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Introduction

This has been a momentous year for the BEA Workshop. In its 12th year, the BEA workshop is, for the
first time, being held in conjunction with EMNLP. In addition, the workshop is being sponsored by the
newly formed Special Interest Group: SIG EDU.1

Since the first workshop in 1997, BEA has become the leading venue for sharing and publishing
innovative work that uses NLP to develop educational applications. The consistent interest and growth of
the workshop has clear ties to challenges in education. The research presented at the workshop highlights
advances in the technology and the maturity of the field of NLP in education. The capabilities serve as
a response to educational challenges and are poised to support the needs of a variety of stakeholders,
including educators, learners, parents, and administrators.

NLP capabilities now support an array of learning domains, including writing, speaking, reading,
and mathematics. In the writing and speech domains, automated writing evaluation (AWE) and
speech assessment applications, respectively, are commercially deployed in high-stakes assessment
and instructional settings, including Massive Open Online Courses (MOOCs). We also see widely-
used commercial applications for plagiarism detection and peer review and explosive growth of mobile
applications for game-based applications for instruction and assessment. The current educational and
assessment landscape continues to foster a strong interest and high demand that pushes the state of the
art in AWE capabilities to expand the analysis of written responses to writing genres other than those
traditionally found in standardized assessments, especially writing tasks requiring use of sources and
argumentative discourse.

Steady growth in the development of NLP-based applications for education has prompted an increased
number of workshops that typically focus on a single subfield. In BEA, we make an effort to have
papers from many subfields, for example, tools for automated scoring, automated test-item generation,
curriculum development, evaluation of text, dialogue, evaluation of genres beyond essays, feedback
studies, and grammatical error correction.

This year we received a record 62 submissions, and accepted 9 papers as oral presentations and 25 as
poster presentation and/or demos, for an overall acceptance rate of 55 percent. Each paper was reviewed
by three members of the Program Committee who were believed to be most appropriate for each paper.
We continue to have a very strong policy to deal with conflicts of interest. First, we made a concerted
effort to not assign papers to reviewers to evaluate if the paper had an author from their institution.
Second, with respect to the organizing committee, authors of papers for which there was a conflict of
interest recused themselves from the discussions.

While the field is growing, we do recognize that there is a core group of institutions and researchers who
work in this area. With a higher acceptance rate, we were able to include papers from a wider variety of
topics and institutions. The papers accepted were selected on the basis of several factors, including the
relevance to a core educational problem space, the novelty of the approach or domain, and the strength
of the research. The accepted papers were highly diverse – an indicator of the growing variety of foci in
this field. We continue to believe that the workshop framework designed to introduce work in progress
and new ideas needs to be revived, and we hope that we have achieved this with the breadth and variety
of research accepted for this workshop, a brief description of which is presented below.

The BEA12 workshop has presentations on Automated Writing Evaluation (AWE), item generation,
1https://www.aclweb.org/adminwiki/index.php?title=2017Q3_Reports:_SIGEDU
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readability, dialogue and annotation/database schemas, among others:

AWE Written Assessments: Whereas much work in scoring at BEA focuses on learner language, Horbach
et al. score essays written by proficient native German speakers in a complex writing task. Madnani et
al. look at scoring for content in science, math, language arts and social studies. Rei looks at detecting
off-topic essay responses to visual prompts. Riordan et al. examine neural architectures for scoring
responses to short answer questions. Finally, looking at the bigger picture, Burstein et al. explore the
relations between AWE and broader educational outcomes.

Domain-Specific AWE: Three papers look at assessments in specific subject domains. For language
learning, Tolmachev and Kurohashi extract exemplar sentences to accompany flash cards. Tack et al.
investigate the feasibility of automated learner English assessment in the CEFR (European) framework.
In the science domain, Nadeem and Ostendorf look at language-based mapping of science assessment
items to skills.

Error Detection and Correction: Rei and Yannakoudakis use a neural sequence labeling approach
to grammatical error detection. Napoles and Callison-Burch adapt Machine Translation (MT) to
grammatical error correction. In another use for machine translation, Rei et al. use MT to generate
artificial errors for training machine learning systems. Chollampatt and Ng augment an MT approach
with neural network models. Farag et al. develop an error-oriented word embedding approach that
exploits errors in learner productions. Caines et al. collect crowd-sourced fluency corrections for
transcripts of spoken learner English. Finally, Sakaguchi et al. present a position paper on error
correction that discusses issues that need to be addressed and provide recommendations.

Item generation: Jiang and Lee develop distractors for fill-in-the-gap items in Chinese. Satria and
Tokunaga evaluate automatically generated pronoun reference questions. Chinkina and Meurers generate
questions for evaluating language learning. Finally, Stasaski and Hearst generate multiple choice
questions using an ontology.

Estimating Item Difficulty: A last topic in the test domain is Pado’s paper on estimating question difficulty
in the domain of automatic grading.

Readability: Gonzalez-Garduño and Søgaard measure gaze to predict readability while S̆tajner et al.
measure viewing time per word in autistic and neurotypical readers. Yaneva et al. also explore readability
assessment for people with cognitive disabilities. Beigman Klebanov et al. study the challenges
of varying text complexity in a read-aloud intervention program. Östling and Grigonyte use deep
convolutional neural networks to measure text quality. Sheng et al. introduce the pedagogical roles
of documents to study pedagogical values. Gordon et al. generate reading lists of technical text. Finally,
Wolska and Clausen simplify metaphorical language for young readers.

Dialogue: There are two papers on dialogue, but with very different topics. In the first, Lugini and Litman
predict specificity in classroom discussions. In the second, Jin et al. develop a system for interpreting
questions in a virtual patient dialogue system.

Annotation/Databases: Loughnane et al. create a database that links learning content, linguistic
annotation and open-source resources. Laarmann-Quante et al. develop a novel German learner corpus.

Finally there are two papers with content so original that they don’t fit into any of the categories above:
Kochmar and Shutova investigate how semantic knowledge is acquired in English as a second language
and evaluate the pace of development across a number of dimensions. Chen and Lee predict an audience’s
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laughter during an oral presentation.

This year, the workshop is hosting a Shared Task on Native Language Identification2 (NLI). NLI is the
process of automatically identifying the native language (L1) of a non-native speaker based solely on
language that he or she produces in another language. Two previous shared tasks on NLI have been
organized in which the task was to identify the native language of non-native speakers of English based
on essays and spoken responses to a standardized assessment of academic English proficiency. The first
shared task3 was based on the essays only and was also held with the BEA workshop in 2013. Three
years later, Computational Paralinguistics Challenge4 at Interspeech 2016 hosted a sub-challenge on
identifying the native language based solely on the spoken responses. This year’s shared task combines
the inputs from the two previous tasks. There are three tracks: NLI on the essay only, NLI on the speech
response only, and NLI using both responses from a test taker. 19 teams competed in the NLI shared
task, with 17 presenting their systems during the poster session. A summary report of the shared task
(Malmasi et al.) will be presented orally.

We wish to thank everyone who showed interest and submitted a paper, all of the authors for their
contributions, the members of the Program Committee for their thoughtful reviews, and everyone who
is attending this workshop. We would especially like to thank our sponsors: at the Gold Level, Turnitin
| LightSide, Grammarly and Duolingo; at the Silver level, Educational Testing Service (ETS), Pacific
Metrics, National Board of Medical Examiners (NBME), and iLexIR; at the Bronze level, Cognii. Their
contributions help fund workshop extras, such as the dinner which is a great social and networking event,
especially for students.

Joel Tetreault, Grammarly
Jill Burstein, Educational Testing Services
Ekaterina Kochmar, University of Cambridge
Claudia Leacock, Grammarly
Helen Yannakoudakis, University of Cambridge

2https://sites.google.com/site/nlisharedtask/home
3https://sites.google.com/site/nlisharedtask2013/home
4http://emotion-research.net/sigs/speech-sig/is16-compare
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ulrike.pado@hft-stuttgart.de

Hochschule für Technik Stuttgart
Schellingstr. 24

70174 Stuttgart, Germany

Abstract

Question difficulty estimates guide test cre-
ation, but are too costly for small-scale test-
ing. We empirically verify that Bloom’s
Taxonomy, a standard tool for difficulty es-
timation during question creation, reliably
predicts question difficulty observed after
testing in a short-answer corpus. We also
find that difficulty can be approximated by
the amount of variation in student answers,
which can be computed before grading.

We show that question difficulty and its
approximations are useful for automated
grading, allowing us to identify the optimal
feature set for grading each question even
in an unseen-question setting.

1 Introduction

Testing is a core component of teaching, and many
tasks in NLP for education are concerned with cre-
ating good questions and correctly grading the an-
swers. We look at how to estimate question diffi-
culty from question wording as a link between the
two tasks.

From a test creation point of view, knowing ques-
tion difficulty levels is imperative: Too many easy
questions, and the test will be unable to distinguish
between the more able test-takers, who all achieve
equally good results. Too many hard questions,
and only the most able test-takers will be clearly
distinguishable from the (low-performing) rest.

In large-scale testing, question difficulty and
other measures of question quality are established
through prior norming (Downey, 2010), where the
questions are answered by a pool of test-takers in
a dry run before definitive use with a similar de-
mographic. Difficulty is then determined on the
basis of the observed results using probabilistic test
theory (PTT). Norming is usually not available in

automated question creation or in ad-hoc testing
in small classrooms, while the need for correctly
determining question difficulty of course remains.

In this situation, teachers often use Bloom’s Tax-
onomy (Bloom, 1956), a classification of the knowl-
edge dimensions and cognitive processes involved
in the completion of a test task, to formulate ques-
tions of appropriate difficulty. In the literature, the
difficulty of multiple-choice questions has been
successfully aligned with the cognitive process di-
mension of the Bloom hierarchy (Tiemeier et al.
(2011); Kim et al. (2012), but see also Kibble and
Johnson (2011)). In this paper, we empirically
evaluate the predictive power of both Bloom di-
mensions for estimating the empirically observed
difficulty of short-answer questions, which require
the test-taker to freely formulate one to three sen-
tence answers. We find that the Taxonomy allows
a useful approximation of question difficulty at the
time of question creation. We find clear empirical
evidence that the instructional context, that is the
teaching materials presented in instruction, has to
be taken into account when determining difficulty
using the Taxonomy.

Once test-taker answers are available, but be-
fore grading makes PTT analysis possible, another
predictor for question difficulty becomes available:
Answer variation, the average amount of variation
within the student answers for each question, is
computed based only on the answer strings.

We also look at question difficulty from the point
of view of improving automated short-answer grad-
ing (SAG). To date, the focus of research has been
on finding informative features, ranging from deep
processing (Zesch et al., 2013; Hahn and Meurers,
2012) through text-based similarity (Sultan et al.,
2016) to shallow, string-based approaches (Okoye
et al., 2013; Jimenez et al., 2013). Padó (2016) has
proposed to perform pre-grading model selection
by tailoring feature sets to the characteristics of
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different short-answer corpora. We refine this idea
and show that within the same corpus, questions
with different difficulty levels also profit from dif-
ferent feature sets, and that the Bloom Taxonomy
levels and student answer variation can be used
as stand-ins for feature set prediction if difficulty
estimates are not available. These results point to a
new avenue of research in SAG.

The paper is structured as follows: We begin
by providing some theoretical background on PTT
and Bloom’s Taxonomy in Section 2. Our first
set of analyses tests the reliability of the Bloom’s
Taxonomy question difficulty predictions for our
data set (Section 3). The second analysis in Sec-
tion 4 focuses on the relationship between answer
variation and question difficulty. Our final set of ex-
periments investigates the use of question difficulty
for question-level model selection in short-answer
grading (Section 5). We end with a discussion and
conclusions in Section 6.

2 Theoretical Background

Our analyses require defining ground truth question
difficulty. We use the Rasch model from probabilis-
tic test theory for this estimate. This Section also
introduces Bloom’s Taxonomy, a tool from the field
of education intended for analysing the cognitive
requirements for answering a question, and thereby
its difficulty.

2.1 PTT Difficulty Estimation with the Rasch
Model

Test theory is concerned with determining test-
taker ability and analysing question quality and
difficulty. Probabilistic test theory formulates la-
tent trait models for these tasks. Latent trait models
assume that a student’s ability and a question’s dif-
ficulty are not directly observable, but depend prob-
abilistically on the observed scores. The two best-
known proponents are the Rasch model (Rasch,
1960) and the related Item Response Theory mod-
els1 (van der Linden, 2010).

The Rasch model fits a joint model of question
difficulty and student ability on the basis of the
manual grades awarded to student answers (i.e.,
after testing). The goal is to establish question dif-
ficulty independently of concrete test-takers and
vice versa. Concretely, the Rasch model estimates
question difficulty and student ability given the fol-

1The most fundamental one-parameter IRT model is math-
ematically equivalent to the Rasch model.

lowing relation (where Bn is the ability of student
n and Di is the difficulty of question i):

Pni(x = 1|Bn, Di) =
e(Bn−Di)

1 + e(Bn−Di)
(1)

Success (x = 1) of a student n on a question i
is linked to the difference between the student’s
ability and the question’s difficulty. If the ability
is greater than the difficulty, the student is likely
to succeed, or if the inverse is true, the student is
more likely to fail. Estimates of B and D are made
iteratively from the test results.

The resulting measures are returned in logits and
question difficulty is centered at 0, so that easy
items have low or negative difficulty estimates and
hard items have high difficulty estimates.

2.2 Bloom’s Taxonomy
Bloom’s Taxonomy (Bloom, 1956), revised by An-
derson and Krathwohl (2014), is a well-known tool
for creating and interpreting teaching objectives as
well as writing test questions and estimating their
difficulty. The Taxonomy has two independent di-
mensions: the Cognitive Process (CP) dimension
and the Knowledge dimension (KD). The Cogni-
tive Process dimension describes which type of
cognitive activity is necessary to complete a task,
in our case to answer a question. The least demand-
ing process is Remember, followed by Understand
(e.g., explain, compare, classify), Apply, Analyze
and, the most demanding, Create.

The second dimension of the revised Taxonomy
looks at the type of knowledge needed to com-
plete the task. The simplest knowledge type is
Factual (facts and terminology), followed by Con-
ceptual (categories, principles and models), Pro-
cedural (algorithms, techniques and criteria) and
Metacognitive (including strategic knowledge and
self-knowledge).

Anderson et al. explicitly recommend that Tax-
onomy users infer the dimension levels from the
question wording: Verbs like “compare” or “gener-
alize” indicate the Understand level, while “iden-
tify” or most simply “name” belong to the Remem-
ber level. To assess the Knowledge dimension level
needed to solve a task, Anderson et al. advise teach-
ers to look at the direct object of the verb describing
the required Cognitive Process. This explicit oper-
ationalization of level identification as analysis of
the question formulation indicates the possibility
of automating the process. Making these infer-
ences however is complex for questions which set
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Question Warum hat jede Klasse die Methode public String toString()?
Why does every class contain the method public String toString()?

Reference Answer Die Methode wird von der Klasse Object an alle Klassen in Java vererbt.
The method is inherited by all Java classes from class Object.

Bloom’s CP Understand Bloom’s KD Conceptual
Bloom’s CP text&question Remember Rasch Difficulty 0.89

Table 1: Example question with Bloom categories (original and re-assigned, see Section 3.3) and Rasch
difficulty (centered at 0, larger means harder)

concrete tasks. For example, for the question “Cal-
culate the voltage given I and R.”, we need to infer
that Ohm’s law, a generalization, will be applied to
a concrete problem to arrive at the Apply cognitive
process on the Conceptual level.

3 Bloom’s Taxonomy and Difficulty

We now empirically evaluate how accurately
Bloom’s Taxonomy (Bloom, 1956), revised by An-
derson and Krathwohl (2014), predicts question
difficulty as estimated from student performance in
a manually graded short-answer corpus. We check
whether questions on the different levels of the Tax-
onomy show different ground-truth difficulty, as
provided by a Rasch model.

3.1 Data
We use the Computer Science Short Answers in
German corpus (CSSAG, Padó and Kiefer (2015)).
This corpus contains 31 content-assessment ques-
tions with reference answers as well as student
answers by highly-proficient speakers of German
(native or near-native). Anonymized student IDs
are available to track answers by the same person,
and there is sufficient person overlap between the
questions to allow consistent PTT analysis.

We exclude question 6 from our data set. Rasch
modelling uncovered an extreme mismatch of ex-
pected and actual difficulty, and further inspection
of the answers shows that the question was often
misunderstood and therefore skipped or answered
incorrectly. Uncovering questions like this is one
of the standard uses of PTT, so we feel justified in
excluding the question after careful analysis.

3.2 Method
For the empirical evaluation of Bloom’s Taxonomy
levels, we annotated the CSSAG questions with
the corresponding Cognitive Process and Knowl-
edge dimension. The author’s annotations were
verified by comparison to the level annotations of

two colleagues familiar with the Taxonomy and the
CSSAG subject matter, A and B.

The Cognitive Process annotations show sub-
stantial annotator agreement (UP-A: κ = 73.7;
UP-B: κ = 82.6; A-B: κ = 67.5). Literature re-
sults, which mostly consider multiple choice ques-
tions, are often not this robust (Kibble and Johnson
(2011): κ = 33.3, Cunnington et al. (1996): at
most κ = 48 for a binary decision).2

The Knowledge dimension is much less consis-
tent (UP-A: κ = 11.8; UP-B: κ = 24.9; A-B:
κ = 32.8). Analysis showed that the annotators
entertained substantially different interpretations of
the levels, making adjudication impossible. Classi-
fying the Knowledge levels involves the annotators’
private conceptualisations of the question topic do-
main (What comprises procedural knowledge in
Computer Science?), which leads to much greater
inconsistency than classifying the process verb for
the CP levels.

We use the author’s level annotations, with the
caveat that the Knowledge level annotations are
noisy. We found questions on the Remember (n =
10) , Understand (n = 17) and Apply (n = 3)
levels of the CP dimension and in the Factual (n =
10), Conceptual (n = 18) and Procedural (n = 2)
levels of the Knowledge dimension.

We also estimated question difficulties on the
basis of the student performance in the corpus.
Table 1 shows a question from CSSAG with its
reference answer and Bloom levels as well as its
estimated difficulty.

Since we are doing data analysis and not build-
ing predictive models, we used the whole corpus
without holding out test data.

For our analyses, we use the lm function in R3

to induce linear models for question difficulty, us-
2Kim et al. (2012) argue that level assignment is harder

for multiple choice questions because the answer choices may
provide clues to the students, effectively reducing higher-level
questions to Remember.

3www.r-project.org
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Estimate Std. Error Sig.
CP Remember -0.388 0.205 ns
CP Understand 0.632 0.247 *
CP Apply -0.780 0.473 ns

Table 2: Difficulty and the Cognitive Process lev-
els, re-assigned using instructional context: Linear
model coefficients. *: p < 0.05, ns: not significant.

ing the Bloom dimensions as factors. Since the
difficulty estimates are centered on 0, we force the
intercept to 0 in the models.

3.3 Analysis I: Bloom’s Cognitive Processes
and Difficulty

We begin by analysing the relationship between
Bloom’s CP dimension and ground-truth difficulty.

We train a linear model of difficulty, using the
three CP levels present in the data as factors. How-
ever, the linear model is not significant, and nei-
ther are the coefficients. From this first analysis, it
seems that Bloom’s Cognitive Process dimension
cannot predict observed question difficulties.

A closer look at the Taxonomy description re-
veals a problem. The Cognitive Process dimension
was first annotated taking only the question into ac-
count. However, Anderson and Krathwohl (2014)
(p.71) state that “If the assessment task is identical
to a task or example used during instruction, we
are probably assessing remembering, despite our
efforts to the contrary.” It is quite intuitive that,
beyond the specific wording of the question, in-
structional context influences question difficulty.
Therefore, we analysed the teaching materials (lec-
ture slides) used for instruction before the CSSAG
questions were answered in a test. The categories
were then re-assigned with the teaching materials
in mind: If for an Understand question, there was
text presented on a single slide (or on several slides
for a multi-component question) that would have
been graded as a correct answer given the reference
answer, the question was classified as Remember
instead, since no active knowledge transfer was re-
quired by the student in this case. We re-classified
six of originally 17 Understand questions as Re-
member (among them the example question in Ta-
ble 1). The new classification based on this closer
reading of Anderson et al. is called Bloom’s CP
text&question below.

Table 2 shows the results of another linear
model of ground-truth difficulty using the three

CP text&question levels as factors. The model is
significant on the p < 0.05 level, so the use of
instructional context yields a quantifiable relation-
ship between the Bloom levels and ground-truth
difficulty. This relationship is carried by the Un-
derstand level - this model coefficient is signifi-
cant and positive, meaning that Understand ques-
tions are predicted to have higher than average dif-
ficulty. The non-significant negative coefficient for
Remember indicates a tendency for these questions
to be less difficult than average. The estimate for
the Apply level is based on only three data points,
so the strong tendency for easier-than-average diffi-
culty must be taken with a grain of salt. Unlike the
findings for Remember and Understand, this last
observation is not in line with the predictions of the
Bloom Taxonomy. We return to this in Section 3.5.

In sum, the categories do show a significant dif-
ference in difficulty, but only if the explicit presen-
tation of material during instruction is considered.

The Bloom CP text&question categories are by
design strongly correlated with the existence of
the answer in the teaching materials: Questions
in category Remember always refer to explicitly
presented material, while questions in category Un-
derstand never do.4 Therefore, the predictive per-
formance of the CP question&text levels could in
principle be due just to the existence of the answer
in the teaching materials. We therefore trained a
linear model of difficulty using answer presented
(1 if the answer was shown on the lecture slides,
as defined for the category re-assignment above, 0
otherwise) as a factor. This model did not reach sig-
nificance. We conclude that the predictive power
of the Bloom dimensions (when assigned with the
teaching materials in mind) is in fact at the core of
our findings.

3.4 Analysis II: Bloom’s Knowledge
Dimension and Difficulty

We now turn to the Knowledge dimension of
Bloom’s Taxonomy. In the data, we find 10 ques-
tions on the Factual level, 18 on the Conceptual
level and two on the Procedural level. The KD lev-
els are not related to the answer presented measure:
While answering a question may require knowl-
edge that has been explicitly presented, the correct

4In category Apply, explicitly presented or inferrable facts
have to be applied to a new situation, so there is no a pri-
ori relationship between the category and the answer having
been presented. In our data, all Apply questions referred to
presented material.
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Estimate Std. Error Sig.
KD Factual -0.785 0.263 **
KD Conceptual 0.316 0.196 ns
KD Procedural 0.280 0.588 ns

Table 3: Difficulty and the Knowledge levels:
Linear model coefficients. **: p < 0.01, ns: not
significant.

answer need not have been.
Table 3 shows the coefficients of another linear

model of difficulty, now using the Knowledge di-
mension levels and again fixing the intercept at 0.
The model predictions are significantly correlated
with difficulty (p < 0.05). The significant coef-
ficient is Factual knowledge, which results in the
prediction of easier-than-average difficulty. This,
of course, agrees with the Bloom Taxonomy.

Despite the large disagreement between the three
annotators on this dimension, the annotated Knowl-
edge levels still hold relevant information with re-
gard to question difficulty, and that information is
in line with the predictions of the Bloom Taxon-
omy.

3.5 Analysis III: Both Bloom Dimensions and
Difficulty

Next, we analyse the relationship between the two
dimensions of Bloom’s Taxonomy, which are con-
ceptually independent. A linear model of difficulty
using the levels of both dimensions as factors is sig-
nificant. Factors CP Understand and KD Factual
remain significant as in the individual models, but
there are no significant interactions, probably due
to sparse data. The raw data still show interesting
patterns, though, which we will analyse next.

Table 4 shows the category difficulty means
across both Bloom dimensions. Where the table
cells are appropriately filled, the mean difficulties
reflect the assumptions of the Taxonomy:

CP Remember questions are a lot easier than CP
Understand questions (recall the coefficient esti-
mates in Table 2). Within the Remember dimension
(the only one to use all three Knowledge levels),
mean difficulty rises monotonically in accord with
the Knowledge dimension definition.

We now see that the reason for Apply questions
overall appearing twice as easy as Remember ques-
tions may be the lack of Apply questions using
Conceptual and Procedural knowledge. This seems
more likely than an effect of noise, since all three

Apply questions are at most of difficulty−0.5, with
an average of −0.78, which is clearly on the easy
side of the spectrum.

It is also striking that there is an effect of
CP level beyond Knowledge dimension for Con-
ceptual, but not Factual questions: The Apply-
Factual questions are as difficult on average
as the Remember-Factual questions, while the
Understand-Conceptual questions are much harder
than the Remember-Conceptual questions. Fur-
ther investigation with a larger data base and more
closely standardized Knowledge level annotation
would certainly be interesting given this pattern.

In the Knowledge Dimension grand averages,
the Taxonomy is clearly mirrored: Questions us-
ing Factual knowledge are easier than questions
using Conceptual knowledge (this corresponds to
the model coefficients shown in Table 3 above).
Questions for Procedural knowledge (with an n of
just 2) appear overall a little too easy. Keep in mind,
though, that the level annotations for the Knowl-
edge dimension must be assumed to be noisy given
the low inter-annotator κ values.

In sum, both dimensions of Bloom’s Taxonomy
taken together categorize the CSSAG questions
into four categories of monotonously increasing
difficulty in the raw data (ignoring for the moment
the Apply-Factual category): Remember-Factual,
Remember-Conceptual, Remember-Procedural and
Understand-Conceptual. The data confirm that
Bloom categories are predictive of question dif-
ficulty before testing, allowing teachers and test
creators to balance their tests before or even with-
out norming. Vitally, however, the instructional
context of the question has to be taken into account
for categorization.

