Zikang Guo


2024

pdf
IDEATE: Detecting AI-Generated Text Using Internal and External Factual Structures
Quan Wang | Licheng Zhang | Zikang Guo | Zhendong Mao
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

The effective detection of AI-generated text is a vital principle to ensure responsible use of large language models (LLMs). Previous studies mainly focused on discovering and utilizing internal evidences contained in the text itself to perform the detection, while ignoring external evidences implicated in an established knowledge graph (KG) which may also be key discriminative factors between AI-generated and human-written text. To address this deficiency, we propose IDEATE, a novel hierarchical graph network that utilizes both internal and external factual structures to detect AI-generated text. IDEATE consists of a mention-level subgraph at the bottom to describe internal factual structures of mentioned entities reflected in the input text, and an entity-level subgraph at the top to describe external factual structures of mentioned entities reflected in an external KG. Hierarchical graph convolution is then applied successively on the two subgraphs, through which the two types of factual structures will be embedded into the output and used for the final detection. Extensive experiments on four benchmarking datasets show that IDEATE consistently outperforms current state-of-the-art methods in detecting text generated by various LLMs, ranging from GPT-2 to the more powerful ChatGPT, verifying the necessity and superiority of introducing external evidences for AI-generated text detection.

pdf
USTC-BUPT at SemEval-2024 Task 8: Enhancing Machine-Generated Text Detection via Domain Adversarial Neural Networks and LLM Embeddings
Zikang Guo | Kaijie Jiao | Xingyu Yao | Yuning Wan | Haoran Li | Benfeng Xu | Licheng Zhang | Quan Wang | Yongdong Zhang | Zhendong Mao
Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)

This paper introduces the system developed by USTC-BUPT for SemEval-2024 Task 8. The shared task comprises three subtasks across four tracks, aiming to develop automatic systems to distinguish between human-written and machine-generated text across various domains, languages and generators. Our system comprises four components: DATeD, LLAM, TLE, and AuDM, which empower us to effectively tackle all subtasks posed by the challenge. In the monolingual track, DATeD improves machine-generated text detection by incorporating a gradient reversal layer and integrating additional domain labels through Domain Adversarial Neural Networks, enhancing adaptation to diverse text domains. In the multilingual track, LLAM employs different strategies based on language characteristics. For English text, the LLM Embeddings approach utilizes embeddings from a proxy LLM followed by a two-stage CNN for classification, leveraging the broad linguistic knowledge captured during pre-training to enhance performance. For text in other languages, the LLM Sentinel approach transforms the classification task into a next-token prediction task, which facilitates easier adaptation to texts in various languages, especially low-resource languages. TLE utilizes the LLM Embeddings method with a minor modification in the classification strategy for subtask B. AuDM employs data augmentation and fine-tunes the DeBERTa model specifically for subtask C. Our system wins the multilingual track and ranks second in the monolingual track. Additionally, it achieves third place in both subtask B and C.