via feedback, and
(3) continual learning from dialogic exposure.



Figure 1: Illustration of the proposed approach for open-ended learning of low-resource languages. It shows the
voice conversation between a human and an agent who teaches the agent to recognize and respond to requests for
the capital city of a country in the Fon language.

3.1 Modeling Interactional Uncertainty
At the heart of our approach is the notion of epis-
temic uncertainty, which refers to the system’s
awareness of what it does not know. In conven-
tional NLP, model uncertainty is often used for
tasks like active learning or confidence calibra-
tion (Kendall and Gal; Gal and Ghahramani, 2016;
Houlsby et al., 2011; Guo et al., 2017). Here, we
extend this principle to guide decision-making dur-
ing interactive language learning.

We define a composite uncertainty signal com-
bining both human and machine contributions:

Utotal = α · Uhuman + (1− α) · Umodel

where Umodel is the model’s epistemic uncertainty,
estimated via entropy, ensemble disagreement, or
Bayesian approximations (Kendall and Gal; Kirsch
et al., 2019; Gal et al., 2017; Gal and Ghahramani,
2016; Kirsch et al., 2023), Uhuman reflects uncer-
tainty inferred from hesitation cues, conflicting cor-
rections, or prosodic markers, and α controls the
relative influence of human versus machine uncer-
tainty.

Given this signal, the system selects a query Q∗

to ask the human speaker, optimizing:

Q∗ = argmax
Q

E[InfoGain(Q)]

Cost(Q,Uhuman)

where

Cost(Q,Uhuman) = c(Q)
(
1 + λ ∗ Uhuman

)
with c(Q) representing the baseline time or cogni-
tive effort required for query type Q, and λ ≥ 0

controlling how strongly human uncertainty in-
creases perceived cost. This interaction cost reflects
the human effort required to answer a query and the
likelihood of confusion when the speaker is already
uncertain. Scaling the cost by (1 + λ ∗ Uhuman)
ensures the system avoids queries that are both ex-
pensive and likely to yield ambiguous responses.
This improves efficiency and user experience, mak-
ing learning cooperative rather than extractive.

The expected information gain from a query Q
is defined as the anticipated reduction in predictive
uncertainty:

InfoGain(Q) = H[Y | x,D]
− EA∼p(A|Q)

[
H[Y | x,D, Q,A]

]
where H[·] denotes Shannon entropy, D is the cur-
rent learner state, and A denotes a human response
sampled from p(A | Q). This term quantifies how
much uncertainty the query is expected to resolve.
We define p(A|Q) as the conditional distribution
over possible human responses given a query Q.
This distribution models the variability and uncer-
tainty in human feedback due to ambiguity in mean-
ing, hesitation or noise in responses, and contextual
variability across speakers.

The selected query Q∗ and the anticipated dis-
tribution of human responses p(A|Q) provide the
necessary context for the next stage, where human
feedback is integrated into the model.

3.2 Language Acquisition via Human
Feedback

Once a query Q∗ has been selected based on the
joint uncertainty signal, the AI system receives a



feedback signal A from the human speaker. In this
stage, the goal is to integrate the new information
into the model’s knowledge while accounting for
both human and model uncertainty.

A targeted query Q is designed to elicit clari-
fying information about input x, such as asking

“What does this word mean?” or “How would you
say this sentence?”. The response is denoted as
A ∼ p(A|Q), sampled from a conditional distri-
bution over possible answers. This distribution re-
flects that feedback may vary or include ambiguity,
such as multiple possible translations or uncertain
corrections.

We denote pθ(·|x) as the model’s current predic-
tive distribution over possible meanings or utter-
ances for input x, parameterized by θ. The human
feedback is represented as yhuman, a meaning dis-
tribution derived from the response A. It can be
sharp, corresponding to a single unambiguous an-
swer, or soft, capturing several plausible meanings
with associated probabilities. Finally, we introduce
a reliability weight wf = 1−Uhuman, which down-
scales the influence of uncertain human feedback.
When human uncertainty is high, the system places
less emphasis on the feedback to avoid reinforcing
potentially misleading signals.

Using these definitions, the system constructs a
new target distribution that combines its own prior
predictions with the received feedback:

ỹ = wf · yhuman + (1− wf ) · pθ(·|x)

This weighted target guides the parameter update:

θ′ = θ − η∇θL(pθ(·|x), ỹ)

where η is the learning rate and L is a loss function.
KL Divergence can be used to align the model’s
predicted distribution with human-provided mean-
ing probabilities in a continuous space, making it
well-suited for uncertain or soft feedback. Con-
trastive Loss distinguishes correct meanings from
alternative ones in an embedding space, supporting
open-ended discovery where meanings are not pre-
defined. Categorical Cross-Entropy works when
the system has a finite set of candidate meanings,
though it is less ideal for open-ended language
learning since it assumes predefined categories.