4 Answer Variation

Our analyses so far have looked at predicting ques-
tion difficulty solely from properties of the question
(and instructional context), prior to testing. Once
the question has been answered, but before grad-
ing, another potentially informative predictor of
question difficulty becomes available: Answer vari-
ation, measured either as the average similarity of
student answers among themselves or their average
similarity with the reference answer.

We hypothesize a link between answer variation
and question difficulty based on the assumption
that easy questions (e.g. on the Bloom Remember-
Factual levels) have clear-cut answers that many
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Factual Conceptual Procedural Grand Avg
Remember −0.79 (n = 7) −0.18 (n = 7) 0.28 (n = 2) −0.39
Understand – 0.63 (n = 11) – 0.63
Apply −0.78 (n = 3) – – −0.78
Grand Avg −0.79 0.37 0.28

Table 4: Cognitive Process text&question and Knowledge dimensions, Rasch difficulty averages (number
of questions).

Model Adjusted R2 Model Sig.
KD + CP text & question 0.290 *
Avg. SAV 0.246 *
SAV + KD + CP text & question 0.312 *

Table 5: Difficulty predicted by the Bloom Knowledge dimension (KD) and Cognitive Process (CP)
levels and SAV (student answer variation): Linear model R2 values and significances. *: p < 0.05.

students know. This should lead to many highly
similar student answers (mirroring the reference an-
swer). Difficult questions that require understand-
ing of conceptual knowledge should show higher
variation in the phrasing of the correct answer as
well as more incorrect answers, leading to higher
answer variation both among student answers and
with regard to the reference answer.

If such a link indeed exists, then discrepancies
between a question’s intended difficulty and its ob-
served answer variation would help identify prob-
lematic questions even before grading.

We model average student answer variance
through the Greedy String Tiling (GST) similar-
ity measure (Wise, 1996), which ranges between
0 and 1 (where 0 indicates no overlap between
the strings – high variation, and 1 indicates per-
fect overlap – low variation). Comparing the (non-
empty) student answers and the reference answer is
straightforward. For the average similarity within
all non-empty student answers, we use each student
answer in turn as the point of comparison since
GST is non-symmetric. We use the same corpus as
before (see Section 3.1).

Rasch question difficulty (the assumed ground
truth) is indeed correlated with the average vari-
ation between student and reference answers at
Spearman’s ρ = −0.372, p < 0.05 and with the
average variation of student answers among them-
selves at Spearman’s ρ = −0.668, p < 0.001. For
both measures, difficulty is low when answer sim-
ilarity is high (and therefore, answer variation is
low). Perhaps surprisingly, the variation of answers
among themselves is a much stronger predictor

than variation with regard to the reference answer.
This may be because the similarity measure does
not account for valid paraphrases (e.g., by technical
terms in the reference answer). Relying just on the
student answers is more elegant in any case, as no
assumptions are made about the quality (or even
existence) of the reference answer.

Next, we train a linear model predicting diffi-
culty, just as before, but using student answer varia-
tion (SAV) as a factor. Table 5 compares the results
for SAV to a model using the Bloom KD and CP
text&question levels. We also combine SAV and
both Bloom dimensions. We find that all three
models significantly predict difficulty. At n = 30,
there were no significant differences between the
models in an ANOVA. We do see some indication
of differences between the models in the R2 values,
however, which reflect how much of the variance in
the variable difficulty the model accounts for. For
the combination of the Bloom dimensions, R2 is
somewhat higher than for SAV alone, but combin-
ing all factors yields another small increase.

We conclude that the Bloom levels, if known, are
the best predictors of question difficulty. However,
it can be difficult to assign the levels for existing
questions if instructional materials are not available.
In this case, the amount of within-answer variation
for each question can be used to estimate ques-
tion difficulty before grades and PTT estimates are
available, or if the PTT assumptions are not met.

Results from Dueñas et al. (2015) suggest that
flat features such as word and length information
from the question and reference answer are also
useful in predicting difficulty; for them, simplified
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taxonomy categories worked better than Bloom
categories. Note that they had no information on
the instructional materials used and so could not
adjust the CP categories (see Section 3.3).

5 Automated Grading: Features and
Difficulty

Having looked at difficulty and its predictability
from the point of view of test creation in the pre-
vious section, we now turn to an analysis of the
usefulness of question difficulty information for
automated grading.

In Padó (2016), we found that on the corpus
level, there are optimal feature combinations for dif-
ferent data sets. Learner corpora of text comprehen-
sion questions (lower on the Bloom hierarchy) can
be graded well with shallow features close to the
string level, while corpora for content assessment
of native speakers (containing questions higher on
the Bloom hierarchy) require features derived from
syntactic and semantic analysis. Following this
lead, we investigate the link between question dif-
ficulty and optimal feature sets for grading on the
question level. We show that question difficulty
can indeed be used for question-level model selec-
tion (of the optimal feature set). Since question
difficulty is often not known at grading time, we
also look at Bloom’s Taxonomy levels and SAV as
predictors for model selection.

5.1 Automated Grading Model and Features

For reasons of comparability, we use the automated
binary grading model from Padó (2016). It consists
of a decision tree algorithm that considers features
from five feature groups. Table 6 lists them in order
of increasing complexity of the linguistic analysis
necessary to compute them. We will refer to the
NGram as well as the Similarity features (consist-
ing of the Greedy String Tiling, Cosine, and Leven-
shtein Edit Distance similarity algorithms) as shal-
low features, because only the character strings of
the answers and possibly lemmatization are needed.
The deep features are the overlap between student
and reference answer in terms of Dependency re-
lations or Lexical Resource Semantics (LRS) com-
ponents (Richter and Sailer, 2004), as well as the
output of the Excitement Open Platform Textual
Entailment system (Magnini et al., 2014).

5.2 Method

We train the grading model in the leave-one-
question-out setting on the CSSAG corpus (Sec-
tion 3.1). This means the test questions and an-
swers are completely unseen during training. We
do five training and test runs for each question:
First with only the NGram features, then adding
the Similarity features and so on, until the full fea-
ture set is used. We then determine for each ques-
tion which feature sets yield the best performance.
We report per-question prediction accuracy, which
ranges between 50 and 88.9%.

5.3 Feature Sets and Model Selection

We find that for 12 out of the 30 available questions,
the best performance is only reached using deep
features in addition to the shallow features. For the
remaining 18 questions, the best performance is
already reached using just the NGram or NGram
and Similarity features. In seven of these 18 cases,
model performance even declines when the deep
features are added, for the remaining 11 cases, ei-
ther feature set yields optimal performance. These
results show that there is room for question-level
feature optimization.

The short-answer grading model with the full
feature set (the best choice for the corpus accord-
ing to Padó (2016)) reaches an overall accuracy
of 73.11%. If we choose the best-performing fea-
ture set for each question instead of the full model,
overall accuracy increases to 74.35%.

These results indicate that automatic grading can
be improved by choosing the best-performing grad-
ing model for each question instead of relying on
a per-corpus choice. We expect greater improve-
ments with fine-tuned features, because the feature
implementations from Padó (2016) were left in-
tentionally vanilla so the results would generalize
more easily over the range of corpora used there.

5.4 Model Selection by Difficulty

We continue our analyses with the 19 questions
with optimal behaviour for just one feature set. For
the other 11 questions, either feature set works well,
so they carry limited information for us. To ver-
ify that difficulty is indeed related to the optimal
feature set for grading, we train a linear model of
difficulty using the feature set (deep or shallow)
that shows optimal performance for each question.
The resulting model significantly (p < 0.01) pre-
dicts difficulty.
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Feature Group Features
NGram Unigram, Bigram, Trigram overlap of student and reference answer
Similarity Greedy String Tiling, Cosine, Levenshtein measures
Dependency Dependency triple overlap of student and reference answer
Semantics LRS component overlap of student and reference answer
TE Textual Entailment of reference answer by student answer

Table 6: Overview of the feature set for automated grading

Accuracy
Frequency Baseline 63.2
Difficulty 78.9

Table 7: Model Selection: Accuracy of predicting
the best-performing feature set

We now change tasks and evaluate the useful-
ness of difficulty for model selection. We evaluate
how well the best-performing feature set (shallow
or deep) for each question can be predicted by a
logistic regression model (R cv.glm) using dif-
ficulty as its only feature.5 We use leave-one-out
cross-validation.

Table 7 shows the classification accuracy of pre-
dicting when the shallow feature set will outper-
form the deep feature set. Using only ground-truth
difficulty, the prediction is correct for roughly 80%
of the 19 questions. This clearly outperforms the
frequency baseline (always predict the deep feature
set). Difficulty therefore is very informative with
regard to the most useful features for SAG.

5.5 Model Selection: Bloom Levels and SAV

If difficulty estimates are not available, Bloom
levels or SAV may still be obtainable. We have
shown above that both can be used to predict dif-
ficulty. In the case of Bloom levels, we also see
a promising pattern in the raw data: There is a
clear tendency for questions low on the Bloom
hierarchy to be optimally gradable with shallow
features, while questions higher on the Bloom hier-
archy require deep features. For three out of four
Remember-Factual questions (out of the 19 ques-
tions with one optimal feature set), optimal grad-
ing performance is reached with shallow features.
For the five Remember-Conceptual questions, two
show optimal performance with shallow and three
with deep features. Six out of seven Understand-

5Note that our result is strictly speaking an upper bound,
since difficulty was originally inferred using all questions.

Conceptual questions require deep features, and
there is one Remember-Procedural question, also
optimally graded with deep features. (The two
Apply-Factual questions are split between deep and
shallow features, in keeping with their estimated
difficulty, see Section 3.5).

We therefore use the Bloom levels to train a
logistic regression models to predict the optimal
feature set, just as above. A second model uses SAV.
The left-hand side of Table 8 shows that for our
small data set, these factors perform practically at
chance level, much below the frequency baseline.6

This pessimistic result is not the whole picture.
We also evaluate three simple, conservative heuris-
tics based on the Taxonomy, SAV and difficulty,
respectively, that do not require training. The re-
sults are on the right-hand side of Table 8.

The Bloom heuristic predicts the shallow feature
set for all Remember-Factual questions, and the
deep feature set otherwise. Its accuracy of 74%
clearly outperforms the frequency baseline.

The SAV heuristic predicts the shallow feature
set for the 20% of questions with the lowest stu-
dent answer variation (i.e., highest within-answer
similarity). We chose 20% for the boundary based
on the observation that there are five Bloom di-
mension combinations present in the data and the
Bloom heuristic assigns the shallow feature set for
only one of them. The SAV heuristic performs at
the level of the frequency baseline.

The difficulty heuristic predicts the shallow fea-
ture set for the easiest 20% of questions. At 84%
accuracy, this prediction model even outperforms
the linear difficulty model from Section 5.4.

The results underscore the usefulness of diffi-
culty for model selection. In parallel to Sections 3
and 4 above, we find that difficulty can be approxi-
mated well by the levels of the Bloom Taxonomy,

6For the Bloom Taxonomy evaluation, one dimension level
was represented only once, so the corresponding data point
was unpredictable and was excluded, yielding n = 18 and a
frequency baseline of 61.1.
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Accuracy Accuracy
Frequency Baseline 63.2 Frequency Baseline 63.2
Difficulty 78.9 Difficulty heuristic 84.2
Bloom KD & CP 55.6 Bloom KD + CP heuristic 73.7
SAV 52.6 SAV heuristic 63.2

Table 8: Model Selection: Accuracy of predicting the best-performing feature set. Left: Logistic model,
right: Heuristic

and to a degree by the variation within student an-
swers, if the levels are not available. While for
small data sets such as ours, learning a selection
model may not be possible, difficulty and its stand-
in measures contain sufficient information to for-
mulate an informative, yet simple heuristic model.

6 Discussion and Conclusions

Question difficulty is important in test creation and
question analysis (as our discovery and exclusion
of an unsuitable question in Section 3.1 demon-
strates). We have shown that is also an informative
factor in optimizing automated grading: Question
difficulty quite accurately predicts which feature set
allows best grading performance. This insight al-
lows us to use question difficulty to tailor models to
specific questions and optimize SAG performance.

Difficulty, however, can only be estimated af-
ter grading, making it impractical to use in many
SAG settings. We have shown that difficulty can be
approximated by the question’s levels on Bloom’s
Taxonomy, a standard tool in education, or, to a
somewhat lesser extent, by SAV, the amount of
variation present in student answers, measured in
string similarity. These approximations are avail-
able before testing (Bloom) and grading (SAV).

In this context, we can refine the hypothesis put
forward in Padó (2016) that the grading perfor-
mance variation of different feature sets over dif-
ferent corpora is primarily due to differences in
answer variation. Padó (2016) attributes these dif-
ferences to different student populations (language
learners have less ability to paraphrase than native
or near-native speakers), which co-varied with elic-
itation tasks (learner reading understanding versus
native content assessment). Our results here zoom
in on native-level speakers in content assessment.
We found a strong relationship between preferred
grading features and question difficulty, while diffi-
culty is partially expressed in answer variation.

The link between Bloom hierarchy levels and dif-
ficulty that we found provides more insight: Ques-

tions low on the Bloom hierarchy tend to be eas-
ier and are optimally graded with shallow features
(close to the text level). Questions higher on the
Bloom hierarchy require deep features (more exten-
sive syntactic and semantic analysis). This matches
the corpus-level results from Padó (2016) (on top
of the effect of language ability): The corpora best
graded with shallow features were learner corpora
of text comprehension questions. Most of these
questions are low on the Bloom hierarchy, since
they ask the reader to repeat knowledge explicitly
presented in the text.7 On the other hand, content
assessment corpora (such as CSSAG) contain more
and higher Bloom levels and therefore more ques-
tions that require deep processing for grading.

An avenue for future work is the automatic in-
ference of Bloom Taxonomy levels. In addition to
facilitating SAG, knowing question difficulty lev-
els without norming would increase the quality of
manually created ad-hoc tests as well as automati-
cally generated question sets. The guidelines from
Anderson and Krathwohl (2014) suggest that the
levels can be inferred from the question wording
by Textual Entailment methods. Given the nec-
essary inference steps and the patterns of human
annotation consistency for the two dimensions, the
Cognitive Process dimension lends itself more to
automated assignment than the Knowledge dimen-
sion. Finally, we have shown that it is vital to
identify cases of recall of instructional materials in
level prediction.
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Abstract

For medical students, virtual patient di-
alogue systems can provide useful train-
ing opportunities without the cost of em-
ploying actors to portray standardized pa-
tients. This work utilizes word- and
character-based convolutional neural net-
works (CNNs) for question identification
in a virtual patient dialogue system, out-
performing a strong word- and character-
based logistic regression baseline. While
the CNNs perform well given sufficient
training data, the best system perfor-
mance is ultimately achieved by com-
bining CNNs with a hand-crafted pattern
matching system that is robust to label
sparsity, providing a 10% boost in system
accuracy and an error reduction of 47% as
compared to the pattern-matching system
alone.

1 Introduction

Standardized Patients (SPs) are actors who play
the part of a patient with a specific medical his-
tory and pathology. Medical students interact with
SPs to train skills like taking a patient history and
developing a differential diagnosis. However, SPs
are expensive and can behave inconsistently from
student to student. A virtual patient dialogue sys-
tem aims to overcome these issues as well as pro-
vide a means of automated evaluation of the med-
ical student’s interaction with the patient (see Fig-
ure 1).

Previous work with a hand-crafted pattern-
matching system called ChatScript (Danforth
et al., 2009, 2013) used a 3D avatar and al-
lowed for students to input questions using text
or speech. ChatScript matches input text using
hand-written patterns and outputs a scripted re-

Figure 1: Virtual Patient avatar used to train med-
ical students

sponse for each input question identified by the
system. While pattern matching with ChatScript
can achieve relatively high accuracy with suffi-
cient pattern-writing skill and effort, it is unable to
take advantage of large amounts of training data,
somewhat brittle regarding misspellings, and diffi-
cult to maintain as new questions and patterns are
added.

With an apparent plateau in system perfor-
mance, this work explores new data-driven meth-
ods. In particular, we use convolutional neural
networks with both words and characters as in-
put, demonstrating a significant improvement in
overall question identification accuracy relative to
a strong multiclass logistic regression baseline.
Furthermore, inspired by the different error pat-
terns between the ChatScript and CNNs, we de-
velop a simple system combination using a bi-
nary classifier that results in the highest overall
performance, achieving a remarkable 47% reduc-
tion in error in comparison to the ChatScript sys-
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tem alone. Frequency quantile analysis shows that
the hybrid system is able to leverage the relatively
higher performance of ChatScript on the infre-
quent label items, while also taking advantage of
the CNN system’s superior accuracy where more
data is available for training.

2 Related Work

Question identification has been formulated as at
least two distinct tasks. Multi-class logistic regres-
sion is a standard approach that can take advan-
tage of class-specific features but requires a good
amount of training data for each class. A pairwise
setup involves a more general binary classification
decision which is then made for each label, choos-
ing the highest confidence match.

Early work (Ravichandran et al., 2003) found
that treating a question answering task as a max-
imum entropy re-ranking problem outperformed
using the same system as a classifier. DeVault
et al. (2011) observed maximum entropy systems
performed well with simple n-gram features. Jaffe
et al. (2015) explored a log-linear pairwise rank-
ing model for question identification and found it
to outperform a multiclass baseline along the lines
of DeVault et al. However, Jaffe et al. (2015) used
a much smaller dataset with only about 915 user
turns, less than one-fourth as many as in the cur-
rent dataset. For this larger dataset, multiclass lo-
gistic regression outperforms a pairwise ranking
model. With no pairwise comparisons, a multi-
class classifier is also much faster, lending itself to
real-time use.

It is probable that multiclass vs. pairwise ap-
proaches’ overall effectiveness depends on the
amount of training data; pairwise ranking meth-
ods have potential advantages for cross-domain
and one-shot learning tasks (Vinyals et al., 2016)
where data is sparse or non-existent. In the closely
related task of short-answer scoring, Sakaguchi
et al. (2015a) found that pairwise methods could
be effectively combined with regression-based ap-
proaches to improve performance in sparse-data
cases.

Other work involving dialogue utterance classi-
fication has traditionally required a large amount
of data. For example, Suendermann et al. (2009)
acquired 500,000 dialogues with over 2 million ut-
terances, observin that statistical systems outper-
form rule-based ones as the amount of data in-
creases. Crowdsourcing for collecting additional

dialogues (Ramanarayanan et al., 2017) could al-
leviate data sparsity problems for rare categories
by providing additional training examples, but this
technique is limited to more general domains that
do not require special training/skills. In the cur-
rent medical domain, workers on common crowd-
sourcing platforms are unlikely to have the exper-
tise required to take a patient’s medical history in a
natural way, so any data collected with this method
would likely suffer quality issues and fail to gen-
eralize to real medical student dialogues. Rossen
and Lok (2012) have developed an approach for
collecting dialogue data for virtual patient sys-
tems, but their approach does not directly address
the issue that even as the number of dialogues col-
lected increases, there can remain a long tail of
relevant but infrequently asked questions.

CNNs have been used to great effect for image
identification (Krizhevsky et al., 2012) and are be-
coming common for natural language processing.
In general, CNNs are used for convolution over in-
put language sequences, where the input is often a
matrix representing a sequence word embeddings
(Kim, 2014). Intuitively, word embedding kernels
are convolving n-grams, ultimately generating fea-
tures that represent n-grams over word vectors of
length equal to the kernel width. CNNs are very
popular in systems for tasks like paraphrase detec-
tion (Yin and Schütze, 2015; Yin et al., 2016; He
et al., 2015), community question answering (Das
et al., 2016; Barbosa et al., 2016) and even ma-
chine translation (Gehring et al., 2017). Character-
based models that embed individual characters as
input units are also possible, and have been used
for language modeling (Kim et al., 2016) to good
effect. It is worth noting that character sequences
are more robust to spelling errors and potentially
have the same expressive capability as word se-
quences given long enough character sequences.

3 Dataset

The dataset consists of 94 dialogues of medical
students interacting with the ChatScript system.
The ChatScript system has been deployed in a
medical school to assess student’s ability to in-
teract with patients through a text-based interface
and the questions typed by the students and the re-
sponses given by ChatScript, which then are hand-
corrected by annotators, form this dataset. There
are 4330 total user turns, with a mean of 46.1 turns
per dialogue. Each turn consists of the question

12



Figure 2: Label frequency distribution is ex-
tremely long-tailed, with few frequent labels and
many infrequent labels. Values are shown above
quintile boundaries.

the student asked, ChatScript’s automatic label
(with hand-correction) and the scripted response
associated with the label. An example turn could
be represented with the tuple, (‘hello mr. wilkins,
how are you doing today?’, ‘how are you’, ‘well i
would be doing pretty well if my back weren’t hurt-
ing so badly.’). The task is to predict the label of
the asked question.

There are 359 unique labels, with a mean of 12
instances per label, median of 4, and large stan-
dard deviation of 20. Of note, the distribution of
labels is extremely long-tailed (Figure 2), with 8
of the most common labels accounting for nearly
20% of the data, while the bottom 20% includes
265 infrequent labels. The most frequent label oc-
curs 156 times.

4 The CNN model

We now turn to the structure of our model. The
main model used in this work follows Kim (2014).
There are four layers in the model: an embedding
layer, a convolution layer, a max-pooling layer and
a linear layer. Let xi ∈ Rk a k-dimensional em-
bedding for the i-th element of the sequence, i.e.
the i-th word or character. The representation of a
sentence, Sj ∈ R|sj |×k is the concatenation of all
the embeddings of the elements in the sentence sj .
The multichannel setup, shown in Kim (2014) as
marginally effective, is not used in this work. The
following equations will all work on sentence Sj ,
thus j is dropped for clarity.

A convolutional kernel is defined as a filter w ∈
Rhk which slides across the sentence matrix S to
produce a feature map. Because the kernel is as
wide as the embeddings, it will only produce one

value for each window.

ci = σ(w · xi:i+h−1 + b) (1)

In Eq. 1, b is a scalar and σ is a non-linearity. The
feature map c ∈ R|s|−h+1 for this kernel is the
concatenation of all the feature values from the
convolution. In order to maintain fixed dimension
for the output, max-over-time pooling (Collobert
et al., 2011) is applied to the feature map and the
maximum value ĉ is extracted from c.

Because there are many kernels for each kernel
height h, the output from a group of kernels with
the same height is oh = [ĉ1, ĉ2, . . . , ĉnh

], where
nh is the number of kernels for the kernel width h.

We concatenate all the outputs from all the ker-
nels into a single vector o ∈ RN where N =∑

h nh, and apply a linear transformation with
the softmax non-linearity to it as the final fully-
connected neural network layer for the CNN.

ŷ = softmax(Wlo + bl) (2)

where Wl ∈ RN×m is the weight matrix of the
final layer, bl ∈ Rm is the bias term for the final
layer, and m is the number of classes that we are
trying to predict.

4.1 Regularization

We follow Kim (2014) for regularization strate-
gies. Dropout (Srivastava et al., 2014) prevents the
final layer from overfitting to training data by ran-
domly setting some input values to zero according
to a Bernoulli distribution with parameter p. We
adopt this strategy and put a dropout layer between
the max-pooling layer and the final linear layer.

Kim (2014) also applies a max norm constraint
to the weight matrix of the final linear layer
instead of using l2-regularization over all the
parameters. In Kim (2014), a row in the weight
matrix Wl is renormalized to the max-norm s if
the 2-norm of the row exceeds s after a parameter
update. However, in a recent reimplementation of
Kim (2014)1, the renormalization is always ap-
plied to the rows of Wl regardless of whether the
2-norm exceeds s or not. This change shows up as
a 1% difference in accuracy on the development
datasets. Therefore, we use this renormalization
strategy instead of max-norm in the original paper

1https://github.com/harvardnlp/
sent-conv-torch
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and refer to it as max-renorm in this work.

5 Ensemble methods

In order to reduce variance of performance when
training on different splits of data, models trained
with different training datasets and models with
different architecture are combined together. Pre-
vious research has shown that ensembling models
improves performance (Sakaguchi et al., 2015b;
Ju et al., 2017; He et al., 2017). We train dif-
ferent models with different splits of training and
develop data, and ensemble them together. We
use two methods to combine the submodels to-
gether: majority voting and stacking. The indi-
vidual CNNs, or the submodels, first are ensem-
bled together according to their input features into
two ensembled models, and then the two ensem-
bles are stacked together to form the final stacked
model.

Majority voting
The majority voting strategy is adopted by the sub-
models to reduce variance and also to provide bet-
ter generalizability. Each submodel gives one vote
to the best class given some input according to
their parameters, and whichever class has the most
votes wins. Let ŷd be the output of d-th submodel
in the ensemble, and the final output of the ensem-
ble ŷe is

ŷe =
∑

d

hardmax(ŷd) (3)

where hardmax is the function that converts the ar-
gument of the function into a one-hot vector where
the original maximum value of the argument is re-
placed by 1 and the rest by 0. In the case of ties, we
pick the class that appears first in the vector. For
the ensemble, the predicted class is argmax(ŷe).
However, ŷe is also an unnormalized distribution
used by the stacked model.

Stacking
We use stacking (Wolpert, 1992) to combine re-
sults from the ensembles. Stacking is essentially
weighted linear interpolation of the ensemble re-
sults. Let ŷe,r be the output of the r-th ensemble,
thus the final output of stacking ŷt:

ŷt = softmax(
∑

r

αrŷe,r) (4)

where αr is the coefficient of the r-th ensemble.
The coefficients need to be trained.

6 Model setup and training

We now explain preprocessing steps, the hyperpa-
rameters we used for training, model initialization
as well as the training process.

