
A Word2DM Gradients

The objective function that SGNS optimises at each
prediction with regard to model parameters θ is

J(θ) = log σ(vt
>vc) +

K∑
k=1

log σ(−vt>vwk
) (1)

where vt is the embedding of target word, vc is the
embedding of the context word, and v1, v2, ..., vK
are the embeddings of K negative samples. By op-
timising equation 1 over a large corpus, skip-gram
learns word embeddings that encode distributional
information.

Maximising equation 1 adjusts the embeddings
of words occurring in the same context to be more
similar and adjusts the embeddings of words that
don’t occur together to be less similar. This be-
comes clear when we consider the gradients used
to update embeddings during training. We briefly
recall the details of the gradient calculation so as to
refer back to it later in this section. The derivative
of equation 1 with respect to the target vector vt is

∂J

∂vt
= (1−σ(vt>vc))vc−

K∑
k=1

(1−σ(vt>vwk
))vwk

(2)
which is used to update the target vector as follows:

vt ← vt + α
∂J

∂vt
(3)

The target vector is updated by adding the scaled
context vector to it and subtracting the scaled neg-
atively sampled vectors from it. The vectors are
scaled proportionally to how dissimilar they are to
the target vector. This ensures that the target vector
is “pulled closer” to the true context vector and
“pushed away” from the negative context vectors. It
is this computationally simple training procedure
which makes SGNS effective.

Word2DM extends SGNS to learn density matri-
ces, replacing equation 1 with the following objec-
tive function:

J(θ) = log σ(tr(AtAc))+

K∑
k=1

log σ(−tr(AtAwk
))

(4)
where At and Ac are the density matrices of the tar-
get and context words respectively, A1, A2, ..., AK

are the density matrices ofK negative samples, and
θ is the set of weights of the intermediary matrices
Bt, Bc and B1, B2, ..., BK .

Computing this objective function requires mul-
tiple matrix multiplications. For each tr(AtAc)
term (including the terms of the K negative sam-
ples), the matrices At and Ac have to be computed
respectively as At = BtB

>
t and Ac = BcB

>
c and

then the matrix product AtAc has to be computed.
This means that, for each target-context prediction,
we require 3(K+1) matrix multiplications. One of
the most attractive features of SGNS is its compu-
tational efficiency, which enabled training on very
large corpora in reasonable time. The introduction
of multiple matrix multiplications into the objective
function means that much of this efficiency is lost.
In order to reduce the complexity of our model, we
make use of the following property and lemma to
find a new objective function that is computation-
ally simpler, but equivalent to equation 4.

Property A.1. The trace of the product of two ma-
trices can be expressed as the sum of the element-
wise products of their elements. If A is an n×m
matrix and B is an m× n matrix, then the trace of
the n× n matrix AB can be computed as

tr(AB) =
n∑

i=1

m∑
j=1

aijbji

Lemma A.2. IfBt andBc are n×m intermediary
matrices, then trace of the matrix productAtAc can
be written as the sum of the squared elements of an
m×m matrix C = B>

c Bt:

tr(AtAc) =

m∑
i=1

m∑
j=1

c2ij

Proof. We can express tr(AtAc) as a trace com-
putation involving intermediary matrices Bt and
Bc:

tr(AtAc) = tr(BtB
>
t BcB

>
c )

Then we can use the cyclic property of the trace
function to rewrite this as the product of a matrix
C and its transpose:

tr(AtAc) = tr(B>
c BtB

>
t Bc)

= tr(B>
c Bt(B

>
c Bt)

>)

= tr(CC>), where C = B>
c Bt

Now we can use property A.1 to express this as the
element-wise products of the elements of C and its



transpose:

tr(AtAc) =
m∑
i=1

m∑
j=1

[C]ij [C
>]ji

=
m∑
i=1

m∑
j=1

cijcij

=
m∑
i=1

m∑
j=1

c2ij

This allows us to rewrite equation 4 to find an
equivalent objective function that requires fewer
computations than straightforward matrix multi-
plication would. The objective function at each
target-context prediction becomes

J(θ) = log σ(

m∑
i=1

m∑
j=1

[B>
c Bt]

2
ij) (5)

+
K∑
k=1

log σ(−
m∑
i=1

m∑
j=1

[B>
wk
Bt]

2
ij).

By using the result of lemma A.2 we have reduced
the number of matrix multiplications required for
each target-context prediction from 3(K + 1) to
(K + 1). Density matrices are trained by max-
imising equation 5 with respect to the intermediary
matrices Bt, Bc, Bw1 , ..., BwK over a large corpus.

The model is trained using stochastic gradient
descent. We now derive the gradients used to up-
date Bt during training, and subsequently show
that these gradients lead to suboptimal updates to
the density matrices during training. Deriving the
gradient with respect toBc andBwk

would proceed
similarly. To compute the gradients of equation 5
we first rewrite it in terms of the elements of the
n×m matrices Bt, Bc, and Bwk

:

J(θ) = log σ(

m∑
i=1

m∑
j=1

(

n∑
l=1

bclib
t
lj)

2) (6)

+
K∑
k=1

log σ(−
m∑
i=1

m∑
j=1

(
n∑

l=1

bwk
li b

t
lj)

2),

where bxpq denotes the pqth element of Bx. We
derive the gradient of this objective function with
respect to btpq, an element of the intermediary target
word matrix Bt. In order to use the chain rule in

gradient calculations we rewrite J(θ) as a compos-
ite function:

J(θ) = log σ(y(θ)) +
K∑
k=1

log σ(zk(θ)), (7)

where

y(θ) =

m∑
i=1

m∑
j=1

(

n∑
l=1

bclib
t
lj)

2 and

zk(θ) = −
m∑
i=1

m∑
j=1

(

n∑
l=1

bwk
li b

t
lj)

2.