This approach allows the system to integrate hu-
man feedback incrementally and proportionally to
its reliability, while still preserving useful prior
knowledge from its own predictions. In the future,
more appropriate loss functions could be designed

specifically for dialogic, open-ended learning sce-
narios to better reflect the uncertainty and flexibility
inherent in human language interactions.

3.3 Continual Learning from Dialogic
Exposure

Language acquisition is not a single-step process.
Over multiple interactions, the system must con-
solidate knowledge, refine uncertain examples, and
adapt to evolving feedback. To achieve this, every
interaction is stored in a memory bank:

M = {(xi, Ai, wi)}

where each element consists of the input xi, the
human feedback Ai, and an associated weight:

wi = (1− U (i)
human)(1− U

(i)
model)

This weight captures the combined confidence of
both the human and the model for a given interac-
tion.

The memory bankM acts as a growing reposi-
tory of past interactions with human speakers, each
stored alongside a weight indicating reliability. Pe-
riodically, the system revisits stored samples to rein-
force reliable information and re-query ambiguous
examples. Past interactions are used to improve the
model through uncertainty-aware gradient updates:

θ ← θ − η
∑
i

wi∇θL(pθ(·|xi), Ai)

pθ(·|xi) refers to the same predictive model in-
troduced in Section 3.2, now updated iteratively
using both immediate feedback and stored mem-
ory samples. We reuse the notation to emphasize
that the model evolves over time through repeated
uncertainty-guided interactions.

Low-weight samples contribute less to the up-
date, preventing uncertain or noisy feedback from
degrading the learned representation. They are not
discarded but flagged for future re-querying when
opportunities arise. This creates a closed interac-
tive loop where the system encounters new input
x, computes Utotal and selects an optimal query Q∗,
collects human feedback A and updates parame-
ters incrementally, stores the interaction inM with
weight wi, and periodically revisits uncertain cases
to refine or validate earlier knowledge, looping
back when necessary.

Through these mechanisms, uncertainty evolves
from a static confidence score into an active princi-
ple governing when to trust, query, defer, or memo-
rize. This continual process ensures that learning



is incremental, reliable, and co-adaptive. It enables
the system to refine its internal representations over
time, progressively improving its understanding of
a new language while remaining sensitive to the
reliability of past and future feedback. Together,
these three stages establish a self-reinforcing loop
for interactive language discovery, where uncer-
tainty not only shapes individual interactions but
also drives long-term, co-adaptive learning.

4 Opportunities and Challenges

Our proposed framework for open-ended language
discovery leverages joint human-machine uncer-
tainty to guide interaction, query selection, and
memory retention. While the approach introduces
a novel paradigm for low-resource language ac-
quisition, its success and limitations stem directly
from the mechanisms we designed. Unlike con-
ventional NLP pipelines that rely on static, curated
datasets and post-hoc analysis, this framework is
designed for real-time, adaptive interaction. It em-
phasizes uncertainty-driven decision-making, en-
abling language acquisition to progress even when
large corpora, standardized orthographies, or ex-
pert annotators are unavailable.

4.1 Why This Could Work

The framework builds on several principles that
make it uniquely suited for interactive, low-
resource settings. By explicitly modeling epistemic
uncertainty, the system learns what it does not know
and can focus queries on areas of high informa-
tion gain rather than engaging in blind memoriza-
tion. This targeted querying mechanism has the
potential to accelerate language acquisition com-
pared to static corpus-based training approaches.
Incorporating Uhuman allows the system to defer
or prioritize information based on human confi-
dence, ensuring that reliable feedback from fluent
speakers directly shapes the learned representation
and reduces noise in the earliest stages of learning.
Over time, dynamic weighting (α) adapts reliance
on each contributor according to their observed
consistency and reliability, making the system ro-
bust to heterogeneous or occasional feedback. Fur-
thermore, confidence-weighted memory retention
enables iterative refinement of knowledge: high-
certainty information consolidates quickly, while
ambiguous examples remain open for re-querying,
progressively building a stable and trustworthy
knowledge base. Together, these mechanisms en-

able data-efficient learning that can bootstrap lan-
guage understanding from a small number of high-
value interactions, making it feasible in settings
where large corpora are unavailable. These proper-
ties suggest that joint human–machine uncertainty
could form the backbone of scalable, respectful,
and data-efficient language acquisition, where con-
ventional supervised NLP pipelines cannot operate.