6.1 Preprocessing

We represent a sentence with both a sequence of
words and a sequence of characters. Using word
sequences as input allows us to take advantage
of pre-trained word embeddings so that even if a
word never appears in the training set due to data
sparsity, its embedding may still provide enough
information for the models to classify correctly.
Using character sequences allows the models to be
robust to spelling variations. This helps the word-
based models, which are susceptible to misspelled
words. Therefore we train separate word- and
character-based CNN models. We then ensem-
ble the word CNN submodels into a word CNN
ensemble, and also ensemble the character CNN
submodels into a character CNN ensemble, us-
ing majority voting in both cases. The two en-
sembles are then combined together with stacking
to form the stacked CNN model. All submodels
are trained separately and remain fixed when the
stacked model is being trained.

6.2 Hyperparameters

The hyperparameters for both the word CNN
and the character CNN submodels are mostly the
same. In the following paragraph, if not other-
wise mentioned, all hyperparameters are shared.
All hyperparameters are tuned on the development
dataset of each fold. We set the number of sub-
models d to 5. We set the number of kernels of
the character CNN to be 400, and the word CNN
300. We use kernels of widths 2 to 5 for the char-
acter CNN, and 3 to 5 for the word CNN. All non-
linearities in the models are rectified linear units
(Nair and Hinton, 2010). We use Adadelta (Zeiler,
2012) as the optimizer for the submodels, and use
the recommended values for its hyperparameters
(ρ = 0.9, ε = 1 × 10−6, learning rate = 1.0).
We set the max-renorm to be 3.0 and the dropout
rate for the linear layer to be 0.5. We use negative
log-likelihood as our training objective to mini-
mize.
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6.3 Initialization

For the word CNNs, we follow Kim (2014) to
initialize the parameters. We use pre-trained
word2vec word embeddings (Mikolov et al., 2013)
for words that are in the whole dataset, and ini-
tialize embeddings of the other out-of-vocabulary
words with Unif (−0.25, 0.25). This keeps the
variance of each randomly initialized embedding
close to the word2vec embeddings. We also tried
the GloVe embeddings Pennington et al. (2014)
and found it to be slight worse in performance than
word2vec embeddings. We initialize the convolu-
tional kernels with Unif (−0.01, 0.01) and the lin-
ear layer N(0, 1e− 4). We initialize all bias terms
to 0.

For the character CNNs, we initialize all
weights to follow Unif (−1/

√
nin, 1/

√
nin) (Glo-

rot and Bengio, 2010) where nin is the length of
the input vector. For the convolutional kernels,
the length of the input vector is hk. Additionally,
we randomly initialize the embedding matrix with
N(0, 1).

6.4 Training

We use 10-fold cross validation for training and
evaluation. Shuffling the original dataset reduces
performance variance on the development sets,
improving generalizability. For each fold, we split
the whole dataset into training and testing sets
with 90/10 ratio, and further split the training set
into training and development sets with 90/10 ra-
tio. For training the submodels, we split the train-
ing set into training and development sets at dif-
ferent places to create different training data for
each submodel, and add all the labels as training
instances to the training set. We use minibatch up-
dates with batch size 50 and train each submodel
for 40 epochs, shuffling the training set for each
epoch. We evaluate the performance of the sub-
models after each epoch of training, using early
stopping on development data to select the best-
performing set of parameters.

Majority voting does not need training, but
stacking does. We train the stacked model also for
40 epochs with the training/development split that
is done for the first submodel. The optimizer is
also Adadelta with recommended hyperparameter
values.

Simple Ensembled
ChatScript 79.8 n/a
Baseline 77.2 n/a
CharCNN 76.16 78.20
WordCNN 76.92 77.67
Stacked n/a 79.02

Table 1: Mean 10-fold Accuracy by System Type.
Numbers reported are on the test set.

Figure 3: System Accuracy by Label Frequency,
in Quintiles. Note the high performance in the
least frequent labels for ChatScript, the hand-
crafted pattern matching system. With more data,
the CNNs perform better.

6.5 Baseline

We also create a simple baseline system for com-
parison. The baseline system is a logistic regres-
sion classifier that takes in one-hot representa-
tions of 1, 2, 3-grams of words, word stems, and
1, 2, 3, 4, 5, 6-grams of characters from a sentence
as features and predict what class this sentence be-
longs to. The baseline system also follows the 10-
fold cross validation training setup.

7 CNN Results

System performance is measured by correct ques-
tion identification for each of the 4330 user turns.
Accuracies reported are the average 10-fold cross-
validation accuracies. Apart from performance re-
sults from the baseline logistic classifier and the
stacked model, we also include results from the
rule-based ChatScript system.

Table 1 shows the test accuracies of different
systems averaged over the 10 folds. For machine
learning systems, the stacked CNN model per-
forms the best overall. For single models, the
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baseline system works the best. It is widely be-
lieved that deep learning models are generally
data-hungry, and the training sets are small com-
pared to popular training sets for deep learning
models. In terms of single model performance, the
simple logistic regression is better than the deep
learning models and it is reasonable to believe that
data sparsity is at issue. However, through ensem-
bling and stacking, the final stacked model per-
forms the best, and the performance gap between
a machine learning system and a carefully created
and actively maintained rule-based system on this
task becomes very small. The 2-point difference
between the baseline system and the stacked CNN
model is highly significant (p = 8.19×10−6, Mc-
Nemar’s test).

System accuracies by label frequency show a
striking difference between ChatScript and all
other systems for the most infrequent labels. Fig. 3
shows a clear advantage for ChatScript in the quin-
tile with the least frequent labels. ChatScript is
not trained, so data sparsity does not affect per-
formance of this system as much as the machine
learning systems. Also, most of the time, the train-
ing instances for a rare label are very close to
the label itself. Therefore by pattern matching,
ChatScript performs best among all models for
items with rare labels. The stacked CNN model
performs slightly better than the baseline model
in this quintile, but still is very low compared to
ChatScript.

However, ChatScript does relatively worse to
the other systems as label frequency increases.
This is expected because when training instances
increase in a dataset, it means that probabilistically
variants of the label that differ substantially will
also increase. Therefore more non-conflicting pat-
terns need to be added and existing patterns need
to be updated, which may be difficult or even im-
possible to do. Machine learning based systems
are good at frequent labels. There are more train-
ing instances, and constraint of non-conflicting
rules does not apply to such models. We can see
in Figure 3 that the stacked CNN model outper-
forms the baseline in all quintiles, and outperforms
ChatScript in the last three quintiles where training
data is ample. The clear difference of model be-
havior of ChatScript and the stacked CNN shows
that they may be combined together and perform
even better in all quintiles.

The effectiveness of ensembling

Figure 4 shows accuracy numbers on the test set
of each fold for the best individual submodels
and ensembles. The best individual submodels
are chosen based on performance on the develop-
ment set. For the character CNN submodels and
the ensemble, it is clear that the ensembled model
always performs better than the best individual
model. For all 10 folds, the ensembled character
CNN model always outperforms the best model in
the ensemble and the average performance gain
is about 1.04%. For the word CNN submodels
and the ensemble, the relation is less obvious. Al-
though in 9 out of 10 folds, the ensemble outper-
forms the best individual model, the difference be-
tween performances of the two systems is smaller
compared to the difference between best character
CNN submodel and the character CNN ensemble,
and the average performance gain is about 0.75%.
A Student’s t test on the accuracy numbers con-
firms this observation. The improvement gained
from ensembling the character CNN submodels is
significant (p = 0.0045), but the improvement
gained from ensembling the word submodels is
not (p = 0.43).

The result for the ensembles and the stacked
model can also be seen in Figure 4. Except for
fold 1, where the stacked model is outperformed
by the character CNN ensemble, the stacked
model outperforms all the ensembles in all the
other folds. The performance gained from stack-
ing the character CNN ensemble on top of the
word CNN ensemble is significant (p = 0.049),
but insignificant the other way around (p = 0.11).
This could mean that the character CNN ensem-
ble has all the information it can extract from text
for prediction that the word CNN ensemble is not
providing new information for it to do better.

Comparing the stacked model with the individ-
ual best model, stacking always provides signif-
icant performance gain (p = 0.033 for the best
word CNN submodel and p = 9 × 10−4 for the
best character CNN submodel).

Error analysis

One of the hypotheses of why the stacked CNN
model works better is because it has access to
word embeddings, and word embeddings are good
at modeling words that are superficially different
but synonymous. Table 2 shows a few examples
where the baseline classifier makes the wrong pre-
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No. Question Baseline predicted label Stacked CNN predicted label
1 constipation do you use any contraception do you have any bowel problems
2 does anything aggravate your back pain what makes the pain better what makes the pain worse
3 are you employed are you happy what do you do for a living

4 have you taken any tylenol or done anything
to help your back pain this time what makes the pain better are you taking any medication

for the pain
5 have you ever had any psychotherapy treatment have you tried any treatment do you have a history of depression
6 have you injured your back previously have you had back injury when was your last period
7 can you stand up are you able to stand what do you do for a living

Table 2: Prediction examples. The stacked CNN model predicts the correct label for the first 4 cases and
the wrong label for the last 3 cases. The baseline predicts the last 3 cases correctly.

Figure 4: System Accuracy of the Submodels and
Ensembles by Fold

diction but the stacked CNN model makes the cor-
rect prediction. These examples show how the
stacked CNN model is able to use semantic in-
formation provided by the word embeddings to
make the correct prediction whereas the baseline
classifier can not. Example 1 requires the mod-
els to know ‘constipation’ is related to ‘bowel’.
The baseline classifier is confused by the spelling
similarities between ‘constipation’ and ‘contra-
ception’, but the stacked model is able to make the
right prediction. Example 2 requires the models to
know that ‘aggravate’ means ‘get worse’, not ‘get
better’, and the stacked model makes the correct
decision. Similarly, ‘employed’ and ‘tylenol’ in
examples 3 and 4 all show that the stacked CNN
can tap into the semantic information provided by
the word embeddings and use them in prediction.

However, it appears that the semantic informa-
tion in word vectors can sometimes backfire as
well. In examples 5 and 6, the words that are sim-
ilar in meaning are making unhelpful connections.
The stacked CNN links ‘psychotherapy treatment’
to ‘depression’ in example 5, but the question as

70.0%	

75.0%	

80.0%	

85.0%	

90.0%	

95.0%	

chatscript	 CNN	 CNN	confidence	 full	 oracle	

Combined	System	Accuracy	

Figure 5: Accuracy of model trained to combine
ChatScript and CNN predictions

a whole is about treatment, so the prediction from
the stacked model is wrong. Similarly, the stacked
model predicts example 6 to be in the class ‘when
was your last period’ maybe because ‘last’ and
‘previously’ are similar, apparently missing the
‘injury’ part of the question. The stacked CNN
missed example 7 because of data sparsity. There
are only two instances of the class ‘are you able to
stand’ in the whole dataset, therefore the stacked
CNN has low confidence in the gold class and in-
stead chooses a class which has much more train-
ing examples.

8 Combining ChatScript with the CNN

While the fully ensembled and stacked CNN per-
forms at 79% accuracy, which is slightly below
that of ChatScript, its error pattern is distinct from
ChatScript, as seen in Fig. 3. ChatScript, because
it only uses pattern matching to do classification,
is less affected by the imbalance of training in-
stances belonging to target classes in the training
data. The CNN, however, is affected by such im-
balance and generally performs worse when train-
ing instances for one class is scarce. Meanwhile,
despite the use of automatic spelling correction in
ChatScript, a substantial portion (11.1%) of the
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Chatscript errors were on questions with typos
or other spelling errors in them; on these items,
the CNN managed to make the correct prediction
74.1% of the time. This indicates that the character
CNNs are more robust to spelling errors, as there
is no need to make a possibly erroneous guess as to
the correctly spelled word. Additionally, whereas
the CNN always makes its best guess on test items,
the ChatScript patterns failed to match (yielding
no answer) on 7.4% of the questions, representing
36.5% of the ChatScript errors. On these ques-
tions, the CNN achieved 59.6% accuracy, indicat-
ing that they are considerably more difficult to rec-
ognize than the average question.

Given that our two methods make rather differ-
ent errors, we investigated whether it would make
sense to combine them, and found that an oracle
that always chose the correct system if either was
right could achieve 92.9% accuracy, much higher
than the ChatScript systems 79.8% accuracy by it-
self. As such, we experimented with training a lo-
gistic regression binary classifier for automatically
choosing between the two systems, again using
10-fold cross-validation. The binary classifier was
trained to choose the CNN prediction when it was
correct and ChatScript was wrong, otherwise to
choose the ChatScript output—including in cases
where the ChatScript patterns yielded no match,
on the assumption that a no-match response would
be preferable to an incorrect response. To make
its choices, the binary classifier used the following
features:2

Log Prob The log probability of the predicted
class in the final output of the stacked model.

Entropy The entropy of the distribution over
classes output by the stacked model.

Confidence For each submodel, the confidence
score is the unnormalized score for the pre-
dicted class. For the stacked model, the con-
fidence score is the average of all confidence
scores from the submodels.

CNN Label The label predicted by the CNN.

CS Label The label matched by ChatScript.

CS Log Prob The log probability according to
the CNN of the ChatScript prediction.

2Note that ChatScript does not output scores for its
matched patterns, so we did not pursue a stacking-based ap-
proach.

Note that an automatic method for choosing be-
tween the two systems could in principle do worse
than simply always choosing the ChatScript sys-
tem. Nevertheless, as shown in Fig. 5, a classi-
fier trained to make the choice based on the log
prob, entropy and confidence of the CNN’s pre-
diction achieves 85.0%, a large gain. This binary
classifier can be improved further by taking into
account how likely the logistic regression model
considers the ChatScript choice, including the spe-
cial case of no match from the ChatScript system,
along with the specific label of both system pre-
dictions. The full model, making use of these ad-
ditional features, achieves 89.3% accuracy, a huge
gain that represents more than two-thirds of the
potential gains revealed by the oracle analysis, and
a 47% reduction in error over the ChatScript sys-
tem by itself. This shows that the stacked CNN
effectively compliments the rule-based ChatScript
system on the mid-to-high frequency labels, mak-
ing the final system much stronger than either of
the component systems.

We also investigated whether it would make
sense to always choose the CNN prediction when
the ChatScript system yielded no match. By al-
lowing the binary combination classifier to choose
the ChatScript system even when it yielded no
match, the combined system reduced the number
of no match outputs from 7.4% to 2.4%, close to
the 3.0% oracle rate for cases where neither sys-
tem is correct. Always choosing the CNN pre-
diction in these cases increases the combined sys-
tem accuracy by 0.6%, but at the cost of a 1.8%
increase in erroneous responses rather than no-
match responses. As such, it appears preferable
to allow the binary combination classifier to make
the choice even in the no-match cases.

9 Discussion and Future Work

CNNs are very sensitive to their hyperparameters
and initializations. Differences in normal vs. uni-
form weight matrix initializations were observed
to impact word- and character-based CNN mod-
els differently. He et al. (2017) use orthonor-
mal initializations following Saxe et al. (2013),
while Kim (2014) suggests initializing unknown
word embeddings using parameters (e.g., vari-
ance) sampled from pre-trained word embeddings,
etc.; further exploration of hyperparameter tuning
and initialization strategies are left as future work.

Models with more complicated architecture,
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such as Memory Networks (Weston et al., 2015),
Highway Networks (Srivastava et al., 2015) and
Convolutional sequence models (Gehring et al.,
2017) can also be explored and integrated as well,
although more data is needed to successfully train
these models. Other ensemble methods like Super
Learner (Ju et al., 2017) should be tried as well.

Since label sparsity is at the heart of the per-
formance difference between ChatScript and the
CNN models, a more direct way to deal with lack
of training examples (possibly obviating the need
for a hand-crafted system like ChatScript) could
be to automatically generate paraphrases to aug-
ment available data, potentially with a content au-
thor in the loop; we are currently exploring strate-
gies for doing so.

10 Conclusion

This work shows the value of combining a hand-
authored pattern matching system with CNN mod-
els to overcome label sparsity in training. The
stacked CNN model with ensembled word and
character CNN submodels significantly outper-
forms the logistic regression baseline. Within
the CNN models, ensembling is found to sig-
nificantly improve performance for the character
model, while stacking always provides significant
improvement over the best word- or character-
based submodels. The final system uses a binary
classifier over ChatScript and a stacked CNN, im-
proving overall accuracy by 10% and achieving
an impressive 47% error reduction on a question
identification task in a virtual patient dialogue sys-
tem.
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Cheng Ju, Aurélien Bibaut, and Mark J. van der Laan.
2017. The Relative Performance of Ensemble Meth-
ods with Deep Convolutional Neural Networks for
Image Classification. arXiv page 1704.01664vi
[stat.ML].

Yoon Kim. 2014. Convolutional Neural Networks for
Sentence Classification. Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP 2014) pages 1746–1751.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M. Rush. 2016. Character-Aware Neural Lan-
guage Models. In Proceedings of the 30th AAAI
Conference on Artificial Intelligence (AAAI 16).
pages 2741–2749.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. 2012. Imagenet classification with deep con-
volutional neural networks. In F. Pereira, C. J. C.
Burges, L. Bottou, and K. Q. Weinberger, editors,
Advances in Neural Information Processing Systems
25, Curran Associates, Inc., pages 1097–1105.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S
Corrado, and Jeffrey Dean. 2013. Distributed Rep-
resentations of Words and Phrases and their Compo-
sitionality. In Advances in Neural Information Pro-
cessing Systems 26 (NIPS 2013). pages 3111–3119.

Vinod Nair and Geoffrey E Hinton. 2010. Rectified
Linear Units Improve Restricted Boltzmann Ma-
chines. In Proceedings of the 27th International
Conference on Machine Learning (ICML 2010). 3,
pages 807–814.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. GloVe: Global Vectors for Word
Representation. In Proceedings of the Conference
on Empirical Methods in Natural Language Pro-
cessing (EMNLP 2014). pages 1532–1543.

Vikram Ramanarayanan, David Suendermann-Oeft,
Hillary Molloy, Eugene Tsuprun, Patrick Lange,
and Keelan Evanini. 2017. Crowdsourcing multi-
modal dialog interactions: Lessons learned from the
HALEF case. In Proceedings of the AAAI-17 Work-
shop on Crowdsourcing, Deep Learning, and Artifi-
cial Intelligence Agents. pages 423–431.

Deepak Ravichandran, Eduard Hovy, and Franz Josef
Och. 2003. Statistical qa-classifier vs. re-ranker:
What’s the difference? In Proceedings of the
ACL 2003 workshop on Multilingual summarization
and question answering-Volume 12. Association for
Computational Linguistics, pages 69–75.

Brent Rossen and Benjamin Lok. 2012. A crowdsourc-
ing method to develop virtual human conversational
agents. International Journal of HCS 70(4):301–
319.

Keisuke Sakaguchi, Michael Heilman, and Nitin Mad-
nani. 2015a. Effective feature integration for auto-
mated short answer scoring. In Proceedings of the
2015 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies. Association for Com-
putational Linguistics, pages 1049–1054.

Keisuke Sakaguchi, Michael Heilman, and Nitin Mad-
nani. 2015b. Effective Feature Integration for Auto-
mated Short Answer Scoring. In Proceedings of the
Conference of the North American Chapter of the
Association of Computational Linguistics (NAACL
2015). pages 1049–1054.

Andrew M. Saxe, James L. McClelland, and Surya
Ganguli. 2013. Exact solutions to the nonlinear dy-
namics of learning in deep linear neural networks.
Advances in Neural Information Processing Systems
pages 1–9.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A Simple Way to Prevent Neural Networks
from Overfitting. Journal of Machine Learning Re-
search 15:1929–1958.

Rupesh Kumar Srivastava, Klaus Greff, and Jürgen
Schmidhuber. 2015. Highway Networks. In Pro-
ceedings of the Deep Learning workshop (ICML
2015).

D. Suendermann, K. Evanini, J. Liscombe, P. Hunter,
K. Dayanidhi, and R. Pieraccini. 2009. From rule-
based to statistical grammars: Continuous improve-
ment of large-scale spoken dialog systems. In
Proceedings of International Conference on Acous-
tics, Speech, and Signal Processing (ICASSP) 2009.
pages 4713–4716.

Oriol Vinyals, Charles Blundell, Timothy Lillcrap, Ko-
ray Kavukcuoglu, and Daan Wierstra. 2016. Match-
ing Networks for One Shot Learning Oriol. In Pro-
ceedings of Neural Information Processing Systems
(NIPS 2016). pages 817–825.

Jason Weston, Sumit Chopra, and Antoine Bordes.
2015. Memory Networks. In ICLR. pages 1–15.

D.H. Wolpert. 1992. Stacked generalization. Neural
Networks 5(2):241–259.

20



Wenpeng Yin and Hinrich Schütze. 2015. Convo-
lutional Neural Network for Paraphrase Identifica-
tion. Proceedings of 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics Human Language Technologies
(NAACL HLT 2015) pages 901–911.

Wenpeng Yin, Hinrich Schütze, Bing Xiang, and
Bowen Zhou. 2016. ABCNN: Attention-Based
Convolutional Neural Network for Modeling Sen-
tence Pairs. Transactions of the Association for
Computational Linguistics 4:259–272.

Matthew D. Zeiler. 2012. ADADELTA: An Adaptive
Learning Rate Method. CoRR .

21



Proceedings of the 12th Workshop on Innovative Use of NLP for Building Educational Applications, pages 22–32
Copenhagen, Denmark, September 8, 2017. c©2017 Association for Computational Linguistics

Continuous fluency tracking and the challenges of varying text complexity

Beata Beigman Klebanov, Anastassia Loukina, John Sabatini, Tenaha O’Reilly
Educational Testing Service

660, Rosedale Rd, Princeton NJ, USA
08541, NJ, USA

{bbeigmanklebanov, aloukina, jsabatini, toreilly}@ets.org

Abstract

This paper is a preliminary report on us-
ing text complexity measurement in the
service of a new educational application.
We describe a reading intervention where
a child takes turns reading a book aloud
with a virtual reading partner. Our ulti-
mate goal is to provide meaningful feed-
back to the parent or the teacher by contin-
uously tracking the child’s improvement in
reading fluency. We show that this would
not be a simple endeavor, due to an intri-
cate relationship between text complexity
from the point of view of comprehension
and reading rate.

1 Introduction
According to the 2015 report from the National
Assessment of Educational Progress on reading
achievement, 31% of U.S. 4th graders read be-
low the Basic level.1 Our goal is to help low-
proficiency readers such as these improve their
reading skill.

The critical transition from word-by-word
reading to fluency, or from learning how to read
to reading for learning or enjoyment, requires ex-
tended and sustained reading practice. To en-
courage such practice we propose an educational
application which combines (1) an excellent story
to achieve engagement (such as “Harry Potter and
the Sorcerer’s Stone” by J. K. Rowling), and (2) a
virtual reading companion, implemented through
an audiobook, who would take turns reading aloud
with the child – “you read a page, I read the next
one”. The turn-taking allows the child to alter-
nate between the more effortful reading and the
less effortful listening, as well as supplies a model

1https://www.nationsreportcard.gov/reading math 2015/
#reading/acl?grade=4

reading of many of the words and phrases the child
will encounter during his turn.

In addition to supporting sustained reading by
children, the system will also provide the teacher
or parent with a detailed picture of the child’s de-
velopmental trajectory, by continuously tracking
the child’s reading fluency throughout his reading
turns. Oral reading fluency is not only an impor-
tant indicator of reading skill in itself (Hudson
et al., 2008; Fuchs et al., 2001), for students in
early elementary grades it is also strongly corre-
lated (r around 0.7) with reading comprehension
(Roberts et al., 2005; Good et al., 2001).

The standard measure of oral reading fluency
is words correct per minute (henceforth, WCPM)
(Wayman et al., 2007), combining aspects of speed
and accuracy of oral reading.2 Several studies
(Balogh et al., 2007; Zechner et al., 2009) showed
that WCPM can be accurately computed automati-
cally using an automated speech recognizer (ASR)
and a string matching algorithm; this approach has
already been incorporated into many commercial
and research systems for automated oral fluency
assessment such as VersaReader (Balogh et al.,
2012) or Project LISTEN (Mostow, 2012) (see also
Eskenazi (2009) for a review).

Previous studies on reading fluency indicate that
WCPM may vary across different texts (Ardoin
et al., 2005; Compton et al., 2004). It seems rea-
sonable to assume that variation in text complex-
ity/readability might be one of the sources of vari-
ation in oral reading fluency across different pas-
sages: Texts that cause comprehension difficul-
ties may also elicit less fluent reading. In fact,
this assumption underlies text selection for tests of
oral reading fluency such as DIBELS (Good and
Kaminski, 2002) that rely on readability to select

2In some studies, reading rate (words per minute) is used
as a separate measure while fluency is defined in terms of
expressiveness and adherence to syntax (Danne et al., 2005).
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comparable passages (Francis et al., 2008). Since
in our application the child will be reading dif-
ferent passages in the book on different days, it
is possible that the differences between passages
would confound the measurement of the child’s
progress. In this case, WCPM would need to be
adjusted to account for such differences in order
to produce interpretable feedback.

Previous work generally focused on text proper-
ties and WCPM in short texts that have already
been controlled for grade-level appropriate read-
ability. Little is known about the variability of text
complexity across a whole book and how this may
affect WCPM of a child reading the book. There-
fore, the focus of this paper is to see whether an
adjustment of WCPM to text is in fact necessary
in our context, and, if so, whether it can be done
using a state-of-the-art text complexity measure.

We address the following research questions:
(1) What is the extent of variation in passage com-
plexity in J. K. Rowling’s “Harry Potter and the
Sorcerer’s Stone” (henceforth, HP1)? (2) Does the
complexity of the text actually impact reading flu-
ency as measured by WCPM? (3) Do automatically
generated estimates of text complexity correspond
to the observed fluency patterns?