The derivative of J with respect to btpq can now be
computed as follows:

∂J

∂btpq
=
∂ log

∂σ

∂σ

∂y

∂y

∂btpq
+

K∑
k=1

∂ log

∂σ

∂σ

∂zk

∂zk
∂btpq

=
1

σ(y)
(1− σ(y))σ(y)

∂y

∂btpq

+

K∑
k=1

1

σ(zk)
(1− σ(zk))σ(zk)

∂zk
∂btpq

=(1− σ(y))
∂y

∂btpq
+

K∑
k=1

(1− σ(zk))
∂zk
∂btpq

=(1− σ(y))

m∑
i=1

2bcpi

n∑
l=1

bclib
t
lq

−
K∑

k=1

(1− σ(zk))

m∑
i=1

2b
wk
pi

n∑
l=1

b
wk
li b

t
lq

=(1− σ(y))2[BcB
>
c Bt]pq

−
K∑

k=1

(1− σ(zk))2[BwkB
>
wk
Bt]pq

The last line in the above derivation is obtained
by rewriting the summation expressions as equiva-
lent matrix multiplications. We can now write the
derivative of J with respect to the full intermediary
matrix Bt:

∂J

∂Bt
=(1− σ(y(θ)))2BcB

>
c Bt (8)

+

K∑
k=1

(1− σ(zk(θ)))2Bwk
B>

wk
Bt

As opposed to the gradients of Word2Vec (equation
2), the gradients of Word2DM do not lead to sim-
ple and easily interpretable training updates. As
discussed in the paragraph following equation 3, in
Word2Vec the target vector is made more similar to
the context vector and less similar to the negative
context vectors. Ideally we would like something



similar to occur in Word2DM with density matri-
ces, but equation 8 shows that we lose the intuitive
training updates of Word2Vec through the introduc-
tion of intermediary matrices. Furthermore, we can
show that the gradients of Word2DM sometimes
lead to unwanted consequences in training.

Consider the case where the density matrices of
a target and context word are highly dissimilar. Re-
call from equation 4 that the y is in equation 8 is
the trace inner product of the density matrices At

and Ac (the measure we use to quantify semantic
similarity). The minimum value of the trace inner
product of two density matrices is zero (this fol-
lows from the fact that density matrices are positive
semi-definite), so two density matrices are highly
dissimilar when their trace inner product is close
to zero i.e. y ≈ 0. From equation 5 we can recall
how y can be written in terms of the intermediary
matrices:

y =
m∑
i=1

m∑
j=1

[B>
c Bt]

2
ij

Consider that y ≈ 0 if and only if the elements of
B>

c Bt are close to zero in value, since squaring the
elements in the summation makes them all positive.
We have established the following equivalence:

tr(AtAc) ≈ 0 ⇐⇒ B>
c Bt ≈ O,

where O is the m×m matrix with all zero entries.
Consider how this will affect the target-context up-
date during training. The first term of the gradient
in equation 8 becomes

(1− σ(y(θ)))2BcB
>
c Bt = (1− σ(0))2BcO ≈ O

so the target-context update becomes ineffective
for true contexts. The update should make the den-
sity matrix of the target word more similar to that
of the context word, but the gradient is so small
that it makes this impossible. Moreover, the more
dissimilar the target and context density matrices
are before the update, the less effective the update
will be. This is the opposite of the intended effect
(achieved by Word2Vec) in which the magnitude
of the target-context update should increase if the
target and context representations are less simi-
lar. This is an example of how the introduction of
intermediary matrices in Word2DM leads to subop-
timal training updates. We ensure that our density
matrices are positive semi-definite, but lose the
guarantee that the algorithm will learn high-quality
semantic representations.

B Hyperparameters for Word2DM and
Multi-Sense Word2DM

Word2DM additional details We use a dy-
namic window size i.e. the size of each context
window is sampled uniformly between 1 and the
maximum window size. We also discard words that
occur less than some minimum threshold and sub-
sample frequently occurring words. Negative sam-
ples are drawn from a unigram distribution raised
to the power of 3

4 . Furthermore, we train two den-
sity matrices for each word - one that represents it
as a target word and another that represents it as
a context word. After training we use the target
density matrices as our final density matrices.

Hyperparameters We train our Word2DM
and multi-sense Word2DM models on the
ukWaC+Wackypedia corpus, consisting of 2.8 bil-
lion words. We use a window size of 5, a min-
imum word count of 50, 5 negative samples per
positive context, and a subsampling rate of 1e-
5. We train the model for 4 iterations of the
ukWaC+Wackypedia corpus, using the Adam op-
timisation algorithm, a learning rate of 0.001, and
16 sentences per batch.