4.1.1 In the Context of Low-Resource African
Languages

Low-resource African languages often face a
unique combination of challenges that make stan-
dard NLP pipelines ineffective: severe data scarcity,
highly variable orthographies, oral traditions with-
out standardized writing systems, and limited avail-
ability of expert annotators. The proposed frame-
work is particularly well-suited to this context be-
cause it does not rely on pre-existing corpora or
formal linguistic resources. Instead, it learns in-
teractively from small, high-value exchanges, ask-
ing only those questions that are most informative
given its current uncertainty. This targeted learn-
ing process minimizes the burden on speakers, who
may have limited time or literacy in standardized or-
thography, while still allowing the system to rapidly
form hypotheses about grammar, semantics, and
phonology.

Moreover, the joint modeling of human and ma-
chine uncertainty makes the framework robust to
the realities of field data collection in African set-
tings, where contributors may have varying degrees
of fluency, confidence, or even differing dialects of
the same language. By adapting reliance on each
contributor through dynamically learned weighting
(α), the framework can filter noise while still cap-
turing dialectal richness. Its ability to defer uncer-
tain information and revisit ambiguous examples
ensures that rare or culturally significant linguistic
forms are not prematurely discarded. These prop-
erties make it a promising approach for preserv-
ing, documenting, and learning African languages
where the cost of traditional data collection is pro-
hibitive and where respectful, participatory collab-
oration with speakers is essential. This approach
not only addresses data scarcity but also reframes
language technology development as a collabora-
tive process between AI systems and speakers. By
moving away from extractive data collection to-
ward live, adaptive interaction, it offers a pathway
for NLP to support language documentation and
revitalization efforts. Particularly in marginalized



communities, this paradigm empowers speakers to
co-create technology aligned with their linguistic
and cultural realities, potentially reshaping how AI
contributes to the preservation and expansion of
global linguistic diversity.

4.1.2 In the Context of Human-Centered AI
and Human-Computer Interactions

The proposed framework embodies principles of
human-centered artificial intelligence by placing
speakers at the center of the learning process.
Rather than treating them as static annotators or
sources of labels, it engages in a cooperative inter-
action where both human and machine uncertainty
guide the flow of information exchange. This fos-
ters transparency and trust, as speakers can see
that the system acknowledges its own uncertainty,
adapts to their confidence levels, and defers deci-
sions when information is unclear.

From a Human-Computer Interaction (HCI)
standpoint, the framework reduces the cognitive
and emotional burden on contributors by focusing
only on high-value, contextually relevant questions
instead of overwhelming them with repetitive or
trivial requests. It can adapt the pace and style of
interaction based on hesitation cues, feedback la-
tency, or non-verbal indicators of uncertainty, mak-
ing it more accessible to non-expert participants.
Additionally, the iterative refinement of memory
ensures that early mistakes can be revisited and
corrected collaboratively, giving speakers a sense
of agency and ownership in shaping the emerging
language model. This paradigm transforms data
collection from a one-way, extractive process into
a participatory dialogue, contributing to the devel-
opment of AI systems that are not only technically
effective but also socially aligned and respectful
toward the communities they aim to serve. In do-
ing so, it demonstrates a path toward genuinely
human-centered AI, where computational methods
adapt to people, rather than asking people to adapt
to technology. This vision is aligned with partici-
patory and co-design approaches explored in HCI
research (Liao and Vaughan, 2023; Birhane et al.,
2022; Delgado et al., 2023), which emphasize col-
laborative model building, transparency, and com-
munity agency in shaping AI behavior.

While these properties highlight the potential of
our framework to enable scalable, and data-efficient
language learning, realizing this vision in practice
is far from trivial. Uncertainty-guided discovery
introduces its own vulnerabilities, and deploying

such systems in real-world low-resource environ-
ments presents additional technical and sociotechni-
cal barriers, that must be addressed. The following
section discusses these open challenges.

4.2 Challenges
Several challenges could undermine the effective-
ness of the proposed framework in practice. A first
concern lies in the reliability of uncertainty esti-
mation. Because the system operates on highly
out-of-distribution data such as new languages, un-
seen constructs, and unpredictable input patterns,
its uncertainty signals may not be well calibrated.
Miscalibration could lead to redundant or unneces-
sary queries, or conversely, to missed opportunities
to acquire valuable information early on.

Human uncertainty signals introduce another
layer of complexity. Hesitation cues, conflicting an-
swers, or silence are not always reliable indicators
of a speaker’s true confidence. Cultural norms and
individual communication styles can further distort
these signals, leading the system to over-trust un-
certain information or defer excessively even when
a speaker would have provided correct input. This
unreliability in feedback interpretation can propa-
gate downstream errors in learning.