The rest of the paper is organized as fol-
lows. We first introduce previous work related to
text complexity measurement and the relationship
between text complexity and oral reading fluency.
We then present the results of two studies: In the
first study we looked at variation in text complex-
ity across passages selected from HP1. In the
second study we investigate how text complexity
estimates relate to WCPM of children reading se-
lected passages from the book. Our findings are
then discussed and implications for research on
continuous tracking of fluency are drawn.

2 Related Work

Text Complexity Estimation: While for Dale
and Chall (1949) the notion of text readability in-
volved “the extent to which they [readers] under-
stand it [the text], read it at an optimal speed, and
find it interesting”,3 most classical (Flesch, 1948;
Gunning, 1952; Kincaid et al., 1975; McLaughlin,
1969) and modern (Sheehan et al., 2014; Flor and
Beigman Klebanov, 2014; Vajjala and Meurers,
2012; Schwarm and Ostendorf, 2005) measures
of text readability/complexity focus on reading

3Quoted from DuBay (2004).

comprehension, including special formulas and
models designed for special populations, such as
young children (Spache, 1953), learners of En-
glish as a second language (Beinborn et al., 2014;
Heilman et al., 2007), adults with mental disabili-
ties (Feng et al., 2009), among others.

While comprehension-based complexity esti-
mation of relatively short reading passages has
been the subject of extensive research for many
decades, there is little research on estimating the
complexity of long, book-level texts. In early
work on readability, Fowler (1978) estimated read-
ability of a novel using the mean of readability
estimates of fifteen randomly selected 100-word
passages from the novel. Milone (2012) gene-
rates book-level complexity estimates by com-
bining complexity estimates for the text in the
book with a measure based on the length of the
book, following the observation that longer books
tend to be more difficult, all else being equal. He
decided to base the estimate of text complexity in
the book on the analysis of the whole book, as
opposed to samples from the book, based on the
observation of extensive within-text variability in
estimates of text complexity and the concomitant
hazard of a large sampling error if only parts of the
book are taken into account during complexity es-
timation (see Appendix E in Milone (2012)). For
example, the book Black Beauty yields a grade-
level estimate of 5.4 based on the text of the whole
book; looking at 500-word slices yields estimates
anywhere from 2.2 to 9.5 per slice – a range
of 7 grade levels. This finding raises the ques-
tion of a young reader’s experience in the face of
such variability. To our knowledge, our project is
the first study to address variation in within-book
reading experiences in general, and variation in
oral reading performance specifically.

Relationship between oral reading fluency
and text complexity: In Compton et al. (2004),
248 low and average-achieving second graders
each read 15 passages of comparable readability
levels; their reading performance was recorded in
terms of accuracy (proportion of words read cor-
rectly) and fluency (WCPM). Analyzing the rela-
tionship between textual characteristics and per-
formance, researchers found that Flesch-Kincaid
measure, Spache measure, and average sentence
length did not significantly correlate with perfor-
mance. On the other hand, they found that per-
centage of high frequency words was significantly
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correlated with both performance measures. Ar-
doin et al. (2005) examined a number of readabil-
ity formulas for their ability to predict WCPM and
found generally fairly low correlations (r<0.5).

In Petscher and Kim (2011), about 35,000
students in grades 1-3 read three grade-level-
appropriate passages (as measured by Spache for-
mula) during each of 4 administrations of an oral
reading fluency test throughout the year. The
authors estimated the amount of variability in
WCPM that was attributable to variation among
students vs variability across the text passages.
Their results showed that 2%-4% was attributable
to variability in passages and/or order of passages
for grade 1, with higher proportions for grades
2 (5%-6%) and 3 (3%-9%). Petscher and Kim
(2011) also observed an increase in the reading
rate from the first to the third administered pas-
sage within an assessment, consistently with other
studies (Francis et al., 2008; Jenkins et al., 2009),
pointing to the existence of practice effects in oral
reading performance of consecutively read texts.

To summarize, the related work suggests that
(1) some amount of variation in reading fluency
is attributable to variation in text passages being
read, for early elementary grade children; (2) clas-
sical readability formulas are not very effective
predictors of oral reading fluency.

We note however that passage readabil-
ity/complexity variation across texts used in pre-
vious studies tends to be limited, since texts se-
lected for assessments are typically controlled for
grade-level-appropriate readability. In contrast,
we consider a case where children are reading a
long novel that is not specifically designed to be
grade-level controlled; we therefore expect more
variation in complexity across different passages
in a book. Larger variation may show better align-
ment between reading rates and text complexity
estimates.

3 Study I: Text complexity in Harry
Potter and the Sorcerer’s Stone

3.1 Data and methodology

For this first study we considered the variation in
text complexity in J. K. Rowling’s “Harry Potter
and the Sorcerer’s Stone”. We first split the book
into a series of consecutive, non-overlapping 250
word chunks. These should take 2-3 minutes to
read for our target population and constitute the
approximate amount of text to be read by the child

at each turn. For each chunk, after 250 words, we
either extended or reduced the chunk to the end of
a paragraph, thus ensuring that each passage had a
natural break point.

The whole book consists of 79,508 words
spread across 17 chapters. We created 318 con-
secutive passages, with a mean length of 250.0
words (SD=16.9). The shortest passage contained
177 words and the longest passage contained 309
words. Half of the passages (II and III quartiles)
fell within 242-259 words range.

We used TextEvaluator,4 a state-of-the-art mea-
sure of comprehension complexity of a text
(Napolitano et al., 2015; Sheehan et al., 2014,
2013; Nelson et al., 2012),5 to conduct text com-
plexity analyses. TextEvaluator extracts a range
of linguistic features and uses them to compute a
complexity index on the scale of 100-2000, as well
as an overall grade equivalent score. TextEvalu-
ator computes three complexity scores based on
the models optimized for literary, informational
and mixed texts. We used the literary metric as
the final complexity score for our passages since
all texts were excerpts from a novel.6

In addition to the overall score, several di-
mension scores are provided, including: Syn-
tactic Complexity (using features related to sen-
tence complexity); Academic Vocabulary (the ex-
tent to which words in the text are characteristic
of academic texts); Word Unfamiliarity (a com-
posite measure of word frequency); Lexical Co-
hesion (measures the degree of overlap between
concepts across adjacent sentences within para-
graphs); Level of Argumentation (indexes the ease
or difficulty of inferring connections across sen-
tences when the underlying format of a text is ar-
gumentative); additional dimensions include Inter-
active/Conversational Style, Concreteness, Degree
of Narrativity.

We note that passage lengths between 177 and

4https://textevaluator.ets.org/
5TextEvaluator appears in the Nelson et al. (2012) bench-

mark as SourceRater.
6A reviewer of this paper pointed out that Text Evalua-

tor includes an automatic genre classifier which is used to
determine the final complexity score (Sheehan et al., 2013),
and that it is possible that some passages in a novel could
be more on the informational side. In our study, 302 pas-
sages (95%) were classified as literary texts by TextEvalu-
ator’s genre classifier. Among the remaining 16 passages, 7
passages were classified as informational texts and 9 passages
as mixed texts. None of the selected passages (in section 4.1)
belong to these 16. Using final instead of literary scores had
a negligible effect on statistics reported in section 3.2.
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309 words are within scope for TextEvaluator, al-
beit on the shorter side of the range: Sheehan et al.
(2013) report an evaluation with texts ranging in
length from 112 to more than 2,000 words.

For this analysis, we treated each chunk from
the book as an independent passage. Thus,
TextEvaluator had no access to information about
other passages. One might contend that there are
limitations to such an approach, as some aspects of
difficulty of the text may change as the reader ac-
cumulates knowledge about the world of the book.
For example, words that are initially unfamiliar,
such as names of characters, magic creatures and
artifacts, spells and curses, would become increas-
ingly familiar as the story progresses. In contrast,
other aspects of complexity, such as the syntactic
complexity of sentences, are less likely to become
more or less challenging as one reads further into
the book. In the current study, we have not at-
tempted to capture any such text continuity effects.

3.2 Results

The overall TextEvaluator complexity of passages
across the book varied from 160 to 1150 with
average complexity 613.4 (SD=163.1). In terms
of grade levels this corresponds to variation from
second to eleventh grade, with the average around
grade six.

The dimension scores also varied across the
book although the patterns were different for dif-
ferent dimensions. Figure 1 shows the distribu-
tions for different dimension scores. The scale for
all scores is 0-100. The score for Academic vo-
cabulary was consistently low across all passages
(Mean=27, SD=7.3), while the score for narra-
tivity was consistently high (Mean=83, SD=5.8).
The score for the Level of Argumentation showed
the largest spread (Mean=53 and SD=19.8). We
also note the substantial spread in Syntactic com-
plexity (Mean=46.1 and SD=11.3).

We also considered how the complexity varies
as one proceeds through the book (Figure 2). The
red line shows values for each passage, the blue
line shows a smoothed estimate calculated using
lowess (Cleveland, 1979).7 The plot shows there
is a substantial fluctuation from passage to pas-
sage as well as potentially longer-range trends
that may correspond to the book’s narrative struc-
ture. Specifically, the peak around 130-140 cor-
responds to the description-heavy introduction to

7as implemented in (Seabold and Perktold, 2010)

Figure 1: Distributions of scores for various di-
mensions of text complexity in HP1. The dimen-
sions are ordered on the x-axis by spread (SD).

Hogwarts and Harry’s first classes; the valley
around 300 corresponds to the fast-moving final
stand-off between Harry and Voldemort/Quirrell.

Figure 2: Distribution of holistic text complexity
scores as one proceeds through HP1.

The answer to research question 1 is thus: The
extent of variation in text complexity across pas-
sages in the book is very substantial. If text
complexity has any systematic effect on the oral
reading performance, the extent of variation in
complexity suggests that it is likely to become a
major confounding factor in tracking the child’s
progress in fluency while reading the book.

4 Study II: Text complexity and oral
reading fluency

Our second question is: Does the complexity of
the passage that is being read significantly impact
children’s reading fluency for the passage? In or-
der to answer this question, we selected 3 pas-
sages with very large differences in text complex-
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ity as estimated by TextEvaluator, and collected
oral reading fluency estimates for these passages
from a sample of 2-4 graders. The details of the
procedure and the results are described in this sec-
tion.

4.1 Passage selection

We ordered all 318 passages by estimated text
complexity, and selected passages from the middle
of the distribution and from the lowest and high-
est deciles. In addition to TextEvaluator score,
when selecting passages we also took into account
whether a passage could be reasonably read as
stand-alone text. Table 1 shows the characteris-
tics of these three passages. All passages are from
the first chapter of the book.

Passage # words TE score Complexity
Percentile

Easy 226 260 1.9%
Medium 282 580 51.5%
Hard 246 800 90.3%

Table 1: The characteristics of the passages used
for the data collection: length in words, complex-
ity, complexity relative to the whole book.

4.2 Data collection procedure

The recordings took place in an office with several
children recorded simultaneously. The texts were
presented on screen and the audio was captured
using the head-set with a microphone.

Before reading the experimental passages, the
child first listened to the passage that begins the
first chapter of HP1 (starting with “Mr. and Mrs.
Dursley of number four, ...”) as narrated by the
professional actor Jim Dale (Rowling and Dale,
2016). Then the child read aloud the passage im-
mediately following the passage read by the nar-
rator. Since all children read this passage first,
this passage is used as a reference text to measure
baseline WCPM for each child.

The experimental passages were then presented
to children in a randomized order, to allow sepa-
ration between text and order effects in subsequent
analyses (Petscher and Kim, 2011; Francis et al.,
2008; Jenkins et al., 2009). The children were
asked to read at their natural pace.

A total of 30 children took part in this data col-
lection selected via a convenience sample. Table
2 shows the distribution by grade and gender and

Grade Girls Boys Mean age
2 7 3 8;3
3 3 7 9;0
4 6 4 10;2

Table 2: The demographic characteristics of par-
ticipants.

the average age in each group. All recordings were
done in April of 2017.

4.3 Computation of oral reading measures

To compute WCPM we used a professional tran-
scription agency to obtain word-by-word tran-
scriptions of each child’s reading and aligned them
to the passage text using an algorithm based on
dynamic programming. We next computed how
many words in the original passage matched those
in the transcription. This algorithm is similar to
that used to compute ASR word error rate, but fol-
lowing the standard practice in reading research
we only penalized substitutions and deletions and
did not take into account any insertions. Most chil-
dren’s reading closely followed the texts, with the
average of 93.8% of all words in each text read
correctly (SD=3.7, min=82.7%, max=99.6%).

We manually identified in each recording the
time stamps where the child started and finished
reading the text. WCPM was computed by divid-
ing the total time it took the child to read the text
by the total number of matched words in each
text. The average WCPM in the experimental texts
in our corpus was 117.1 (SD=27.3, min=57.2,
max=196.0). To get an idea where these read-
ers stand with respect to general population of
U.S. children of comparable age, we consulted the
WCPM norms in Table 1 of Hasbrouck and Tin-
dal (2006), and found that a grade-stratified sam-
ple of children from grades 2-4 during spring term
is expected to read, on average, at 106 WCPM.
The observed rate of 117 WCPM corresponds to
60% percentile – somewhat above average. We
note that this is only a rather rough estimate of
these children’s fluency relative to peers, since the
experimental texts differ in complexity substan-
tially from the grade-leveled materials used for
oral reading fluency assessments. Still, this esti-
mate accords with our observation during the data
collection that these children generally read quite
fluently and accurately for their age.
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4.4 Results

To evaluate the effect of text on WCPM, we
used a mixed effects linear model. These
models offer a more powerful way to con-
duct repeated-measures analyses than a simple
repeated-measures ANOVA, because they make
it possible to combine both continuous and cate-
gorical predictors. We used WCPM as the depen-
dent variable and speaker identity as a random fac-
tor. We included the following fixed factors: text
identity (categorical), the baseline WCPM on the
reference text (continuous), and order in which
each text was read (continuous). In addition to
the main effects, we also included the interaction
between text identity and the baseline WCPM. Ta-
ble 3 shows the standardized coefficients and sig-
nificance values for the model. We took WCPM for
the Medium text as the reference category.

Variable Coeff. P > |z|
1 Intercept 0.522 <0.001
2 text-easy -0.814 <0.001
3 text-hard -1.165 <0.001
4 base wcpm 0.893 <0.001
5 text-easy:base wcpm -0.258 0.001
6 text-hard:base wcpm -0.132 0.089
7 order 0.046 0.236

Table 3: The standardized coefficients and their
significance values for fixed effects used to pre-
dict WCPM on each text (N=90). In addition to the
fixed effects, the model also included the random
effect for speakers (not shown in the table).

First, we observe that the child’s baseline
reading fluency estimated from the reference text
is a significant factor, as expected. Second, we
note that the order in which the experimental texts
were presented does not yield a significant effect.

The identity of the passage (Easy, Medium,
Hard) has a significant effect on reading fluency.
Thus, the Hard text is read 1.2 standard deviations
less fluently than the Medium text (row 3); this re-
sult accords with expectations. The result in row
2 is surprising: There is a highly significant and
large difference in WCPM between the Easy text
and the Medium text, but it is in the opposite direc-
tion – the Medium text is read 0.8 standard devia-
tions more fluently than the Easy text. Thus, while
the results clearly attest to a substantial effect of
the text on WCPM, the estimates of text complex-
ity are in a rather dramatic mis-alignment with the

Figure 3: Average WCPM for the three texts in our
study. To illustrate the interaction between fluency
and text we divided all speakers into three equal
bins based on ‘base wcpm’.

pattern of the oral reading.
Row 5 in Table 3 shows a significant interaction

effect between text and base WCPM, for Medium
vs Easy texts: The higher the base reading fluency
of the child (base wcpm), the bigger the difference
in WCPM between Easy and Medium text. This ef-
fect is consistent with the tendency shown in row
6, though it does not reach significance: the more
fluent readers also tended to differentiate more
between the Medium and Hard texts. This find-
ing suggests that more fluent readers seem to have
a tendency to differentiate their oral reading pat-
tern depending on the text they read to a larger ex-
tent than the less fluent readers. Indeed, there is a
significant, medium-strength correlation between
a child’s average WCPM for the three texts and his
or her variance in WCPM across these texts: r =
0.47, p < 0.01.

Figure 3 shows the average of WCPM across the
three texts in our study. To illustrate the interac-
tion between text and fluency we divided all chil-
dren into three equal groups based on their base
WCPM on the reference text.

In order to check whether the impact of the text
is mostly about the accuracy aspect of the flu-
ency measure (words read correctly per minute)
or about the reading rate itself (words or syllables
per minute), we repeated the analyses above using
either words per minute or syllables per minute as
the dependent variable instead of WCPM. The re-
sults are very similar to those reported in Table 3:
Base reading rate has a significant effect; text iden-
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tity has a significant effect, with one of the com-
parisons going in the opposite direction from that
predicted; the interaction effect for base reading
rate and text for Easy vs Medium is significant;
order and the second interaction effects are not
significant. This finding suggests that, at least for
these readers, the basic speed of reading is system-
atically affected by the identity of the text.

5 Discussion
The main finding in our study is that while differ-
ent passages consistently elicit different reading
rates, text complexity as estimated by a state-of-
the-art measure does not predict the differences
correctly – a passage that is rated as 3.2 grade lev-
els more difficult than another is in fact read sig-
nificantly faster, consistently across readers. We
consider several possible reasons for this effect:

• TextEvaluator’s complexity estimates may
not be accurate when applied to passages
from a novel.

• Oral reading is not only a kind of reading, but
also a kind of speaking. Reading rate might
thus be affected by properties of speech, in a
direction that differs, or even contradicts, the
impact of text complexity.

• Reading a story aloud, or narration, is not
only a kind of oral reading, but also a kind
of performance for an audience. While chil-
dren are not explicitly asked to narrate, the
nature of the text might drive them to do so,
as well as the model reading provided by the
narrator of the audiobook (recall that the chil-
dren listened to a passage narrated by the ac-
tor Jim Dale before reading aloud their own
passages). Variation in WCPM across texts
could be effected by demands of expressive
narration that are unrelated, or at least not di-
rectly related, to comprehension complexity
of the text.

5.1 Estimation of text complexity in book
excerpts

One possible hypothesis for explaining the find-
ing is that TextEvaluator scores may not provide
an adequate estimate of complexity for book ex-
cerpts, since the engine, like many other complex-
ity/readability measures, has been developed and
validated for estimating reading comprehension
difficulty of standalone passages meant for use in

assessments. In particular, the guidelines for using
TextEvaluator specifically exclude drama, yet the
Easy text includes an informal conversation with
punctuation used to indicate emotions of the in-
terlocutors. The Easy text contains the following
excerpts:

(1) “Well, I just thought ... maybe ...
it was something to do with ... you
know ... her crowd.”
(2) “Funny stuff on the news,” Mr. Durs-
ley mumbled. “Owls ... shooting stars ...
and there were a lot of funny-looking
people in town today ... ”

TextEvaluator treats “...” as if they were
sentence-final periods, as in:

(3) “Well, I just thought. Maybe. It was
something to do with. You know. Her
crowd.”
(4) “Funny stuff on the news,” Mr. Durs-
ley mumbled. “Owls. Shooting stars.
And there were a lot of funny-looking
people in town today.”

This creates multiple very short sentences
which in turns lowers the complexity score since
average sentence length is one of the indicators of
text complexity. However, an alternative interpre-
tation where utterance-internal “...” are more akin
to commas is also possible, as in:

(5) “Well, I just thought, maybe, it was
something to do with, you know, her
crowd.”
(6) “Funny stuff on the news,” Mr. Durs-
ley mumbled. “Owls, shooting stars,
and there were a lot of funny-looking
people in town today.”

After substituting (5) and (6) instead of (1) and
(2), respectively, the estimation of the complexity
of the text increased from 260 to 300, due to the
increase in average sentence length. It is possible
that there are other ambiguities that could be re-
solved in ways with differing levels of complexity,
as well as other indicators of complexity that are
not picked up or interpreted as such by TextEva-
luator. We note that the particular issue pointed
out above would not be specific to TextEvaluator,
as many complexity indices include average sen-
tence length as a component. Generally, it is pos-
sible that measures developed predominantly for
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analyzing passages for assessments would not ac-
count correctly for stylistic devices used in nov-
els. Indeed, Nelson et al. (2012) observed that
various measures of text complexity, including
TextEvaluator, generally had better correlations
with grade level for informational texts than for
narrative texts.

5.2 Text complexity vs general properties of
speech prosody

Average sentence length is a text complexity in-
dicator used in both classical (such as Flesh-
Kincaid) and modern text complexity measures –
longer sentences tend to be more difficult from the
point of view of comprehension. From the point
of view of speech prosody, however, it is not clear
that a long sentence would be uttered slower than
a few shorter sentences covering, in total, the same
number of words (or syllables). Studies of speech
prosody have consistently demonstrated that the
duration of segments increases at certain impor-
tant locations within utterances, sentence bound-
aries being one such location (see White (2014)
for a detailed review of this topic). As a result, the
overall time it would take to read a text with many
short sentences might in fact be longer than a text
with the same number of words split into longer
sentences.

We observe that the actor who is narrating the
audiobook is unlikely to be influenced by text
complexity to the same extent as young readers
who are still learning to read. It is hard to imagine
that any of the passages in HP1 are genuinely dif-
ficult for the narrator, as a reader who is not only
proficient but highly skilled,8 and also very famil-
iar with the text he is narrating. Thus, if we ob-
serve substantial variation in reading rates across
the three texts for the narrator, it is likely that the
reason for the changes is something other than
text complexity, as quantified by comprehension-
related measures.

To test this hypothesis we compute the reading
rate for the narrator following the same approach
as described above. We found that the patterns of
the reading rate of the narrator closely followed
those we observed for children in our study: The
Easy text was read slower than the Medium text
which in turn was read faster than the Hard text.
Figure 4 shows the WCPM for the narrator relative
to the children in our study.

8The narrator, Jim Dale, has won Grammy awards for his
recordings of two of the seven Harry Potter books.

Figure 4: Average WCPM for children in our cor-
pus and the audiobook narrator (purple).

It appears that readers with different levels of
reading fluency (young learners and a perform-
ing professional), are affected by some aspect of
the text in a similar way, which makes it less
likely that this aspect is directly related to compre-
hension complexity, since complexity should pose
much less of a challenge for a performing profes-
sional than for a second grader. General patterns
of speech are one potential reason (as also men-
tioned in section 5.2); another possibility is that
in the context of narrating a story, reading rate is
affected by “directives” in the text that govern ex-
pressive oral reading performance of each passage
(cf. Theune et al. (2006)). Such directives could
include markers of hesitation, emphasis, surprise,
stuttering, etc.; some of these might have a sys-
tematic effect on reading rate.

5.3 Interaction between base fluency and
impact of text identity

Finally, we also observed an interaction effect
between the reader’s baseline fluency and the ex-
tent to which text identity impacts that reader’s
fluency. Specifically, for one of the pairs of
texts, more fluent readers tend to have significantly
larger differences in reading rates between the two
texts. This finding is in agreement with the lit-
erature – Petscher and Kim (2011) found that the
proportion of reading rate variance attributable to
variation in passages tends to increase with grade,
for grades 1 to 3. This could be due to more profi-
cient readers reading more expressively by attend-
ing more closely to the rhetorical and prosodic
clues that impact the reading rate. Lower profi-
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ciency readers are likely to be focused more on
reading words, while better readers also attend to
other structures in the text. Indeed, Schwanen-
flugel et al. (2015) found that more fluent readers
communicate linguistic focus while reading aloud
by prosodically marking direct quotes, exclama-
tions, and contrastive words. This direction re-
quires further exploration; if the finding is repli-
cated with a larger sample of readers with more
variation in reading proficiencies, it would suggest
that the extent of adjustment for text effects needs
to be moderated by the reader’s baseline reading
rate.

6 Conclusion

In this paper we discussed the challenges of
continuous fluency tracking within an assisted-
reading intervention where a child reads a long
novel rather than a set of grade-controlled pas-
sages. We showed that there is substantial vari-
ation in passage difficulty across a single book
as estimated by a state-of-the-art measure of text
complexity for comprehension and a consistent
variation in reading rates between passages. Con-
tinuous fluency tracking needs to account for this
variability. The results of our small preliminary
study suggest not only that a state-of-the-art mea-
sure of comprehension complexity does not pre-
dict reading rates well, but in fact substantial vari-
ation in reading rates may be unrelated to com-
prehension complexity of the text. Additional re-
search needs to be done to further explore these
relationships.
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Abstract

We investigate the utility of different aux-
iliary objectives and training strategies
within a neural sequence labeling ap-
proach to error detection in learner writ-
ing. Auxiliary costs provide the model
with additional linguistic information, al-
lowing it to learn general-purpose com-
positional features that can then be ex-
ploited for other objectives. Our experi-
ments show that a joint learning approach
trained with parallel labels on in-domain
data improves performance over the pre-
vious best error detection system. While
the resulting model has the same number
of parameters, the additional objectives al-
low it to be optimised more efficiently and
achieve better performance.

1 Introduction

Automatic error detection systems for learner
writing need to identify various types of error
in text, ranging from incorrect uses of function
words, such articles and prepositions, to seman-
tic anomalies in content words, such as adjective–
noun combinations. To tackle the scarcity of error-
annotated training data, previous work has inves-
tigated the utility of automatically generated un-
grammatical data (Foster and Andersen, 2009; Fe-
lice and Yuan, 2014), as well as explored learning
from native well-formed data (Rozovskaya and
Roth, 2016; Gamon, 2010).

In this work, we investigate the utility of sup-
plementing error detection frameworks with addi-
tional linguistic information that can be extracted
from the available error-annotated learner data.
We construct a neural sequence labeling system
for error detection that allows us to learn better
representations of language composition and de-

tect errors in context more accurately. In addition
to predicting the binary error labels, we experi-
ment with also predicting additional information
for each token, including token frequency and the
specific error type, which can be extracted from
the existing data, as well as part-of-speech (POS)
tags and dependency relations, which can be gen-
erated automatically using readily available toolk-
its.

These auxiliary objectives provide the sequence
labeling model with additional linguistic informa-
tion, allowing it to learn useful compositional fea-
tures that can then be exploited for error detec-
tion. This can be seen as a type of multi-task
learning, where the model learns better composi-
tional features via shared representations with re-
lated tasks. While common approaches to multi-
task learning require randomly switching between
different tasks and datasets, we demonstrate that a
joint learning approach trained on in-domain data
with parallel labels substantially improves error
detection performance on two different datasets.
In addition, the auxiliary labels are only required
during the training process, resulting in a better
model with the same number of parameters.

In the following sections, we describe our ap-
proach to the task, systematically compare the in-
formativeness of various auxiliary loss functions,
investigate alternative training strategies, and ex-
amine the effect of additional training data.

2 Error Detection Model

In addition to the scarcity of errors in the train-
ing data (i.e., the majority of tokens are correct),
recent research has highlighted the variability in
manual correction of writing errors: re-annotation
of the CoNLL 2014 shared task test set by 10
annotators demonstrated that even humans have
great difficulty in agreeing how to correct writ-
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ing errors (Bryant and Ng, 2015). Given the chal-
lenges of the all-errors correction task, previous
research has demonstrated that detection models
can detect more errors than systems focusing on
correction (Rei and Yannakoudakis, 2016), and
therefore provide more extensive feedback to the
learner.

Following Rei and Yannakoudakis (2016), we
treat error detection as a sequence labeling task –
each token in the input sentence is assigned a label,
indicating whether it is correct or incorrect given
the current context – and construct a bidirectional
recurrent neural network for detecting writing er-
rors. The model is given a sequence of tokens as
input, which are then mapped to a sequence of dis-
tributed word embeddings [x1, ..., xT ]. These em-
beddings are then given as input to a bidirectional
LSTM (Hochreiter and Schmidhuber, 1997) mov-
ing through the sentence in both directions. At
each step, the LSTM calculates a new hidden rep-
resentation based on the current token embedding
and the hidden state from the previous step.

h
(f)
t = LSTM(xt, h

(f)
t−1) (1)

h
(b)
t = LSTM(xt, h

(b)
t+1) (2)

Next, the network includes a tanh-activated
feedforward layer, using the hidden states from
both LSTMs as input, allowing the model to learn
more complex higher-level features. By combin-
ing the hidden states from both directions, we are
able to have a vector that represents a specific to-
ken but also takes into account context on both
sides:

dt = tanh(Wfh
(f)
t +Wbh

(b)
t ) (3)

where Wf and Wb are fully-connected weight ma-
trices.

The final layer calculates label predictions
based on the layer dt. The softmax activation func-
tion is used to output a normalised probability dis-
tribution over all the possible labels for each to-
ken:

yt = softmax(Wydt) (4)

where Wy is a weight matrix and yt is a vector
with a position for each possible label. In order
to find the predicted label, we return the element
with the highest predicted value.

The model is optimised using cross entropy,
which is equivalent to optimising the negative log-
likelihood of the correct labels:

E = −
∑

t

∑
k

ỹt,k log(yt,k) (5)

where yt,k is the predicted probability of token t
having label k, and ỹt,k has the value 1 if the cor-
rect label for token t is k, and the value 0 other-
wise.

We also make use of the character-level exten-
sion described by Rei et al. (2016). Each token is
separated into individual characters and mapped
to character embeddings. Using a bidirectional
LSTM and a hidden feedforward component, the
character vectors are composed into a character-
based token representation. Finally, a dynamic
gating function is used to combine this represen-
tation with a regular token embedding, taking ad-
vantage of both approaches. This component al-
lows the model to capture useful morphological
and character-based patterns, in addition to learn-
ing individual token-level vectors of common to-
kens.

3 Auxiliary Loss Functions

The model in Section 2 learns to assign error labels
to tokens based on the manual annotation available
in the training data. However, there are nearly lim-
itless ways of making writing errors and learning
them all explicitly from hand-annotated examples
is not feasible. In addition, writing errors can be
very sparse, leaving the system with very little use-
ful training data for learning error patterns. In or-
der to train models that generalise well with lim-
ited training examples, we would want to encour-
age them to learn more generic patterns of lan-
guage, grammar, syntax and composition, which
can then be exploited for error detection.

Multi-task learning allows models to learn from
multiple objectives via shared representations, us-
ing information from related tasks to boost per-
formance on tasks for which there is limited tar-
get data. For example, Plank et al. (2016) ex-
plored the option of using word frequency as an
auxiliary loss function for part-of-speech (POS)
tagging. Rei (2017) describe a semi-supervised
framework for multi-task learning, integrating lan-
guage modeling as an additional objective. Fol-
lowing this work, we adapt auxiliary objectives
for the task of error detection, and further experi-
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words My husband was following a course all the week in Berne .
target c c c i c c c i c c c c

freq 5 3 8 4 8 5 7 9 5 8 0 10
lang fr fr fr fr fr fr fr fr fr fr fr fr

error c c c RV c c c UD c c c c
POS APP$ NN1 VBDZ VVG AT1 NN1 DB AT NNT1 II NP1 .
GR det ncsubj aux null det dobj ncmod det ncmod ncmod dobj null

Table 1: Alternative labels for an example sentence from the FCE training data.

ment with a larger set of possible objectives. In-
stead of only predicting the correctness of each
token in context, we extend the system to predict
additional information and labels for every token.
The information from these auxiliary objectives
is propagated into the weights of the model dur-
ing training, without requiring the extra labels at
testing time. While common neural approaches to
multi-task learning switch randomly between dif-
ferent tasks and datasets, we use a joint learning
approach trained on in-domain data only.

The lower parts of the model function similarly
to the system described in Section 2. Token repre-
sentations are first passed through a bidirectional
LSTM in order to build context-specific represen-
tations. After that, each separate objective is as-
signed an individual hidden layer:

d
(n)
t = W

(n)
f h

(f)
t +W

(n)
b h

(b)
t (6)

where W (n)
f and W

(n)
b are weight matrices spe-

cific to the n-th task. While the recurrent compo-
nents are shared between all objectives, the hid-
den layers allow parts of the model to be cus-
tomised for a specific task, learning higher-level
features and controlling how the information from
forward- and backward-moving LSTMs is com-
bined.

Next, a task-specific output distribution is cal-
culated based on d(n)

t :

y
(n)
t = softmax(W (n)

y d
(n)
t ) (7)

whereW (n)
y is a weight matrix and y(n)

t has the di-
mensionality of the total number of labels for the
n-th task. Figure 1 presents a diagram of the net-
work with n = 2, although the number of possible
auxiliary tasks can also be larger.

The whole model is optimised by minimising
the cross-entropy for every task and every token:

E = −
∑

t

∑
n

∑
k

αn · ỹ(n)
t,k · log(y(n)

t,k ) (8)

Figure 1: The bidirectional recurrent architecture
for one time-step, using one main objective and
one auxiliary objective.

where y(n)
t,k is the predicted probability of the t-th

token having label k for the n-th task; ỹ(n)
t,k has

value 1 only if that label is correct, and 0 oth-
erwise; αn is the weight for task n. Since our
main goal is to develop more accurate error de-
tection models, αn allows us to control how much
the model depends on the n-th auxiliary task. For
example, setting the value of αn to 0.1 means any
updates for the n-th task will have 10 times less
importance. We tune a specific weight for each
task by trying values [0.05, 0.1, 0.2, 0.5, 1.0] and
choosing the ones that achieved the highest result
on the development data.

The main goal of our system is to classify to-
kens as being correct or incorrect, and this objec-
tive is included in all configurations. In addition,
we experiment with a number of auxiliary loss ob-
jectives that are only required during training:

• frequency: Plank et al. (2016) propose us-
ing word frequency as an additional objec-
tive for POS tagging, since words with cer-
tain POS tags can be more likely to belong to
specific frequency groups. The frequency of
a token w in the training corpus is discretized
as int(log(freqtrain(w)) and used as an auxil-
iary label.

• error type: While the task is defined as bi-
nary classification, available learner data also
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FCE DEV FCE TEST

predicted correct P R F0.5 predicted correct P R F0.5

R&Y (2016) - - 54.5 28.2 46.0 3898 1798 46.1 28.5 41.1

Main system 1837 1140 62.3 24.6 47.6 2653 1468 55.7 23.3 43.4
+ frequency 1870 1111 59.7 23.9 45.8 2702 1461 54.4 23.2 42.7
+ language 1929 1150 60.4 24.8 46.6 2690 1458 54.9 23.1 42.8
+ errors 1905 1206 63.3 26.0 49.2 2778 1584 57.0 25.1 45.5
+ POS 2199 1334 60.7 28.8 49.7 3322 1803 54.3 28.6 46.0
+ GR 1952 1207 62.1 26.0 48.4 2887 1654 57.9 26.2 46.4
+ err POS GR 2087 1320 63.2 28.4 50.8 3090 1781.0 57.7 28.3 47.7

Table 2: Error detection results on the FCE dataset using different auxiliary loss functions.

contains more fine-grained labels per error.
For example, the FCE (Yannakoudakis et al.,
2011) training set has 75 different labels for
individual error types, such as missing deter-
miners or incorrect verb forms. By giving the
model access to these labels, the system can
learn more fine-grained error patterns that are
based on the individual error types.

• first language: Previous work has experi-
mentally demonstrated that the distribution of
writing errors depends on the first language
(L1) of the learner (Rozovskaya and Roth,
2011; Chollampatt et al., 2016). We inves-
tigate the usefulness of L1 as an auxiliary ob-
jective during training.

• part-of-speech: POS tagging is a well-
established sequence labeling task, requiring
the model to disambiguate the word types
based on their contexts. We use the RASP
(Briscoe et al., 2006) parser to automatically
generate POS labels for the training data, and
include them as additional objectives.

• grammatical relations: We include as an
auxiliary objective the type of the Grammat-
ical Relation (GR) in which the current to-
ken is a dependent, in order to incentivise the
model to learn more about semantic composi-
tion. Again we use the RASP parser, which is
unlexicalised and therefore more suitable for
learner data where spelling and grammatical
errors are common.

Table 1 presents the labels for each of the auxil-
iary tasks for an example sentence from the FCE
training data.

The auxiliary objectives introduce additional
parameters into the model, in order to construct the

hidden and output layers. However, these compo-
nents are required only during the training process;
at testing time, these can be removed and the re-
sulting model has the same architecture and num-
ber of parameters as the baseline, with the only
difference being in how the parameters were opti-
mised.

4 Evaluation setup and datasets

Rei and Yannakoudakis (2016) investigate a num-
ber of compositional architectures for error detec-
tion, and present state-of-the-art results using a
bidirectional LSTM. We follow their experimen-
tal setup and investigate the impact of auxiliary
loss functions on the same datasets: the First Cer-
tificate in English (FCE) dataset (Yannakoudakis
et al., 2011) and the CoNLL-14 shared task test
set (Ng et al., 2014b).

FCE contains texts written by non-native learn-
ers of English in response to exam prompts elic-
iting free-text answers. The texts have been
manually annotated with error types and error
spans by professional examiners, which Rei and
Yannakoudakis (2016) convert to a binary cor-
rect/incorrect token-level labeling for error detec-
tion. For missing-word errors, the error label is
assigned to the next word in the sequence. The re-
leased version contains 28,731 sentences for train-
ing, 2,222 sentences for development and 2,720
sentences for testing. The development set was
randomly sampled from the training data, and the
test set contains texts from a different examination
year.

The CoNLL-14 test set contains 50 texts an-
notated by two experts. Compared to FCE, the
texts are more technical and are written by higher-
proficiency learners. In order to make our results
comparable to Rei and Yannakoudakis (2016), we
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CoNLL-14 TEST1 CoNLL-14 TEST2

predicted correct P R F0.5 correct P R F0.5

R&Y (2016) 4449 683 15.4 22.8 16.4 1052 23.6 25.1 23.9

Main system 3222 452 14.1 15.1 14.3 750 23.3 17.9 21.9
+ frequency 3428 484 14.1 16.2 14.5 790 23.1 18.8 22.0
+ language 3633 502 13.8 16.8 14.2 828 22.8 19.7 22.0
+ errors 3582 557 15.6 18.6 16.1 890 25.0 21.2 24.0
+ POS 3938 657 16.7 22.0 17.5 1045 26.5 24.9 26.2
+ GR 3945 593 15.0 19.8 15.7 912 23.2 21.7 22.8
+ err POS GR 3722 621 16.7 20.8 17.4 979 26.3 23.3 25.6

Table 3: Error detection results on the CoNLL-14 test set using different auxiliary loss functions.

also evaluate our models on the two CoNLL-
14 test annotations and train our models only
on the public FCE dataset. This corresponds to
their FCE-public model that treats the CoNLL-14
dataset as an out-of-domain test set corpus.

Following the CoNLL-14 shared task, we also
report F0.5 as the main evaluation metric. How-
ever, while the shared task focused on correction
and calculated F0.5 over error spans using multi-
ple annotations, we evaluate token-level error de-
tection performance. Following recommendations
by Chodorow et al. (2012), we also report the raw
counts for predicted and correct tokens.

For pre-processing, all the texts are lowercased
and digits are replaced with zeros for the token-
level representations, although the character-based
component has access to the original version of
each token. Tokens that occur only once are
mapped to a single OOV token, which is then used
to represent previously unseen tokens during test-
ing. The word embeddings have size 300 and
are initialised with publicly available word2vec
(Mikolov et al., 2013) embeddings trained on
Google News. The LSTM hidden layers have
size 200 and the task-specific hidden layers have
size 50 with tanh activation. The model is opti-
mised using Adadelta (Zeiler, 2012) and training
is stopped based on the error detection F0.5 score
on the development set. We implement the pro-
posed framework using Theano and make the code
publicly available online.1

5 Results

Table 2 presents the results for different sys-
tem configurations trained and tested on the FCE
dataset. The first row contains results from the
current state-of-the-art system by Rei and Yan-

1http://www.marekrei.com/projects/seqlabaux

nakoudakis (2016), trained on the same FCE
data. The main system in our experiments is the
bi-directional LSTM error detection model with
character-based representations, as described in
Section 2. We then use this model and test the ef-
fect on performance when adding each of the aux-
iliary loss functions described in Section 3 to the
training objective.

The auxiliary frequency loss improves perfor-
mance for POS tagging (Plank et al., 2016); how-
ever in error detection the same objective does not
help. While certain POS tags are more likely to be-
long to specific frequency classes, there is less rea-
son to believe that word frequency provides a use-
ful cue for error detection. A similar drop in per-
formance is observed for the auxiliary loss involv-
ing the first language of the learner. It is likely that
the system learns specific types of features for the
L1 identification auxiliary task (such as the pres-
ence of certain words or phrases), and these are
not directly useful for error detection. Investigat-
ing different architectures for incorporating the L1
as an auxiliary task is an avenue for future work.

The integration of fine-grained error types
through an auxiliary loss function gives an abso-
lute improvement of 2.1% on the FCE test set.
While the baseline only differentiates between
correct and incorrect tokens, the auxiliary loss al-
lows the system to learn feature detectors that are
specialised for individual error types, thereby also
making these features available to the binary error
detection component.

The inclusion of POS tags and GRs gives con-
sistent improvements over the basic configura-
tion. Both of these tasks require the system to
understand how each token behaves in the sen-
tence, thereby encouraging it to learn higher-
quality compositional representations. If the ar-
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FCE CoNLL-14 CoNLL-14

Aux dataset TEST TEST1 TEST2

None 43.4 14.3 21.9
CoNLL-00 42.5 15.4 22.3
CoNLL-03 39.4 12.5 20.0
PTB-POS 44.4 14.1 20.7

Table 4: Results on error detection when the
model is pre-trained on different tasks.

chitecture is able to predict the POS tags or GR
type based on context, then it can use the same
features to identify irregular sequences for error
detection. The added advantage of these loss func-
tions over the L1 and the fine-grained error types
is that they can be automatically generated and re-
quire no additional manual annotation. As far as
we know, this is the first time automatically gen-
erated GR labels have been explored as objectives
in a multi-task sequence labeling setting.

Finally, we evaluate a combination system, inte-
grating the auxiliary loss functions that performed
the best on the development set. The combina-
tion architecture includes four different loss func-
tions: the main binary incorrect/correct label, the
fine-grained error type, the POS tag and the GR
type. We left out frequency and L1, as these low-
ered performance on the development set. The
resulting system achieves 47.7% F0.5, which is
a 4.3% absolute improvement over the baseline
without auxiliary loss functions, and a 6.6% abso-
lute improvement over the current state-of-the-art
error detection system by Rei and Yannakoudakis
(2016), trained on the same FCE dataset.

Table 3 contains the same set of evaluations on
the two CoNLL-14 shared task annotations. Word
frequency and L1 have nearly no effect, whereas
the fine-grained error labels lead to roughly 2%
absolute improvement over the basic system. The
inclusion of POS tags in the auxiliary objective
consistently leads to the highest F0.5. While GRs
also improve performance over the main system,
their overall contribution is less compared to the
FCE test set, which can be explained by the differ-
ent writing style in the CoNLL data.

6 Alternative Training Strategies

In contrast to our approach, most previous work on
multi-task learning has focused on optimising the
same system on multiple datasets, each annotated
with one specific type of labels. To evaluate the

FCE CoNLL-14 CoNLL-14

Aux dataset TEST TEST1 TEST2

None 43.4 14.3 21.9
CoNLL-00 30.3 13.0 17.6
CoNLL-03 31.0 13.1 18.2
PTB-POS 31.9 11.5 14.9

Table 5: Results on error detection when training
is alternated between the two tasks (e.g., error de-
tection and POS tagging) and datasets.

effectiveness of our approach, we implement two
alternative multi-task learning strategies for error
detection. For these experiments, we make use of
three established sequence labeling datasets that
have been manually annotated for different tasks:

• The CoNLL 2000 dataset (Tjong Kim Sang
and Buchholz, 2000) for chunking, contain-
ing sections of the Wall Street Journal and
annotated with 22 different labels.

• The CoNLL 2003 corpus (Tjong Kim Sang
and De Meulder, 2003) contains texts from
the Reuters Corpus and has been annotated
with 8 labels for named entity recognition
(NER).

• The Penn Treebank (PTB) POS corpus (Mar-
cus et al., 1993) contains texts from the Wall
Street Journal and has been annotated with 48
POS tags.

The CoNLL-00 dataset was identified by Bingel
and Søgaard (2017) as being the most useful ad-
ditional training resource in a multi-task setting;
The CoNLL-03 NER dataset has a similar label
density as the error detection task; and the PTB
corpus was chosen as POS tags gave consistently
good performance for error detection on both the
development and test sets, as demonstrated in the
previous section.

In the first setting, each of these datasets is used
to train a sequence labeling model for their re-
spective tasks, and the resulting model is used to
initialise a network for training an error detection
system. While it is common to preload word em-
beddings from a different model, this strategy ex-
tends the idea to the compositional components
of the network. Results in Table 4 show the per-
formance of the error detection model with and
without pre-training. There is a slight improve-
ment when pre-training the model on the CoNLL-
00 dataset, but the increase is considerably smaller
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compared to the results in Section 5. One of the
main advantages of multi-task learning is regular-
isation, actively encouraging the model to learn
more general-purpose features, something which
is not exploited in this setting since the training
happens in separate stages.

In the second set of experiments, we explore the
possibility of training on the second domain and
task at the same time as error detection. Similar to
Collobert and Weston (2008), we randomly sam-
ple a sentence from one of the datasets and update
the model parameters for that specific task. By al-
ternating between the two tasks, the model is able
to retain the regularisation benefits. However, as
shown in Table 5, this type of training does not im-
prove error detection performance. One possible
explanation is that the domain and writing style of
these auxiliary datasets is very different from the
learner writing corpus, and the model ends up op-
timising in an unnecessary direction. By includ-
ing alternative labels on the same dataset, as in
Section 5, the model is able to extract more in-
formation from the domain-relevant training data
and thereby achieve better results.

7 Additional Training Data

The main benefits of multi-task learning are ex-
pected in scenarios where the available task-
specific training data is limited. However, we
also investigate the effect of auxiliary objectives
when training on a substantially larger training
set. More specifically, we follow Rei and Yan-
nakoudakis (2016), who also experimented with
augmenting the publicly available datasets with
training data from a large proprietary corpus. In
total, we train this large model on 17.8M to-
kens from the Cambridge Learner Corpus (CLC,
Nicholls 2003), the NUS Corpus of Learner En-
glish (NUCLE, Dahlmeier et al. 2013), and the
Lang-8 corpus (Mizumoto et al., 2011).

We use the same model architecture as Rei and
Yannakoudakis (2016), adding only the auxiliary
objective of predicting the automatically gener-
ated POS tag, which was the most successful ad-
ditional objective based on the development ex-
periments. Table 6 contains results for evaluating
this model, when trained on the large training set.
On the FCE test data, the auxiliary objective does
not provide an improvement and the model per-
formance is comparable to the results by Rei and
Yannakoudakis (2016) (R&Y). Since most of the

R&Y F0.5 P R F0.5

FCE DEV 60.7 75.1 35.1 61.2
FCE TEST 64.3 78.4 37.0 64.1
CoNLL TEST1 34.3 44.7 20.5 36.1
CoNLL TEST2 44.0 63.8 20.8 45.1

Table 6: Error detection results using auxiliary ob-
jectives, trained on additional data.

large training set comes from the CLC, which is
quite similar to the FCE dataset, it is likely that the
available training data is sufficient and the auxil-
iary objective does not offer an additional benefit.
However, there are considerable improvements on
the CoNLL test sets, with 1.8% and 1.1% absolute
improvements on the corresponding benchmarks.
Only small amounts of the training data are simi-
lar to the CoNLL dataset, and including the aux-
iliary objective has provided a more robust model
that delivers better performance on different writ-
ing styles.

8 Previous Work

Error detection: Early error detection systems
were based on manually constructed error gram-
mars and mal-rules (e.g., Foster and Vogel 2004).
More recent approaches have exploited error-
annotated learner corpora and primarily treated the
task as a classification problem over vectors of
contextual, lexical and syntactic features extracted
from a fixed window around the target token. Most
work has focused on error-type specific detec-
tion models, and in particular on models detecting
preposition and article errors, which are among the
most frequent ones in non-native English learner
writing (Chodorow et al., 2007; De Felice and Pul-
man, 2008; Han et al., 2010; Tetreault et al., 2010;
Han et al., 2006; Tetreault and Chodorow, 2008;
Gamon et al., 2008; Gamon, 2010; Kochmar and
Briscoe, 2014; Leacock et al., 2014). Maximum
entropy models along with rule-based filters ac-
count for a substantial proportion of utilized tech-
niques. Error detection models have also been an
integral component of essay scoring systems and
writing instruction tools (Burstein et al., 2004; An-
dersen et al., 2013; Attali and Burstein, 2006).

The Helping Our Own (HOO) 2011 shared task
on error detection and correction focused on a
set of different errors (Dale and Kilgarriff, 2011),
though most systems were type specific and tar-
geted closed-class errors. In the following year,
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the HOO 2012 shared task only focused on cor-
recting preposition and determiner errors (Dale
et al., 2012). The recent CoNLL shared tasks
(Ng et al., 2013, 2014a) focused on error cor-
rection rather than detection: CoNLL-13 targeted
correcting noun number, verb form and subject-
verb agreement errors, in addition to preposition
and determiner errors made by non-native learners
of English, whereas CoNLL-14 expanded to cor-
rection of all errors regardless of type. Core com-
ponents of the top two systems across the CoNLL
correction shared tasks include Average Percep-
trons, L1 error correction priors in Naive Bayes
models, and joint inference capturing interactions
between errors (e.g., noun number and verb agree-
ment errors) (Rozovskaya et al., 2014), as well as
phrase-based statistical machine translation, under
the hypothesis that incorrect source sentences can
be “translated” to correct target sentences (Felice
et al., 2014; Grundkiewicz, 2014).

The work that is most closely related to our own
is the one by Rei and Yannakoudakis (2016), who
investigate a number of compositional architec-
tures for error detection, and propose a framework
based on bidirectional LSTMs. In this work, we
used their system architecture as a baseline, com-
pared our model to their results in Sections 5 and
7, and showed that multi-task learning can further
improve performance and allow the model to gen-
eralise better.

Multi-task learning: Multi-task learning was first
proposed by Caruana (1998) and has since been
applied to many language processing tasks and
neural network architectures. For example, Col-
lobert and Weston (2008) constructed a convolu-
tional architecture that shared some weights be-
tween tasks such as POS tagging, NER and chunk-
ing. Whereas their model only shared word em-
beddings, our approach focuses on learning better
compositional features through a shared bidirec-
tional LSTM.

Luong et al. (2016) explored a multi-task archi-
tecture for sequence-to-sequence learning where
encoders and decoders in different languages are
trained jointly using the same semantic represen-
tation space. Klerke et al. (2016) used eye tracking
measurements as a secondary task in order to im-
prove a model for sentence compression. Bingel
and Søgaard (2017) explored beneficial task rela-
tionships for training multitask models on differ-
ent datasets. All of these architectures are trained

by randomly switching between different tasks
and updating parameters based on the correspond-
ing dataset. In contrast, we treat alternative tasks
as auxiliary objectives on the same dataset, which
is beneficial for error detection (Section 6).