Errors may also arise in the adaptive weighting
mechanism. Because α must be learned online
from sparse observations, early interactions can
dominate future weighting, allowing biases from
the first few contributors to persist unchecked. In
heterogeneous communities where speaker relia-
bility varies widely, it becomes difficult to esti-
mate contributor trustworthiness accurately, which
risks amplifying noise and reducing the value of
human input. This interacts closely with query se-
lection: without stable reliability or cost estimates,
the system may waste interactions on poorly chosen
clarifications, frustrating users and slowing overall
progress.

The memory component presents its own risks.
Confidence-weighted retention is designed to con-
solidate reliable information quickly, but if mis-
interpreted feedback is assigned high confidence,
early errors risk becoming fossilized in the learned
representation. Conversely, rare linguistic forms
may repeatedly receive low-confidence scores, pre-
venting their integration and leaving parts of the lan-
guage undocumented or misunderstood. This chal-
lenge is compounded in what we term a “double-
uncertainty deadlock,” where both the model and
the human contributors remain uncertain for ex-



tended periods. In such cases, the system may
repeatedly defer decisions, becoming overly cau-
tious and failing to test hypotheses that could break
the cycle of uncertainty.

Finally, practical constraints in real-world de-
ployment cannot be ignored. Reliable uncertainty
estimation, adaptive weighting, and dynamic query
selection all introduce computational overhead that
may be infeasible on low-cost, battery-limited, or
offline devices. Connectivity issues, limited pro-
cessing power, and fragile hardware environments
could hinder the ability of the framework to operate
effectively in the very settings it aims to serve.

4.3 Future Directions
Addressing these challenges requires progress on
several fronts. Improving epistemic uncertainty
estimation in open-ended, out-of-distribution lan-
guage input is a priority, as more reliable measures
would reduce unnecessary queries and strengthen
the system’s ability to make informative decisions
early on. Equally important is the development of
context-aware and culturally adaptive models of
human uncertainty, since hesitation and confidence
cues vary widely across individuals and commu-
nities. Advancing methods for learning α from
sparse interactions will also be key to mitigating
early biases, ensuring that the system adapts fairly
and dynamically to multiple contributors over time.

Meta-learning approaches offer a promising path
toward improving α estimation. By transferring
priors on speaker reliability from related language
acquisition sessions or typologically similar lan-
guages, the system could begin with more informed
weighting strategies, reducing the risk of overfitting
to a handful of early interactions. This would make
adaptation faster and more stable, even in diverse
or previously unseen linguistic settings.

Developing multi-agent exploration policies
could further enhance query selection. Instead
of treating human interactions in isolation, coor-
dinated strategies could balance information gain,
contributor reliability, and annotation cost across
multiple speakers. Such strategies might delib-
erately diversify queries to capture rare linguis-
tic forms, seek cross-validation from independent
sources to resolve ambiguities, and avoid overload-
ing single contributors, making learning more effi-
cient and collaborative.

Breaking double-uncertainty deadlocks will re-
quire exploration mechanisms that take calcu-
lated risks when both human and model uncer-

tainty remain high. Periodic re-querying, redis-
covery routines, and targeted hypothesis testing
could help overcome conservativeness and expand
the system’s knowledge base over time. Finally,
lightweight, offline-capable implementations of the
framework are necessary for real-world deploy-
ment. Achieving efficient uncertainty estimation,
adaptive query selection, and meta-learning-based
weighting on low-power devices would make the
approach scalable and practical for under-resourced
communities that lack access to high-compute in-
frastructure.

If these research directions are pursued, joint
human-machine uncertainty could unlock scal-
able, interactive, and respectful language learning
systems capable of discovering and documenting
under-resourced languages without relying on large
curated datasets. Ultimately, this line of research
bridges technical innovation and participatory de-
sign, opening opportunities for AI systems that
learn with people, not just from data.

5 Conclusion

This paper outlines a vision for open-ended lan-
guage discovery based on joint human-machine
uncertainty. We argue that future NLP systems, par-
ticularly for low-resource languages, must move
beyond static data pipelines and toward interactive,
participatory approaches that adapt to sparse, un-
certain, and heterogeneous feedback. While many
technical and sociotechnical challenges remain,
this is not merely a research proposal but an ideo-
logical stance: language technology should be co-
created with speakers. We position this work as a
challenge to current practices that treat language as
extractable data, advocating instead for AI systems
that become collaborative participants in language
preservation and revitalization. We call on the NLP
and HCI research communities to develop meth-
ods, tools, and evaluation practices that support
co-adaptive language learning systems, opening
new pathways for linguistic documentation, preser-
vation, and empowerment in the digital age. This
position paper advocates for a paradigm shift: from
building models that passively learn from existing
data to designing systems that actively learn with
people in real time, fostering respectful, human-
centered AI for linguistic diversity.
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