There has been some research on using aux-
iliary training objectives in the context of other
tasks. Cheng et al. (2015) described a system
for detecting out-of-vocabulary names by also pre-
dicting the next word in the sequence. Plank et al.
(2016) predicted the frequency of each word to-
gether with the POS, and showed that this can im-
prove tagging accuracy on low-frequency words.
However, we are the first to explore the auxiliary
objectives described in Section 3 in the context of
error detection.

9 Conclusion

We have described a method for integrating aux-
iliary loss functions with a neural sequence label-
ing framework, in order to improve error detec-
tion in learner writing. While predicting binary
error labels, the model also learns to predict addi-
tional linguistic information for each token, allow-
ing it to discover compositional features that can
be exploited for error detection. We performed
a systematic comparison of possible auxiliary la-
bels, which are either available in existing annota-
tions or can be generated automatically. Our ex-
periments showed that POS tags, grammatical re-
lations and error types gave the largest benefit for
error detection, and combining them together im-
proved the results further.

We compared this training method to two other
multi-task approaches: learning sequence labeling
models on related tasks and using them to initialise
the error detection model; and training on multiple
tasks and datasets by randomly switching between
them. Both of these methods were outperformed
by our proposed approach using auxiliary labels
on the same dataset – the latter has the benefit of
regularising the model with a different task, while
also keeping the training data in-domain.

While the main benefits of multi-task learning
are expected in scenarios where the available task-
specific training data is limited, we found that er-
ror detection benefits from additional labels even
with large training sets. Successful error detection
systems have to learn about language composition,
and introducing an additional objective encour-
ages the model to train more general composition
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functions and better word representations. The
error detection model, which also learns to pre-
dict automatically generated POS tags, achieved
improved performance on both CoNLL-14 bench-
marks. A useful direction for future work would
be to investigate dynamic weighting strategies for
auxiliary objectives that allow the network to ini-
tially benefit from various available labels, and
then specialise to performing the main task.
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Abstract

The use of linked data within language-
learning applications is an open research
question. A research prototype is presen-
ted that applies linked-data principles to
store linguistic annotation generated from
language-learning content using a vari-
ety of NLP tools. The result is a data-
base that links learning content, linguist-
ic annotation and open-source resources,
on top of which a diverse range of tools
for language-learning applications can be
built.

1 Introduction

Since Berners-Lee (2001) presented his vision of a
Semantic Web at the turn of the century, there has
been an explosion of technologies and tools made
available to implement it1. The core idea of the Se-
mantic Web is linked data, where data forms a gi-
ant graph spread across the internet, known as the
Giant Global Graph or Web 3.0. In Berners-Lee’s
original vision, this linked data should be open
source and the resulting graph is freely available
over the internet. Of course, the same principles
and technologies can be applied to create a private
graph database used for commercial purposes, for
applications like a social network or knowledge
base.

Use of linked data in linguistics in general is a
burgeoning research topic (Section 2). In this pa-
per, linked-data technology is applied in the con-
text of a language-learning application, in order
to create a prototype database of linguistic an-
notation for learning content (Section 3). The
database further links learning content and lin-
guistic annotation with resources from the Lin-
guistic Linked Open Data (LLOD) cloud and other

1https://www.w3.org/standards/semanticweb/

open-source linguistic resources. The resulting
database is flexible enough to allow a variety of
useful applications for the language learner to be
built on top of it.

Although NLP tools for creating linguistic an-
notation on the fly are becoming more and more
accurate2 and are adequate for many purposes,
this prototype tests storage of linguistic annotation
with the future aim of storing high-quality, curated
linguistic annotation. This linguistic annotation,
to be derived from a combination of various NLP
tools and human expertise, could then be updated
or expanded as new technology becomes avail-
able. The result would be a database of linguistic
annotation that is more accurate than the output of
any single tool and can be used for a variety of pur-
poses related to language-learning applications.

There are already a number of approaches avail-
able for automatically generating exercises for lan-
guage learning, such as using Google n-grams
(Hill and Simha, 2016) or a mix of techniques in-
cluding crowdsourcing, measuring WordNet dis-
tance, and machine learning (Kumar et al., 2015).
Although it is the focus of the evaluation of the
prototype (Section 4), automatic generation of ex-
ercises is only one possible use of the database
discussed here. Linking between learning content,
linguistic annotation and the LLOD cloud creates
a resource that can be used for a variety of pur-
poses, for example assessing the number of lem-
mas seen in exercises completed by a user up to
a certain point in time, or showing the user gram-
matical information for a particular exercise.

2The state of the art in automatic syntax parsing reports
models with an upper limit of around to 95% accuracy for
certain types of input (Andor et al., 2016). For part-of-speech
tagging, the state of the art is around 97%, depending on the
type of input. Accuracy rates can be much lower for low-
frequency tokens, out-of-context text, and data that differs
significantly from the training set.
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2 Linked Data in Linguistics

Recently, applications of linked-data technology
in the field of linguistics in general have been
gaining in popularity, as witnessed by the large
amount of resources in the LLOD cloud (Section
2.1) and the growing number of linguistic onto-
logies (Section 2.2). In addition to being able to
link to the LLOD cloud, Semantic Web has the ad-
vantage of a native graph-based data model (Sec-
tion 2.3), namely the Resource Description Frame-
work3 (RDF).

The use of linked-data technology in applic-
ations for language learning has, however, been
limited, meaning that the potential of the LLOD
cloud has yet be fully exploited in this area. A
notable exception is El Maarouf et al. (2015), who
created a multilingual network of linguistic re-
sources by using sense linking to bridge the lan-
guage gap with the goal of facilitating the creation
of language-learning content.

2.1 LLOD

The LLOD cloud diagram4 (McCrae et al., 2016;
Chiarcos et al., 2012) shows that there is already
a wealth of free and open-source linguistic linked
data available to use. Major resources are each
represented by a single node in the LLOD cloud
diagram. These include DBpedia (Mendes et al.,
2012), consisting of structured information extrac-
ted from Wikipedia; WordNet RDF (McCrae et al.,
2014), an RDF translation of Princeton’s WordNet
lexical database project; and DBnary (Sérasset,
2015), derived from Wiktionary.

2.2 Ontologies

An ontology is a document that specifies the struc-
ture of a system through entities and relations
(Guarino et al., 2009). Complex abstract mod-
els can be specified precisely via ontologies in
the Web Ontology Language5 (OWL). A variety
of ontologies have been proposed to describe the
components of language analysis, each developed
with a different purpose in mind.

ISOcat (Windhouwer and Wright, 2012) and
GOLD (Farrar and Langendoen, 2003) were cre-
ated with the aim of covering a large range
of linguistic terminological categories. Ontolo-
gies of Linguistic Annotation (OLiA), an inter-

3https://www.w3.org/RDF/
4http://linguistic-lod.org/llod-cloud
5https://www.w3.org/OWL/

mediate level of representation between ISOcat
and GOLD, addresses conceptual interoperability
(Chiarcos, 2012; Chiarcos and Sukhareva, 2015).

POWLA (Chiarcos, 2012) represents any kind
of linguistic annotation in a theory independent
way. It is an adaptation of the PAULA XML ex-
change format (Zeldes et al., 2013).

Lemon (McCrae et al., 2012) is an ontology for
exchanging lexical information on the Semantic
Web. It is used, for example, in the DBnary pro-
ject (Sérasset, 2015) and WordNet RDF (McCrae
et al., 2014).

2.3 Linguistic Annotation as a Graph

Representing linguistic annotation as a graph has
the advantage of avoiding undue influence from
the data serialization format (e.g. XML) or the
database type (e.g. relational). For example,
Zipser (2009) describes how, when a format
for exchanging linguistic annotation is specified
without an abstract model being explicitly spe-
cified, it can lead to the format’s implicit abstract
model being influenced or limited by the data
serialization format used. An example would be
XML-based formats being influenced by the tree-
based structure of XML to the extent that the im-
plicit abstract model of the linguistic annotation
format becomes tree based.

Semantic Web technology largely allows this
problem to be avoided. RDF-based linguistic ex-
change formats are inherently graph based, so are
only limited in structure to the extent that a la-
belled, directed multigraph is limited. Further,
OWL is designed specifically for ontology spe-
cification, and allows complex models to be spe-
cified in a precise way. Although, of course,
the XML syntax for RDF (Gandon and Schreiber,
2014) shows that a graph may be specified in the
XML format, so the pitfall of influence from the
data serialization format can also be avoided with
clear specification of the abstract model independ-
ent of the data serialization format, e.g. in the Uni-
fied Modeling Language (UML).

The graph-based SALT model (Zipser and Ro-
mary, 2010) further shows that a graph structure
preserves the abstract model for a wide range of
linguistic annotation formats, including PAULA,
ELAN, ANNIS and more.

Chiarcos (2012) likewise argues that a repres-
entation of linguistic annotation as a labelled, dir-
ected graph represented in OWL and RDF can
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Resource Type

Stanford CoreNLP Language analysis
FreeLing Language analysis
WebLicht Annotation framework
WordNet RDF Lexical database
DBnary Lexical database
Specialist lexicon Lexical database
Lemon Ontology

Table 1: External Resources

solve interoperability issues and enables connec-
tion to the LLOD cloud.

Bird and Liberman (2001) also argued that it is
of greatest importance to have a well-defined com-
mon conceptual framework and that the standard-
ization of file formats is of secondary importance.
They present an annotation graph as a common
conceptual framework for a number of annotation
formats.

3 Design of the Database

The starting point for the database was Babbel’s
learning content (Section 3.1). Linguistic annota-
tion for the content was then created via NLP
pipelines (Section 3.2). The learning content
and its annotation was then converted to RDF
and linked with LLOD resources and other open-
source linguistic resources (Section 3.3). Table 1
summarizes the external dependencies.

3.1 Learning Content

Babbel is a language-learning application with
over 1 million active subscribers and has been
shown to be an effective way to learn a foreign
language (Vesselinov and Grego, 2016). The lan-
guage application is based on a large corpus of lan-
guage exercises created by a team of didactic ex-
perts. There are a range of types of exercises, test-
ing users’ reading, writing, listening and speaking
skills.

YAML files containing the exercises were used
as the starting point for the database. Additionally,
a variety of metadata for the learning content was
available in an XML format.

3.2 Linguistic Annotation

Linguistic annotation was derived from NLP
pipelines set up for each of the two learning lan-
guages, English and Spanish. These NLP pipe-

lexis:Token

lexis:hasNext

lexis:LanguageItem lexis:hasToken

Figure 1: Lexis Language Item and Token

lines used a combination of custom implement-
ations and open-source tools, including Stanford
CoreNLP (Manning et al., 2014) and FreeLing
(Padró and Stanilovsky, 2012). As the pipelines
are used for a variety of research purposes, the
resulting linguistic annotation was stored in Web-
Licht’s Text Corpus Format (TCF) (Heid et al.,
2010) in XML files, rather than directly in RDF.
The NLP pipeline produces the following lay-
ers: text, tokens, sentences, lemmas, part-of-
speech tags, morphological features, and depend-
ency parsing.

3.3 Linking the Data

The learning content and linguistic annotation
were converted to RDF (Section 3.3.1) and then
linked to existing LLOD resources (Section 3.3.2),
and other open-source linguistic resources conver-
ted to RDF (Section 3.3.2).

3.3.1 Linking Learning Content
Three ontologies were created with OWL to
model the learning content from the three differ-
ent sources: the Graph ontology for the XML
metadata files; the Lesson ontology for the learn-
ing content YAML files; and the Lexis6 ontology
for the TCF XML files. A Java program was then
created to convert the XML and YAML structures
to RDF triples.

The Graph ontology models a variety of
metadata, including the order of lessons within a
learning module. The Lesson ontology models in-
formation within a lesson, like the parts of the lan-
guage item that the user interacts with e.g. a gap
in a sentence that the user fills in. Given that the
learning content and metadata already had a well-
defined underlying structure, a parallel structure
was created in the Graph and Lesson ontologies.

The following OWL classes were defined
within the Lexis ontology: LanguageItem,
Token, Dependency, Feature and Sense.
Figures 1 to 5 show the main OWL object prop-
erty relations between the classes.

6From the Ancient Greek λέξης meaning ‘word’
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lexis:Token lexis:Dependencylexis:hasDependency
lexis:hasHead

Figure 2: Lexis Token and Dependency Relation

lexis:Token lexis:Featurelexis:hasFeature

Figure 3: Lexis Token and Feature

Figure 1 shows that a second language text frag-
ment, namely a LanguageItem, may have one
or more entities of type Token related to it by
the hasToken property. The hasNext prop-
erty points to the next ordered Token for the
LanguageItem. A number of OWL datatype
property relations are further defined for Token,
e.g. the text value of the token.

The property hasDependency (Figure 2)
connects a Token and a Dependency according
to the dependency relations specified by the Uni-
versal Dependencies project (Nivre, 2016). The
head of a dependency relation is another token, in-
dicated by the hasHead object property. Mor-
phological features of tokens, including part of
speech and grammatical gender, are assigned to
the Feature class, related to a token via the ob-
ject property hasFeature (Figure 3).

The Lexis ontology imports the Lemon onto-
logy (Section 2.2), which is used to connect word
senses of tokens to the corresponding WordNet
entries (Figures 4 and 5). The lemma of a token is
saved as a datatype property of the token’s sense.

For the Lexis ontology, in addition to Lemon, it
would have been possible to reuse other existing
ontologies designed for representing linguistic an-
notation, like POWLA, GOLD or OLiA (Section
2.2). For this initial research prototype, however,
the design decision was made to create a new, min-
imal ontology and the mapping of Lexis to other
ontologies is left for future research.

lexis:Token lexis:Senselexis:hasSense

Figure 4: Lexis Token and Sense

lexis:Sense wordnet-ontology:Synsetlemon:reference

Figure 5: Lexis Sense and Lemon Reference

3.3.2 Linking LLOD Resources
As mentioned above, the RDF version (McCrae
et al., 2014) of WordNet (Miller, 1995) was used,
connecting synsets to tokens via lexical sense
(Figure 5). As an expedient initial assignment, the
part of speech and lemma of a token were used to
search for the corresponding WordNet synset with
the highest frequency (tag count). Links to DBn-
ary (Sérasset, 2015) were created in a similar way.

3.3.3 Linking Other Linguistic Resources
The majority of open-source linguistic resources
are currently not available as five-star linked open
data according to Berners-Lee’s (2006) definition.
However, as long as the data is three star, then
it can generally be meaningfully converted into
linked data, usually with some manual work in-
volved to create a mapping. Three-star data is
available to use with an open licence; available as
structured, machine-readable data; and available
in a non-proprietary format (Berners-Lee, 2006).
Indeed this is the source of many of the LLOD re-
sources, like DBpedia, whose data were originally
available in some other format. For the current re-
search prototype, two main resources were conver-
ted to RDF, the Specialist lexicon7 and the FreeL-
ing Spanish dictionary8. These were then linked to
the learning content in a similar way to the LLOD
resources (Section 3.3.2).

The Specialist lexicon (Browne et al., 2000) is
a large English lexicon developed within the Uni-
fied Medical Language System by the US National
Library of Medicine (Bodenreider, 2004). The
XML version of the lexicon was imported using
the provided (but slightly adapted) XML format
specification. A custom ontology was created in
OWL that paralleled the underlying structure of
the dictionary entries. A Java program was then
written to convert the XML to RDF according to
the ontology. The ontology and Java program have
been made available as an open-source project9.

The FreeLing Spanish dictionary entry files
were converted into RDF triples according to the

7http://specialist.nlm.nih.gov/lexicon
8https://github.com/TALP-UPC/FreeLing
9https://github.com/babbel/specialist rdf
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Lemon ontology (McCrae et al., 2010).

3.4 Storing Linguistic Linked Data

With the recent rise in popularity of NoSQL data-
bases, there are now a number of databases spe-
cifically designed for storing linked data as RDF
triples, such as Ontotext’s GraphDB (based on
RDF4J, formerly Sesame) and Apache Jena Fu-
seki. The created and collected linguistic link-
ed data described in Section 3.3 was stored in
GraphDB.

4 Evaluation

A suite of example use cases were built on top of
the database, serving as experimental evaluation.
These use cases included a Spanish conjugation
exercise (Section 4.1) and an English syntax dis-
play (Section 4.2). Apart from unit testing to as-
sure the graph is produced as expected, the qual-
ity of the data produced was not evaluated. The
quality of the linguistic annotation depends on the
tools used to generate it, e.g. Stanford CoreNLP.
The evaluation of the quality of the sense linking
with WordNet and DBnary is left for further re-
search.

4.1 Spanish Conjugation

A learning exercise for verb conjugation in Span-
ish was built on top of the existing learning con-
tent in the database10. Learning content for Span-
ish was searched for sentences in the present tense
of the form subject–verb–direct object. Spanish
verbs in the present tense have a different form de-
pending on politeness (Helmbrecht, 2013) and the
person and number of the subject. The verb was
then replaced with its infinitive form and a drop-
down menu showing all present tense verb forms
for the same verb. The user is then asked to choose
the correct form of the verb. For example, “Este
piso tiene un jardı́n privado” becomes “Este piso
tener un jardı́n privado”, with a drop-down menu
for “tener” displaying all the present tense forms
of the verb. If the user selects the incorrect verb
form from the drop-down menu, a message is dis-
played and they may try again. If the user selects
the correct verb form from the drop-down menu,
the exercise is complete.

10The authors thank Raphaela Wrede, Pierpaolo Frasa,
Katharina Schoppa and Simon Kreiser for their help in testing
a prototype of this idea.

4.2 English Syntax

A further use case was built on top of the database
for selecting English language items containing
auxiliary verbs. The SPARQL request shown in
Listing 1 selects English language items that have
a dependency relation where one verb acts as an
auxiliary to another verb. This query returns URIs
for languages items such as “Which pants should
I buy?”, where ‘should’ is the auxiliary verb and
‘buy’ is the main verb. A further SPARQL query
retrieves the tokenization for this language item,
enabling the auxiliary verb and main verb to be
identified and highlighted for the user in the GUI.
Such a use case could be extended to any other
syntactic construction, so that the user could revise
the construction in question, e.g. by highlighting
the correct verb types.

Listing 1: SPARQL Query
1 PREFIX l e x i s : <h t t p : / / www. b a b b e l . com /

l e x i s #>
2 PREFIX l e s s o n : <h t t p : / / www. b a b b e l . com /

l e s s o n #>
3 SELECT DISTINCT ? s u b j e c t
4 WHERE {
5 ? s u b j e c t a l e x i s : LanguageI tem .
6 ? s u b j e c t l e s s o n : a l p h a 3 ‘ eng ’ .
7 ? s u b j e c t l e x i s : hasToken ? t o k e n .
8 ? t o k e n l e x i s : hasDependency ? dependency

.
9 ? dependency l e x i s : d e p e n d e n c y F u n c t i o n ‘

aux ’ .
10 ? dependency l e x i s : hasHead ? head .
11 ? head l e x i s : h a s F e a t u r e ? f e a t u r e .
12 ? f e a t u r e l e x i s : f e a t u r e V a l u e ? pos .
13 ? f e a t u r e l e x i s : f ea tu reName ‘ pos ’ .
14 FILTER r e g e x ( ? pos , ‘ ˆV’ )
15 } LIMIT 50

4.3 Performance

The technology for RDF triple stores is not as ma-
ture as for relational databases and this is reflected
in their performance as witnessed by the so-called
“RDF tax”, although recent work has been done
to improve this (Boncz et al., 2014). Performance
for this prototype was also affected by the quality
of the data contained in the database and the type
of query performed. When the linguistic annota-
tion saved in the database is clean and precise, the
SPARQL query can be simpler and get the desired
result faster.

The SPARQL query in Listing 1 sent via cURL
took 0.035 seconds on average when run 100 times
in a row on a MacBook Pro with 8GB RAM. The
database stops searching and replies as soon as it
has found 50 items that fulfill the request.
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The SPARQL query in Section 4.1, however,
took around seven seconds when executed in the
GraphDB SPARQL GUI. This is not unexpected
as the query searches through every single item in
the database. A large number of complicated con-
ditions were further required in the query, as the
NLP tool did not distinguish between certain types
of objects. For example, temporal phrases and dir-
ect objects were coded the same, so these had to
be manually added as conditions to the SPARQL
query, so as not to be included in the end result.

5 Conclusion and Further Work

The prototype database presented here combines
RDF resources created from Babbel’s learning
content with linguistic annotation and existing re-
sources from the LLOD cloud and elsewhere. The
concept of the database was validated by experi-
mental evaluation in the form of use cases built on
top of it (Section 4).

In the first prototype, the minimal Lexis on-
tology was designed to test the concept. In fu-
ture iterations, more work on this ontology could
take place, including identification of areas where
ontology design patterns (Blomqvist et al., 2016)
could be used; and mapping to existing ontolo-
gies for linguistic annotation (Section 2.2). Like-
wise, work on conceptual (semantic) interoperab-
ility could take place, using ISOcat categories or
similar, to enable use cases that incorporate lin-
guistic annotation across more than one language,
and to enable more use of external LLOD re-
sources.

Future iterations could also incorporate im-
proved word sense disambiguation techniques
based on supervised machine learning (Navigli,
2009). Alternatively, the availability of transla-
tions of the learning content into multiple lan-
guages could be exploited to infer the correct map-
ping (Tufiş et al., 2004).

As seen in Section 4.1, query performance time
suffers, when the query becomes too complex due
to errors in the linguistic annotation or under-
specification in annotation categories. Improving
the quality of the linguistic annotation, either by
swapping out a given NLP tool, or using a com-
bination of multiple NLP tools and manual review,
would further improve the efficiency and useful-
ness of the database. As the second-language
text fragments generally do not have any context,
manual review will likely always be necessary.

Future work could also be done on database per-
formance in general, for example by exploring the
use of the compact Header, Dictionary and Triples
structure for storing RDF (Fernández et al., 2010).
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In Eva Hajičová and Igor Boguslavsky, editors,
Grammar and Lexicon: Interactions and Interfaces.
Osaka, Japan, pages 38–40.
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Dan Tufiş, Radu Ion, and Nancy Ide. 2004. Fine-
grained word sense disambiguation based on par-
allel corpora, word alignment, word cluster-
ing and aligned wordnets. In COLING 2004:
Proceedings of the 20th International Conference
on Computational Linguistics. Geneva, Switzerland,
1192, pages 1312–1318.

Roumen Vesselinov and John Grego.
2016. The Babbel efficacy study.
http://press.babbel.com/en/releases/downloads/
Babbel-Efficacy-Study.pdf.

Menzo Windhouwer and Sue Ellen Wright. 2012.
Linking to linguistic data categories in ISOcat.
In Christian Chiarcos, Sebastian Nordhoff, and
Sebastian Hellmann, editors, Linked Data in
Linguistics, Springer-Verlag, Berlin, pages 99–107.

Amir Zeldes, Florian Zipser, and Arne Neumann. 2013.
PAULA XML documentation: Format version 1.1.
Technical report, University of Potsdam.

Florian Zipser. 2009. Entwicklung eines
Konverterframeworks für linguistisch annotierte
Daten auf Basis eines gemeinsamen (Meta-)modells.
Diplomarbeit, Humboldt-Universität zu Berlin.

Florian Zipser and Laurent Romary. 2010. A model
oriented approach to the mapping of annotation
formats using standards. In Language Resource and
Language Technology Standards State of the Art,
Emerging Needs, and Future Developments, LREC
2010. Valletta, Malta.

51



Proceedings of the 12th Workshop on Innovative Use of NLP for Building Educational Applications, pages 52–61
Copenhagen, Denmark, September 8, 2017. c©2017 Association for Computational Linguistics

Predicting Specificity in Classroom Discussion

Luca Lugini and Diane Litman
Computer Science Department & Learning Research and Development Center

University of Pittsburgh
Pittsburgh, PA 15260

{lucalugini,litman}@cs.pitt.edu

Abstract

High quality classroom discussion is im-
portant to student development, enhancing
abilities to express claims, reason about
other students’ claims, and retain informa-
tion for longer periods of time. Previous
small-scale studies have shown that one
indicator of classroom discussion quality
is specificity. In this paper we tackle the
problem of predicting specificity for class-
room discussions. We propose several
methods and feature sets capable of out-
performing the state of the art in specificity
prediction. Additionally, we provide a set
of meaningful, interpretable features that
can be used to analyze classroom discus-
sions at a pedagogical level.

1 Introduction

Classroom discussion plays an important role in
the learning process. It has been shown that rea-
soning, reading, and writing skills can be pos-
itively affected by high-quality student-centered
classroom discussion in the context of English
Language Arts (ELA) classrooms (Reznitskaya
and Gregory, 2013; Graham and Perin, 2007; Ap-
plebee et al., 2003). High quality discussions
encourage student-to-student talk, negotiation of
claims, supporting claims with evidence, and rea-
soning about those claims. Although the effective-
ness of particular kinds of claims, evidence and
reasoning can vary across disciplines, Chisholm
and Godley (2011) and Lee (2006) showed that
the specificity of these argument moves is related
to discussion quality. These findings are based on
a largely qualitative analysis of a single classroom
discussion that relied on the manual annotation of
specificity and discussion quality. The proposed
method in this paper will help address this limita-

tion by making the annotation of specificity auto-
matic.

Specificity is defined by the Oxford Dictionary
as “The quality of belonging or relating uniquely
to a particular subject” 1. Natural language pro-
cessing (NLP) techniques can be used to facilitate
the analysis of classroom discussion and of speci-
ficity. Chen et al. (2014) developed a tool for
teacher self-assessment of classroom discussion
through the analysis of the frequency of partici-
pation of students in the discussion, and teacher-
student turn patterns. Blanchard et al. (2016) de-
veloped a system for detecting teacher questions
from classroom discussion recordings. These
works, however, do not take into account the ac-
tual student discussion content. Speciteller (Li
and Nenkova, 2015) is a current state of the art
method for predicting sentence specificity. It was
developed by analyzing newspaper articles to dis-
tinguish between general and specific sentences.
Spoken and written language differ in grammat-
ical structure, contextual influence, and cognitive
process and skills (Chafe and Tannen, 1987; Biber,
1988). As such we believe that using Speciteller
as-is on classroom discussions will lead to sub-
optimal performance, which we can improve.

In this paper we propose a method to auto-
matically determine specificity of student turns
at talk in high school ELA classroom discus-
sions of texts. The contributions of this paper are
twofold. For the educational community this work
will enable the exploration of hypotheses concern-
ing specificity and discussion quality over large
datasets, spanning multiple classes and including a
large number of students, which would otherwise
require a prohibitive amount of work for manually
annotating data. Additionally, we develop a set of
pedagogically meaningful features which can be

1https://en.oxforddictionaries.com/definition/specificity
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used to understand important elements of highly
specific discussions. For the NLP community, we
make the following contributions: we experimen-
tally evaluate the performance of prior approaches
for predicting specificity in a new domain; we
compare between different feature sets and algo-
rithms; finally, we provide a model for predicting
specificity tailored to spoken dialogue and in an
educational context, which outperforms the cur-
rent state of the art.

2 Related Work

To the best of our knowledge, this is the first work
to analyze specificity of spoken dialogue, and
more precisely in classroom discussions. Louis
and Nenkova (2011) analyzed specificity in news
articles and their summarizations. Their proposed
method leverages a combination of lexical and
syntactic features and annotated data from the
Penn Discourse Treebank to train a logistic regres-
sion classifier. They used the trained model to
analyze differences in specificity between human-
written and automatically-generated summaries of
news articles. Li and Nenkova (2015) developed
Speciteller, a tool for predicting the specificity
score of sentences. Specificity was defined in re-
lation to the amount of details in a sentence. This
tool uses a set of shallow features (described in
Section 4.2) and two dense word vector represen-
tations to train two logistic regression models on
Wall Street Journal articles. Additionally, they
improved classification accuracy by using a semi-
supervised co-training method on over thirty thou-
sand sentences from the Associated Press, New
York Times, and Wall Street Journal. Finally, Li et
al. (2016) improved the annotation scheme used
in (Louis and Nenkova, 2011; Li and Nenkova,
2015) by considering contextual information, and
by using a scale from 0 to 6 rather than binary
specificity annotations. Our annotation scheme is
based on prior educational work in coding speci-
ficity (Chisholm and Godley, 2011), and our pre-
diction models will incorporate features used by
Speciteller.

Like other machine learning-based methods,
Speciteller is highly dependent on its training data.
Since our objective is to analyze classroom dis-
cussion, we also draw on work that has used Spe-
citeller to analyze data that is more similar to our
corpus. Swanson et al. (2015) analyzed online fo-
rum dialogues in the context of argument mining.

By performing feature selection they observed that
argument quality is highly correlated with speci-
ficity as measured by Speciteller across multiple
topics. We believe there might be a correlation be-
tween specificity and other features used in their
work (described in Section 4.3) to predict argu-
ment quality, therefore we used some of these fea-
tures in our approach.

3 Dataset Description

The dataset for this work consists of manually
transcribed text-based classroom discussions from
English Language Arts high school classes. Text-
based discussions are about a “text” (e.g., litera-
ture such as Macbeth and Memoir of a Geisha,
a news article, a speech, etc.) and can either be
mediated by a teacher or conducted exclusively
among students. The number of students per dis-
cussion ranges from 5 to 13 in our dataset.

Motivated by Chisholm and Godley’s (2011)
and Lee’s (2006) coding of classroom discussions,
a codebook for manually annotating student argu-
ment moves and specificity has been developed.
Each student turn at talk is labeled for: (i) speci-
ficity (low, medium, high); (ii) argument move
(claim, evidence, warrant). Specificity was labeled
at the level of argument move: each transcript was
preprocessed by one of the annotators and a deci-
sion was made on whether to segment each turn
at talk into multiple ones if the turn at talk could
potentially contain multiple argument move types.
The following aspects were considered when la-
beling specificity for a turn at talk:

1. it involves one character or scene;

2. it gives substantial qualifications or elabora-
tion;

3. it uses content-specific vocabulary;

4. it provides a chain of reasons.

If none of the four elements was present, or if the
turn at talk refers to all humans or the text in gen-
eral, the turn at talk is labeled as low specificity.
Medium specificity turns at talk contain one of the
four elements, while high specificity ones contain
at least two of the four elements.

Table 1 shows examples of specificity annota-
tion from one of the discussions in our dataset
about the book Death of a Salesman. The first
turn at talk in the table was labeled as low speci-
ficity because the claim made by the student was
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Turn at talk Specificity
It’s just kind of a maintaining personality low
Yeah because she just couldn’t- I mean, it’s not a fake personality, but it’s kind of
like superficial

med

At one point, I don’t even think she’s concerned that like with her sons as much as
she is with Willy, or you know, she’s just focusing most of her attention and comfort
on Willy and um, when Biff and Happy are there it makes him, like, [inaudible]. I
think she’s trying to like, you know, be the bridge between them and Willy.

high

Table 1: Examples of turns at talk for different specificity classes.

unsubstantiated. The student did not give a defini-
tion of what maintaining personality means in this
context, nor did they mention the reasons for mak-
ing such a claim. The second turn at talk in the
table, although not providing considerable elab-
oration, is clearly about one individual character
in the book. As such, it is classified as medium
specificity. The third turn at talk is classified as
high specificity because the statement is particular
to one or a few selected characters, and the student
shows a clear chain of reasoning.

The dataset spans 23 classroom discussions and
over 2000 turns at talk. Two pairs of annota-
tors coded specificity for 5 and 9 transcripts re-
spectively, while the remaining 9 transcripts were
single-coded. Inter-rater reliability on specificity
labels for the two annotator pairs as measured by
quadratic-weighted Cohen’s Kappa is 0.714 and
0.9, indicating substantial agreement and almost
perfect agreement, respectively.2 A gold standard
set of labels for each double-coded discussion was
obtained by resolving the disagreements between
the two annotators. Table 2 shows the distribution
of specificity classes in our dataset.

Turns at talk Specificity
Low Medium High

2057 730 974 353

Table 2: Dataset statistics.

4 Proposed Method

This section provides a description of Speciteller
(Li and Nenkova, 2015) and additional features
and models that we propose to predict specificity.

2Although argument move types are not used in our study,
Kappa for the two annotator pairs were 0.75 and 0.89.

4.1 Speciteller tool
The baseline for testing our hypotheses consists
of using Speciteller out of the box to predict the
specificity of each turn at talk. Speciteller accepts
a string as input and outputs a specificity score
in the range [0, 1], where 0 indicates general sen-
tences and 1 indicates specific sentences. Since
the unit of analysis for the current work is a turn at
talk, which may consist of multiple sentences, we
evaluated the performance of Speciteller in several
scenarios (e.g. sentence, turn at talk). We found
that the best results are obtained when using the
complete turn at talk as input to Speciteller. In or-
der to convert the numeric specificity score into a
specificity class (i.e. low, medium, or high) we
set two thresholds t1 and t2, then labeled turns at
talk with specificity score s ≤ t1 as low, those
with score t1 < s ≤ t2 as medium, and those
with score s > t2 as high. The optimal thresholds
were found by starting at 0 and iteratively increas-
ing them by 0.001 at each step, while saving the
best results. The values for the optimal thresholds
are: t1 = 0.02 and t2 = 0.78. It is important to
note that this represents the upper bound for Spe-
citeller’s performance. Finding the optimal thresh-
olds is not trivial and in practice it could be done
through cross-validation.

4.2 Speciteller feature set
The initial set of features we evaluated was that
used in Speciteller. We extracted features from
each turn at talk using the source code provided
by Speciteller3. In their proposed method, Li and
Nenkova extracted two categories of features, a
shallow feature set and a word embeddings set,
and used them for two separate classifiers. In this
work, we concatenate both shallow features and
word embeddings to form a single feature vector.
We will refer to these features as the Speciteller

3 https://www.cis.upenn.edu/ nlp/software/speciteller.html
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set. Shallow features for each sentence consist of:
number of connectives, sentence length (number
of words), number of numbers, number of capi-
tal letters, number of symbols (including punctua-
tion), average number of characters for the words
in the sentence, number of stopwords (normalized
by sentence length), number of strongly subjec-
tive and polar words (using the MPQA (Wilson
et al., 2009) and the General Inquirer (Stone and
Hunt, 1963) dictionaries), average word familiar-
ity and imageability (using the MRC Psycholin-
guistic Database (Wilson, 1988)), average, maxi-
mum, minimum inverse document frequency val-
ues. Word embeddings features consist of the av-
erage of 100-dimensional vectors for each word in
the sentence. The embeddings were provided by
Turian et al. (2010) and trained on a corpus con-
sisting of news articles.

4.3 Online dialogue features
While extracting arguments from online forum di-
alogues, Swanson at al. (2015) found that Spe-
citeller scores (as a measure of specificity) are
highly correlated with argument quality. In addi-
tion to Speciteller scores, their model used several
feature sets. While not explicitly stated by the au-
thors, we believe there might exist a correlation
between specificity and the other feature sets. We
will add the following sets of features to the fea-
tures already present in Speciteller.
Semantic features4 The number of pronouns
present in a given turn at talk. Descriptive statis-
tics for word lengths: minimum, maximum, av-
erage, and median length of the words in a turn
at talk. It is worth noting that the average word
length differs from the one implemented in Spe-
citeller as this feature keeps punctuation into ac-
count. Number of occurrences of words of length
1 to 20: one feature for each word length - words
longer than 20 characters will be counted in the
feature for length 20.
Lexical features N-gram language models are
often powerful features, but one drawback is their
dependence on specific domains. Since we plan
to build a model for predicting specificity which is
able to generalize to multiple topics, we did not
use the raw N-gram features. To alleviate this
problem, we used the term frequency - inverse
document frequency (tf-idf) feature for each uni-

4The name of the feature set in the original paper is
semantic-density features; we use semantic features for
brevity.

gram and bigram in the corpus with frequency of
at least 5. Descriptive statistics of lexical features
for each turn at talk, namely minimum, maximum,
and average, were also used.
Syntactic features To mitigate the data sparsity
that impacts word n-grams, and to get more gener-
alizable features, we extracted unigrams, bigrams,
and trigrams of Parts Of Speech (POS) tags, using
the Natural Language Toolkit (Bird et al., 2009).

4.4 Additional feature sets
In addition to the previous feature sets, we also
extracted the following feature sets which we be-
lieve are able to capture specificity with respect to
the educational domain of ELA text-based class-
room discussions.
Pronoun features Pronouns are grammatical
units that might help us gain useful information
about the focus of a turn at talk. For example,
if the pronoun “she” is present in a turn at talk,
the student might likely be referring to one spe-
cific character, which is one of the aspects con-
sidered when annotating specificity. Therefore we
extracted a set of the following pronoun features:
binary feature indicating presence/absence of pro-
nouns; total number of pronouns in the turn at
talk5; the numbers of first, second, and third per-
son pronouns; the number of singular and plural
pronouns; the number of pronouns for each of the
following categories: personal, possessive, reflex-
ive, reciprocal, relative, demonstrative, interroga-
tive, indefinite.
Named entities Named entities might give us a
sense of characters or places that students discuss,
with respect to specificity. For example, saying “I
did not like Biff” is more specific than saying “I
did not like one of the characters” as it points out
which of the characters a student might not like.
For this task we used the Stanford Named Entity
Recognizer (Finkel et al., 2005) (NER) with the
pre-trained 3 class model detecting location, per-
son and organization entities. We extracted the
following features: a binary feature indicating the
presence/absence of any named entity; a binary
feature indicating presence/absence of each of the
three named entity classes; the total number of
named entities; the total number of named entities
per class. We complemented the previous counts
by adding a normalized feature, with respect to the

5This feature differs from that described in section 4.3:
the feature from the online dialogue set only considers deictic
pronouns.
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length of the turn at talk, for each of them.
Book features Since our dataset consists of
text-based discussions, we might be able to lever-
age information about the texts (i.e. books) for
each discussion to understand how much each turn
at talk is related to the book or its characters. First,
a manually-created summary and a list of charac-
ters for each book were obtained from the web, us-
ing Wikipedia when possible or Sparknotes as an
alternative. Then, the following character-related
features were extracted from each turn at talk: a
binary feature indicating the presence/absence of
a character’s name; the number of characters men-
tioned; the number of characters mentioned nor-
malized by the length of the turn at talk. A charac-
ter was counted by matching each word in the turn
at talk to their first name, last name, or their nick-
name. Additionally the following summary re-
lated features were extracted: the number of over-
lapping words with the turn at talk; Jaccard simi-
larity between the turn at talk and the summary; tf-
idf based cosine similarity between the summary
and the turn at talk. We extracted the summary
related features in two different settings: consider-
ing the book summary as a single entity; comput-
ing the similarity between the turn at talk and each
sentence in the summary, then picking the maxi-
mum. All features were extracted after removing
stopwords from the turn and summary.
Embeddings Li and Nenkova (2015) used sen-
tence embeddings based on word embeddings in
order to increase the accuracy of Speciteller. The
sentence embeddings were obtained by comput-
ing the average of pre-trained word embeddings
for each word in the sentence. We believe our
method can further benefit from sentence em-
beddings specifically trained on our corpus and
optimized for our target: predicting specificity.
We generated embeddings by training a character-
level Long-Short Term Memory (LSTM) network
(Hochreiter and Schmidhuber, 1997), using it as
an encoder on the turns at talk from our corpus.
Each turn at talk, which might consist of multiple
sentences, represents one sequence (training sam-
ple) for the LSTM training. Since punctuation is
not very meaningful given that we are analyzing
spoken discussions, all characters that are not let-
ters or numbers are ignored. Inputs for the LSTM
consist of one-hot (1 X N) encoding of individual
characters.

The neural network is trained by using the hid-

Figure 1: Network setup for training neural
network-based embeddings.

den state of the LSTM unit at the end of the
turn at talk as embedding, feeding it to a soft-
max classifier for predicting specificity, and back-
propagating errors. Cross-entropy was used as the
objective function to optimize during training. A
disadvantage of neural network models is the fact
that their large number of parameters requires ex-
tensive amount of data to show their expressive
power. Given the size of our training data we try to
mitigate this problem by merging the embeddings
for a turn at talk with handcrafted features. Ideally
we would combine embeddings with all the fea-
tures described previously but the resulting model
would be far too large for our dataset, therefore we
chose to use the Speciteller + Semantic feature
set for this task. The training procedure changes
slightly: a turn at talk is propagated through the
LSTM resulting in a fixed size embedding; hand-
crafted features are extracted from the turn at
talk, concatenated to form a vector, and a fully-
connected layer is applied to those; the output of
the fully-connected layer is concatenated with the
embedding, and given as input to a softmax classi-
fier to predict specificity. A graphical overview of
the model is given in Figure 1.

It is important to note that the neural net-
work for embeddings and the classifier are jointly
trained, therefore the embeddings are specifically
tailored to encode information regarding speci-
ficity. The Keras library (Chollet et al., 2015) was
used for extracting sentence embeddings as well
as for evaluating performance of the softmax clas-
sifier.

Pedagogical feature set In addition to max-
imizing kappa for specificity prediction, an ad-
ditional objective for this study is to find mean-
ingful features that can help explain different as-
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pects of highly specific discussions. Many of the
features described above, like N-grams or tf-idf,
might have good predictive power but they are not
easily interpretable and bear little relation to our
codebook.

When considering NLP techniques applied to
the educational domain, there is an increasing in-
terest in developing models that capture important
components of the construct to measure. Rahimi
et al. (2017), for example, developed a model for
automated essay scoring using rubric-based fea-
tures; Loukina et al. (2015) evaluated different
feature selection methods to obtain interpretable
features in an educational setting.

In order to create an interpretable feature set
we started by manually selected meaningful fea-
tures from Speciteller (imageability, subjectivity,
polarity, and familiarity ratings, number of con-
nectives, fraction of stopwords). At training/test
time, this set is combined with features from the
Pronoun, Named entities, and Book feature sets.
Since all the features from the last 3 sets are inter-
pretable, we only chose a few features from each
set, selecting the ones with highest information
gain with respect to specificity. For each fold, we
first rank features in the Pronoun, Named entities,
and Book sets by information gain, then select the
top k (based on the number of features in each re-
spective set), concatenate them to the interpretable
Speciteller features and train a logistic regression
model. Section 5.4 will give examples of selected
features.

5 Experiments and Results

In this section we provide results for our ex-
periments. All classifiers and feature sets were
evaluated using 10-fold cross validation, and us-
ing quadratic-weighted Cohen’s kappa as the per-
formance metric since it is important to make a
distinction between different classification errors
(e.g. classifying a low specificity turn at talk as
high should result in bigger error than classifying
it as medium). We used the scikit-learn Python
package6 for training and evaluating classifiers, as
well as performing feature selection. Specifically,
sections 5.1 and 5.2 will be used to test our first
hypothesis: that by retraining an existing model
on our corpus we will obtain an improvement in
performance. Sections 5.2 and 5.3 will be used
to test our second hypothesis: that by using fea-

6http://scikit-learn.org/stable/

Figure 2: Speciteller scores by specificity class.

tures from additional NLP literature we can fur-
ther improve the performance of a state-of-the-art
model. Section 5.4 will test our third hypothesis:
that the additional features we handcrafted to cap-
ture specificity with respect to verbal discussion
in an educational setting will lead to better perfor-
mance.

5.1 Baseline using Speciteller off-the-shelf

Since we plan to use Speciteller as a baseline
for comparing the performance of our proposed
method, we iteratively tested thresholds to find the
set which results in the highest quadratic-weighted
kappa in all scenarios described in Section 4.1.
The best result was obtained when the input to
Speciteller is the complete turn at talk, and the re-
sulting quadratic-weighted kappa is 0.495, which
represents Speciteller’s upper bound performance.
Figure 2 shows the frequency distribution of spe-
citeller scores for each specificity class.

From the figure we can see that Speciteller is
able to correctly capture specificity for a portion
of the turns at talk in the dataset, as there is a peak
in the low end of the spectrum for the distribution
of low specificity scores and a peak in the high end
of the spectrum for the distribution of high speci-
ficity scores. The medium specificity class seems
to be the most problematic one, which has a sim-
ilar trend as the low specificity class distribution
in the low end of the spectrum, and a similar trend
to the high specificity class distribution in the high
end of the spectrum. Ideally we would expect the
medium specificity distribution to have a peak to-
wards the middle of the spectrum but that is not the
case. Additionally, the low specificity class distri-
bution shows a peak between 0.6 and 0.7 which
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will further penalize accuracy.
Table 3 shows the confusion matrix when ap-

plying the optimal thresholds in order to get speci-
ficity labels from Speciteller scores. As we can
see from the confusion matrix the overlap be-
tween the low and medium specificity classes and
the medium and high specificity classes causes a
large number of misclassifications: almost half of
the low specificity turns at talk are classified as
medium, over 40% of the medium specificity turns
at talk are classified as either low or high, and al-
most 40% of high specificity turns at talk are clas-
sified as medium. We believe these errors stem
from two main reasons: as with many data-driven
approaches, Speciteller is highly dependent on its
training corpus. Speciteller was trained on articles
from the Wall Street Journal and the New York
Times. Articles written by professional writers are
inherently different from transcriptions of spoken
discussions between high school students. Addi-
tionally, for training the model, Speciteller used
a binary general/specific label, while we consider
three labels in our work. Since Speciteller has no
prior knowledge on medium specificity sentences,
it is understandable that most of the misclassifica-
tions come from this class.

5.2 Training using Speciteller features

Our hypotheses as to why Speciteller does not
work effectively out of the box are related to its
corpora and the way it was trained. With respect
to the features used by Speciteller, we believe they
might be useful in the context of classroom discus-
sion as well. We extracted the shallow feature set
and the neural network word embeddings feature
sets and combined them to train a logistic regres-
sion classifier on our dataset. This classifier was
chosen because one of our objectives is to compare
the importance of other feature sets in addition to
the Speciteller one, and in order for this compar-
ison to be fair we decided to use the same clas-
sifier Speciteller uses. Additionally, the classifier

predictions
low med high

ground truth
low 352 360 18
med 280 565 129
high 4 139 210

Table 3: Confusion matrix using Speciteller scores
to classify according to the optimal split points.

weights can be used to understand the importance
of each feature. It is important to note that, un-
like Speciteller, we will be using a single classifier
on the combination of all features, and will not be
able to leverage semi-supervised co-training.

Table 4 shows the performance of a logistic re-
gression classifier trained on this feature set and
others described in the previous section. As we

Feature sets QWKappa
Speciteller 0.5758
Speciteller + Online dialogue 0.6347*
All: Speciteller + Online dia-
logue + Pronoun + NE + Book

0.6360*

Speciteller + Semantic + Em-
beddings

0.6550*

Pedagogical 0.5886

Table 4: Classification performance of different
feature sets. * indicates statistically significant im-
provement over Speciteller features with p-value
< 0.001. Statistical significance was tested using
a two-tailed paired t-test. Bold font highlights best
results.

can see from the table, training a classifier using
the Speciteller feature set on our corpus results
in a considerable increase in performance, with
QWKappa of 0.5758 which represents a 16% rel-
ative improvement over the 0.495 QWKappa ob-
tained using Speciteller out of the box. This con-
firms our first hypothesis that Speciteller’s perfor-
mance, like many other methods, is highly depen-
dent on its training corpus and using this model
out of the box would give sub-optimal results.

5.3 Speciteller and online dialogue features

To test whether features from Section 4.3 are use-
ful, we combined the Speciteller features with
the Semantic, Lexical, and Syntactic features and
trained a logistic regression classifier based on
the concatenated feature vectors. Table 4 con-
firms our hypothesis that the 4 feature sets com-
bined result in statistically significant (using a
two-tailed paired t-test) higher kappa than using
only Speciteller features. When combining Spe-
citeller with each of the 3 other feature sets in-
dividually, kappa increases but not with statisti-
cal significance. We evaluated additional classi-
fiers (Support Vector Machine, decision tree, ran-
dom forest, Naive Bayes) but none of them out-
performed logistic regression. Since the num-
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ber of features is over 7000, we also tried using
Recursive Feature Elimination (RFE) and Princi-
pal Component Analysis (PCA) for feature selec-
tion/reduction, but neither improved performance.

5.4 Additional features

To the feature set described in the previous section,
we added the features described in Section 4.4. We
then tested our third hypothesis by evaluating the
performance of a logistic regression model trained
with these features.

We can see from Table 4 that all additional
feature sets yield better performance than the
Speciteller feature set by itself. This result con-
firms our third hypothesis: the additional fea-
ture sets are able to capture aspects of speci-
ficity with respect to verbal discussion and the
educational domain. In particular the feature set
containing neural network-based sentence embed-
ding achieved the best kappa measure of 0.6550,
which suggests that sentence embeddings are also
domain-dependent. Compared to using Speciteller
off-the-shelf this method improves kappa by 32%.
While the size of the neural network was constant
during training/test (not optimized for each fold),
we experimented with several numbers of hidden
nodes (ranging from 50 to 200) for the LSTM and
fully-connected layers, which resulted in kappa
values in the range 0.6283− 0.6550.

The Pedagogical feature set is also able to
marginally outperform the Speciteller feature set.
Compared to the best result, the loss in kappa
when using the Pedagogical set is 11%. At the
expense of a slightly lower accuracy we gain the
ability to use only informative features, which can
be used to better understand highly specific versus
general classroom discussions. The use of logistic
regression also makes this possible: the model’s
coefficients give us an indication of how important
features are. Table 5 shows the top 12 features in
the Pedagogical feature set ranked by the magni-
tude of the model’s coefficients.

The table shows the results of a model trained
on the complete dataset. The number of connec-
tives seems to be the most important feature for
predicting high specificity. This seems straight-
forward, as more connectives translates into more
clauses, which provide more information. While
the annotators did not look for connectives dur-
ing coding, one of the aspects they analyzed was
the presence/absence of a chain of reasoning, and

Feature Coefficient
Number of connectives 1.9168
Cosine similarity whole sum-
mary

0.9293

MRC imageability 0.8172
Number of characters 0.6931
MPQ subjectivity -0.5440
Fraction of stopwords -0.4087
MRC familiarity 0.3986
Number of possessive pro-
nouns

0.2035

Number of named entities nor-
malized

0.1865

Number of 3rd person pronouns 0.1755
Word overlap whole summary 0.1585
Number of personal pronouns 0.1476

Table 5: Pedagogical feature set and respective
logistic regression coefficients. Italic font shows
features developed in this study (Section 4.4).

the number of connectives might capture that as-
pect. The cosine similarity between the turn at talk
and the book summary (considered as one entity)
is another important feature in the model: higher
similarity between the summary and what a stu-
dent says means that they are using terms from the
book. This feature seems to capture another aspect
in our codebook, the use of book-specific vocabu-
lary. We can use the information provided by these
features to understand specificity, and to give feed-
back to teachers and students: if for example a stu-
dent tends to produce low specificity turns at talk
and the number of connectives used is generally
low, that might be an indication that they should
elaborate more on their statements. Conversely,
if the number of connectives used is high but the
number of characters mentioned is low, that might
be an indication that the student should reference
specific characters more often.

6 Conclusions and Future Work

We proposed several models for predicting speci-
ficity and evaluated them on text-based, high
school classroom discussion data. We showed that
an existing general-purpose system achieves sig-
nificantly better performance when its features are
used for retraining on educational data. We also
showed that performance can be further improved
by using additional features from the NLP litera-
ture (Swanson et al., 2015), especially when com-
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bined with neural network embeddings and other
new features tailored to text-based classroom dis-
cussion. Finally we proposed a subset of peda-
gogical features which, even though slightly less
performing, provide the ability to interpret the fea-
tures, which is especially important for the educa-
tional community.

As more data becomes available, we will ex-
plore more advanced neural network models and
examine method generalization (e.g., social sci-
ence vs. ELA, middle vs. high school). We also
plan to analyze features at a finer granularity than
a turn at talk and to extract the book summary fea-
tures automatically from the original texts. Since
our dataset is already annotated for argument type,
and will be annotated for discussion quality, we
plan to investigate relationships between speci-
ficity, argumentation, and quality.
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Abstract

Native Language Identification (NLI) is
the task of automatically identifying the
native language (L1) of an individual
based on their language production in a
learned language. It is typically framed
as a classification task where the set of
L1s is known a priori. Two previous
shared tasks on NLI have been organized
where the aim was to identify the L1 of
learners of English based on essays (2013)
and spoken responses (2016) they pro-
vided during a standardized assessment of
academic English proficiency. The 2017
shared task combines the inputs from the
two prior tasks for the first time. There are
three tracks: NLI on the essay only, NLI
on the spoken response only (based on a
transcription of the response and i-vector
acoustic features), and NLI using both re-
sponses. We believe this makes for a more
interesting shared task while building on
the methods and results from the previous
two shared tasks. In this paper, we report
the results of the shared task. A total of
19 teams competed across the three dif-
ferent sub-tasks. The fusion track showed
that combining the written and spoken
responses provides a large boost in pre-
diction accuracy. Multiple classifier sys-
tems (e.g. ensembles and meta-classifiers)
were the most effective in all tasks, with
most based on traditional classifiers (e.g.
SVMs) with lexical/syntactic features.
Visit the website for more info about the task:

https://sites.google.com/site/nlisharedtask/

1 Introduction

Native Language Identification (NLI) is the task of
automatically identifying the native language (L1)
of an individual based on their writing or speech
in another language (L2). NLI works by identify-
ing language use patterns that are common to cer-
tain groups of speakers that share the same native
language. This process is underpinned by the pre-
supposition that an author’s linguistic background
will dispose them towards particular language pro-
duction patterns in their learned languages, as in-
fluenced by their mother tongue.

Predicting the native language of a writer has
applications in different fields. It can be used
for authorship identification (Estival et al., 2007),
forensic analysis (Gibbons, 2003), tracing lin-
guistic influence in potentially multi-author texts
(Malmasi et al., 2017), and naturally to support
Second Language Acquisition research (Malmasi
and Dras, 2014). It can also be used in educational
applications such as developing grammatical er-
ror correction systems which can personalize their
feedback and model performance to the native lan-
guage of the user (Rozovskaya and Roth, 2011).

Most work in NLI focused on predicting the na-
tive language of an ESL (English as a Second Lan-
guage) writer based on a sample essay, although
NLI has also been shown to work on other lan-
guages (Malmasi and Dras, 2015). Work by Kop-
pel et al. (2005), Tsur and Rappoport (2007) Wong
and Dras (2009), and Tetreault et al. (2012) set
the stage for much of the recent research efforts.
However, it was the 2013 Native Language Iden-
tification Shared Task (Tetreault et al., 2013) that
led to an explosion of interest in this area by mak-
ing public a large dataset developed specifically
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for this task called the TOEFL11 (Blanchard et al.,
2013). In that shared task, 29 teams participated,
making it one of the largest NLP competitions that
year alone.

In addition to analyzing the written responses, a
recent trend in NLP research has been the use of
speech transcripts (generated manually or via Au-
tomatic Speech Recognition) and audio features
for dialect identification (Malmasi et al., 2016), a
task that involves identifying specific dialects of
pluricentric languages, such as Spanish or Ara-
bic.1 The combination of transcripts and acoustic
features has also provided good results for dialect
identification (Zampieri et al., 2017b), demon-
strating that it is possible to improve performance
by combining this information.

While there has been growing interest in using
such features, the use of speech transcripts for NLI
is not entirely new. In fact, the very first NLI
study by Tomokiyo and Jones (2001) was based
on applying a Naive Bayes classifier to transcrip-
tions of speech from native and non-native speak-
ers, albeit using limited data. However, this strand
of NLI research has not received much attention,
most likely due to the costly and laborious nature
of collecting and transcribing non-native speech.
Following this trend, the 2016 Computational Par-
alinguistics Challenge (Schuller et al., 2016) also
included an NLI task based on the spoken response
using the raw audio.

The NLI Shared Task 2017 attempts to combine
these approaches by including a written response
(essay) and a spoken response (speech transcript
and i-vector acoustic features) for each candidate.
The competition also allows for the fusion of all
features, a novel task that has not been previously
tried. Another motivation for this task was the
rapid growth of deep learning methods for natu-
ral language processing tasks (Manning, 2015). In
prior shared tasks, there were several barriers to
using deep learning for NLP. However, deep learn-
ing has now had a positive impact on many tasks
across NLP and it is an area of investigation on
whether the same successes can be found in NLI.

In the following section, we provide a summary
of the prior work in Native Language Identifica-
tion, for both text and speech based tracks. Next,
in §3, we describe the data used for training, de-

1NLI could also be framed as a dialect identification task
if we assume that each L1 group has their own interlan-
guage/dialect which is influenced by their L1.

velopment, and testing in this shared task. In §4
we describe the results of each sub-task, with a
short description of each team’s submission. Then
in §5, we discuss the commonalities and trends in
and across the three sub-tasks, and present an en-
semble analysis of all submissions. Finally, in §6,
we offer conclusions and ideas for avenues of re-
search in this growing field.

2 Related Work

NLI is most commonly framed as a supervised
classification task, where features are extracted
from a linguistic response produced by non-native
speakers, and used to train a classification model.
NLI is a recent, but rapidly growing, area of re-
search. While some early research was conducted
in the early 2000s, most work has only appeared
in the last few years.

2.1 Text-based NLI

Most NLI research has focused on English texts
where both lexical and syntactic features (often
based on n-gram frequency profiles) have been
used. Popular lexical features include character,
word and lemma n-grams, while syntactic fea-
tures are based on constituent parse trees, depen-
dency parse features and part-of-speech tags. Sup-
port Vector Machine (SVM) models have been
the most prevalent classification approach. Re-
searchers have mainly focused on experimenting
with different features and methods of combining
them. While a detailed analysis of previous work
is beyond the scope of this report, a comprehen-
sive exposition of NLI research from 2001-2015,
including all of the systems from the first shared
task, can be found in Malmasi (2016, Section 2.3).

The winning entry for the 2013 shared task
was that of Jarvis et al. (2013), achieving 83.6%
in terms of accuracy (the official metric). The
features used in the system include n-grams of
words, parts-of-speech, and lemmas. A log-
entropy weighting schema was used to normalize
the frequencies. An L2-regularized SVM classi-
fier was used to create a single-model system.

A notable trend in NLI has been the success of
multiple classifier systems, such as ensemble clas-
sifiers (Tetreault et al., 2012). In fact, such ap-
proaches have consistently achieved state-of-the-
art performance on the NLI Shared Task 2013
dataset. Bykh and Meurers (2014) applied a tuned
and optimized ensemble, reporting an accuracy of
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84.82% on this data. Ionescu et al. (2014) used
string kernels to perform NLI. They create several
string kernels which are then combined through
multiple kernel learning. They report an accuracy
of 85.3% on the 2013 Test set, 1.7% higher than
the winning shared task system. More recently,
Malmasi and Dras (2017) presented a thorough ex-
amination of meta-classification models for NLI,
achieving state-of-the-art results on three datasets
from different languages, including an accuracy
of 87.1% on the 2013 data.

2.2 Speech-based NLI

The task of speech-based NLI is closely related
to the tasks of language identification and dialect
identification, for which substantially more re-
search has been conducted. For those tasks, the
two main types of approach are based on acous-
tic features (Dehak et al., 2011) and phonotac-
tic features (Zissman, 1996). For further details
we refer the reader to Rao and Nandi (2015) and
Etman and Beex (2015) which provide compre-
hensive overviews of the different approaches that
have been taken for speech-based language and di-
alect identification.

The 2016 Computational Paralinguistic Chal-
lenge on NLI was designed to explore the related
task of speech-based NLI in more detail. The
data set for that task contained 64 hours of speech
from 5,132 non-native speakers of English (ap-
proximately 45 seconds per speaker) representing
the same 11 L1 backgrounds as the 2013 NLI
Shared Task corpus. Each language was repre-
sented by recordings ranging from 458 to 485 dif-
ferent speakers representing a range of English
speaking proficiencies. The best performing sys-
tem in the challenge was that of Abad et al. (2011):
their system used i-vector features that were based
on Phone Log-Likelihood Ratios and achieved a
performance of 81.3% (in terms of Unweighted
Average Recall, which was the evaluation metric
for the challenge) on the test set.

3 Task Description and Data

There were three tracks in the NLI Shared Task
2017: essay-only, speech-only, and fusion. The
corpus consists of both written essays and ortho-
graphic transcriptions of spoken responses. These
were provided by test takers in the context of a
standardized assessment of a non-native speaker’s
ability to use and understand English for academic

purposes at the university level, TOEFL R© iBT.
There were 11,000 test takers included in the train-
ing data (1,000 per L1) and 1,100 each for devel-
opment and test (100 per L1). The 11 L1 back-
grounds included in the NLI Shared Task 2017
were identical to the 2013 and 2016 shared tasks:
Arabic, Chinese, French, German, Hindi, Italian,
Japanese, Korean, Spanish, Telugu, and Turkish.
These L1s and their language families are shown
in Figure 1.

The test takers’ essays and spoken responses
were elicited by test questions (hereafter referred
to as prompts) asking about an opinion (e.g.,
which of two choices the test taker would pre-
fer) or a personal experience. A total of 8 essay
prompts were included in the training and devel-
opment partitions and 7 of these were represented
in the test partition; a total of 9 different speaking
prompts were included in the training and devel-
opment partitions and 7 of these were represented
in the test partition. Prompt IDs for both the es-
says and the spoken responses were provided with
the corpus. We tried to ensure the the data was as
balanced as possible by prompt (in addition to by
L1), though we did not always have enough data
for all L1s for some prompts.

In the essay-only track, the task was to predict
the L1 of a candidate based only on an essay writ-
ten in English. The essay training data consisted
of the training plus development data used in the
NLI Shared Task 2013, while the development es-
say data consisted of the test data from the 2013
task. The test data for this track was new, previ-
ously unreleased data. The average length of the
essays across all three partitions was 316.2 words
(SD: 77.6, Min.: 2, Max.: 796).

In the speech-only track, the task was to pre-
dict the L1 of a candidate based only on a 45-
second-long spoken response in English. The
main source of data was a manually-created or-
thographic transcription of the spoken response.
The average length of the speech transcriptions
across all three partitions was 89.5 words (SD:
25.7, Min.: 0, Max.: 202). Unfortunately, it was
not possible to distribute the raw audio for the re-
sponses. To provide a more realistic sense of the
performance of a speech-based NLI system, a fea-
ture file of i-vectors was provided to participants
who requested it. An i-vector is a fixed-length,
low-dimensional representation of the sequence of
frame-level acoustic measurements extracted from
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Figure 1: Language families in the task. The languages were selected to represent different families, but
to also have several from within the same families. Diagram reproduced from Blanchard et al. (2013).

the speech signal (Dehak et al., 2011; Martınez
et al., 2011). The dimensions of the i-vectors (800)
and number of Gaussian components (1024) were
tuned on the development set by using the Kaldi
toolkit.2 In order to be able to distinguish the ef-
fects of new features or approaches, participants
were encouraged to clearly describe the relative
contribution of their features on the task both with
and without the i-vector features.

In the fusion track, the task was to predict the
L1 of a candidate using the combination of their
written essay and spoken response.

The training and development data were re-
leased in two phases. The first phase consisted
of only the essays, while the second phase con-
sisted of the spoken transcriptions and optionally
i-vectors. Simple baseline scripts that used uni-
gram features and an SVM learner were also pro-
vided for each track.

There were both open and closed competitions
for each track. In the closed competition, only the
data provided could be used for training (though
features based on external data sources such as
language models or parsers could be included). In
the open competition, additional NLI training data
could be used to help improve predictions. There
were no submissions to the open competition.

The test period for each track lasted 3 days, and
teams could submit up to 12 systems per track.
The essay-only and speech-only test phases ran
concurrently. The IDs for the essay data and tran-
scription data were generated by separate random
processes for this test period. For the fusion test
period, an updated package providing linked IDs
between the essay and spoken transcription data
was released.

2http://kaldi-asr.org

3.1 Evaluation and Ranking

The majority of NLI research to date has reported
results using accuracy as the main metric. For
this task, however, we decided to use the macro-
averaged F1-score as the official evaluation met-
ric. The macro-averaged F1-score is calculated by
first computing the F1-score for each class, and
then taking the average across all classes (Yang
and Liu, 1999). This metric favors more consis-
tent performance across classes rather than simply
measuring global performance across all samples.
Accuracy was still reported for completeness.

We also used statistical significance testing for
ranking purposes. McNemar’s test3 (with an alpha
value of 0.05) was applied to the ordered results
to identify groups of teams where the highest and
lowest results were not significantly different, and
they were therefore assigned the same rank.

For comparison, we compare to two types of
baselines: a random baseline and one that use a
linear SVM classifier. There were three random
baselines, one for each task, and five simple SVM
baselines in total across the three tasks. For the
essay-only task there was one baseline based on
raw unigram frequencies from the essay texts. For
the speech-only task there were two baselines: one
an SVM based on raw unigram frequencies from
the orthographic transcriptions alone, and a sec-
ond SVM that combined the unigram features with
the i-vectors using horizontal concatenation. For
the fusion task there were two baselines: one, an
SVM combining the unigrams from the essays and
the transcriptions, and a second SVM combining
the unigrams from the essays and the transcrip-
tions with the i-vectors.

3For more details see §7.3 of Malmasi and Dras (2017)
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4 Results

A total of 19 teams participated in the task, 17
of which submitted system description papers.
Participation across the three tracks varied, with
17 participants in the essay-only track, 9 in the
speech-only track, and 10 in the fusion track. The
results for each track are described in the follow-
ing sections. For every track we briefly outline
each team’s best system. Interested readers can
refer to the team’s paper for more details.

4.1 Essay-only Track

The best essay-only submission for each team,
along with rankings and other details, are listed
in Table 4.1. Each team’s best system is briefly
described below, ordered by rankings.

ItaliaNLP Lab (Cimino and Dell’Orletta, 2017)
utilize a novel classifier stacking approach based
on a sentence-level classifier whose predictions
are used by a second document-level classifier.
The sentence classifier is based on a Logistic Re-
gression model trained on standard lexical, stylis-
tic, and syntactic NLI features. The document-
classifier is an SVM, trained using the same fea-
tures, as well as the sentence prediction labels.
Their experiments indicate that inclusion of the
sentence prediction features provides a small in-
crease in performance.

CIC-FBK (Markov et al., 2017) build an SVM
with multiple lexical and syntactic features. They
introduce two new feature types – typed charac-
ter n-grams and syntactic n-grams – and combine
them with word, lemma, and POS n-grams, func-
tion words, and spelling error character n-grams.
Features are weighted using log-entropy.

Groningen (Kulmizev et al., 2017) achieve their
best results using a very simple system based on
character 1-9 grams. Features are counted in a bi-
nary fashion and normalized via tf-idf. They also
conducted experiments omitting data from some
prompts during training and observe that perfor-
mance can drop considerably, depending on which
prompt is left out.

NRC (Goutte and Léger, 2017) explored various
ways of building ensemble models to make the
final prediction. Relatively simple features were
used (character, word, and POS n-grams). Their
best run for this track was a voting ensemble with
10 SVM models.

tubasfs (Rama and Çöltekin, 2017) used a sin-
gle SVM classifier trained on word bigrams and
character 7-grams. They tried a variety of n-gram
combinations and found this to work best on the
development data.

UnibucKernel (Ionescu and Popescu, 2017) use
different types of character-level string kernels
which are combined with multiple kernel learning.

WLZ (Li and Zou, 2017) build an ensemble of
single-feature SVMs fed into a multi-layer percep-
tron (MLP), which is a meta-classifier trained on
the outputs of the base SVM classifiers. The sin-
gle features are based on lexical and syntactic in-
formation and the best submission includes char-
acter, word, stem, and function word n-grams as
well as syntactic dependencies.

Uvic-NLP (Chan et al., 2017) trained a single
SVM model on word n-grams (1–3) and character
n-grams (4-5). They also conducted several post-
evaluation experiments, improving their results to
0.8730 using an LDA meta-classifier trained on in-
dividual SVM classifiers.

ETRI-SLP (Oh et al., 2017) designed a system
that was based on word n-gram features (with n
ranging from 1 to 3) and character n-gram fea-
tures (with n ranging from 4 to 6). The normalized
count vectors based on these features were used to
extract LSA features, which were then reduced us-
ing LDA. The count and LSA-LDA features were
used to train SVM and DNN classifiers whose out-
puts were subsequently combined via late fusion
in a DNN-based ensemble classifier.

CEMI (Ircing et al., 2017) use a Logistic Re-
gression meta-classifier to achieve their best
essay-only results. The meta-classifier is trained
on the outputs of several base classifiers, which are
trained on TF-IDF weighted word unigrams, word
bigrams, character n-grams and POS n-grams.

RUG-SU (Bjerva et al., 2017) primarily focus
on applying neural network models to NLI. Sev-
eral systems are trained: A deep residual network
based on word unigrams and character n-grams; a
sentence-level LSTM based on POS-tagged sen-
tences; a Logistic Regression model based on
spelling error features; and a CBOW model based
on document embeddings. Their best result is
achieved by an ensemble combining these systems
together with an SVM meta-classifier. Spelling er-
ror features did not improve overall performance.
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Rank Team F1 Acc. Approach
1 ItaliaNLP Lab 0.8818 0.8818 Stacked classifier w/ lexical and syntactic features
1 CIC-FBK 0.8808 0.8809 SVM with log-entropy weighted n-gram and syntactic features
1 Groningen 0.8756 0.8755 Linear SVM with character n-grams (1-9)
1 NRC 0.8740 0.8736 Voting ensemble w/ SVM models using lexical/syntactic features
1 tubasfs 0.8716 0.8718 SVM trained on word bigrams and char 7-grams
1 UnibucKernel 0.8695 0.8691 Character-level string kernels combined w/ multiple kernel learning
1 WLZ 0.8654 0.8655 MLP meta-classifier trained on SVMs w/ lexical/syntactic features

2 Uvic-NLP 0.8633 0.8636 SVM trained on word and character n-grams
2 ETRI-SLP 0.8601 0.8600 Ensemble of SVMs & DNNs using LSA-LDA features
2 CEMI 0.8536 0.8536 LogReg meta-classifier trained on word/char/POS base models

3 RUG-SU 0.8323 0.8318 Ensemble of resnets, LSTM and document embeddings
3 NLI-ISU 0.8264 0.8264 Logistic Regression model with word n-grams (1-3)
3 IUCL 0.8262 0.8264 Phonetic features combined in an SVM
3 GadjahMada 0.8107 0.8110 Char embeddings w/ a feed-forward NN classifier

4 superliuxz 0.7896 0.7900 No paper submitted.
4 ltl 0.7676 0.7673 No paper submitted.

5 ut.dsp 0.7609 0.7636 n-gram language models over characters (3-4) and words (1-2)

Word Unigram Baseline 0.7104 0.7109 Linear SVM trained on word unigrams

Random Baseline 0.0910 0.0910 Randomly select an L1

Table 1: Official results in the essay-only track. The official metric is the macro-averaged F1-score.
Accuracy (Acc.) is also reported. Rankings are determined by statistical significance testing (see §3.1).

NLI-ISU (Vajjala and Banerjee, 2017) explored
the use of n-grams and embeddings in their sub-
missions. Their best run was a Logistic Regres-
sion model trained on word 1-3 grams. They also
report that spell checking features, as well as word
and document embeddings did not work well on
the development data.

IUCL (Smiley and Kübler, 2017) investigated
the use of phonetic features for the essay classi-
fication task based on the hypothesis that speak-
ers from different L1 backgrounds may tend to
use English words that match sounds in their own
L1 more frequently than speakers from other L1
backgrounds. They explored three sets of phonetic
features based on algorithms for fuzzy text match-
ing (Soundex, Double Metaphone, and NYSIIS)
as well as a set of features based on representa-
tions of the words using the CMU Pronouncing
Dictionary. While none of these feature sets indi-
vidually outperformed a system based on charac-
ter n-grams, the addition of the Double Metaphone
features to the character n-gram features led to a
small performance improvement.

GadjahMada (Sari et al., 2017) apply a charac-
ter embedding model with a feed-forward neural
network classifier in the essay track. This is based
on the relatively high performance of character n-
grams in previous research. An embedding size of
25 was used with n-grams of length 2–5.

ut.dsp (Mohammadi et al., 2017) utilize n-gram
language models over words and characters. For
each L1, a language model over character 3- and
4-grams as well as word unigrams and bigrams is
calculated and smoothing is applied. For each text
in the test set, the probably of the whole text for
all language models in each class is calculated and
the class with the maximum probability is chosen
as the predicted label. This approach does not in-
volve any supervised learning.

4.2 Speech-only Track

The best speech-only submission for each team,
along with rankings and other details, are listed
in Table 4.2. Each team’s best system is briefly
described below, ordered by rankings.
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Rank Team F1 Acc. Approach
1 UnibucKernel 0.8755 0.8755 Character-level string kernels and i-vector features
1 ETRI-SLP 0.8664 0.8664 DNN ensemble with early fusion using LSA-LDA features
1 CEMI 0.8607 0.8609 Ensemble of transcript & i-vector features w/ softmax fusion

2 NRC 0.8448 0.8445 Single models trained on transcript char 6-grams and i-vectors
2 tubasfs 0.8333 0.8336 LDA classifier using only i-vector features

Baseline: transcript + i-vector 0.7980 0.7982 Linear SVM trained on word unigrams (transcripts) + i-vectors

Baseline: transcript only 0.5435 0.5464 Linear SVM trained on word unigrams (transcripts)

3 GadjahMada 0.5084 0.5073 FFNN classifier trained on character embeddings (transcripts)

4 ut.dsp 0.4530 0.4536 n-gram language models over transcript characters & words
4 NLI-ISU 0.4259 0.4282 Logistic Regression model w/ word n-grams (1-3) on transcripts

5 ltl 0.3714 0.3718 No paper submitted.
Random Baseline 0.0910 0.0910 Randomly select an L1

Table 2: Official results in the speech-only track. The official metric is the macro-averaged F1-score.
Accuracy (Acc.) is also reported. Rankings are determined by statistical significance testing (see §3.1).

UnibucKernel (Ionescu and Popescu, 2017) ex-
tend their essay-only system based on character-
level string kernels to include the transcription
data, as well as an additional kernel for the i-vector
features. The various models are combined using
multiple kernel learning.

ETRI-SLP (Oh et al., 2017) submitted a sys-
tem for the Speech task that was similar to their
submission for the Essay task, although the SVM
classifiers and one of the DNN classifiers were
not used in the ensemble classifier. They exper-
imented with both late fusion and early fusion
for combining the text-based features with the i-
vectors and obtained the best results with an early-
fusion ensemble classifier.

CEMI (Ircing et al., 2017) attained their best re-
sult with an ensemble consisting of a SGD classi-
fier trained on transcript word features and a feed-
forward neural network trained on the i-vector fea-
tures. The final prediction is selected via softmax
combination.

NRC (Goutte and Léger, 2017) use a single
classifier trained on transcript character 6-grams
and the i-vector features to achieve their best
speech-only results.

tubasfs (Rama and Çöltekin, 2017) used an
LDA classifier using only the i-vector features, a
simple approach that yielded good results.

GadjahMada (Sari et al., 2017) did not use the i-
vector features for the speech track, applying their
character embedding model from the essay track
to the transcripts.

ut.dsp (Mohammadi et al., 2017) apply their n-
gram language model from the essay-only track to
the transcripts.

NLI-ISU (Vajjala and Banerjee, 2017) did not
use the i-vector features for the speech track, in-
stead applying their n-gram based model from the
essay track. They report that the essay features do
not work very well for transcripts, hypothesizing
that this may be due to the shorter texts.

4.3 Fusion Track
The best fusion submission for each team, along
with rankings and other details, are listed in Ta-
ble 4.3. Each team’s best system is briefly de-
scribed below, ordered by rankings.

UnibucKernel (Ionescu and Popescu, 2017) ex-
tend their speech system to also include essays, in
addition to the transcripts and i-vectors. The mod-
els are combined via multiple kernel learning.

CEMI (Ircing et al., 2017) obtain their best re-
sults using a neural network based meta-classifier.
They use several isolated feed-forward neural net-
work models, each trained on one feature type.
Features include word, character, and POS n-
grams (from transcripts/essays) plus i-vectors.
The outputs from the networks are fused using
softmax combination to predict the final label.
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Rank Team F1 Acc. Approach
1 UnibucKernel 0.9319 0.9318 Character-level string kernels and i-vector features
1 CEMI 0.9257 0.9255 NN meta-classifier over lexical/syntactic/i-vector features
1 ETRI-SLP 0.9220 0.9218 DNN ensemble with early fusion using LSA-LDA features
1 NRC 0.9193 0.9191 Voting ensemble w/ half sampling to choose the SVM models

2 tubasfs 0.9175 0.9173 Ensemble w/ word/char n-grams (essay/transcript) & i-vectors

3 GadjahMada 0.8414 0.8409 FFNN trained on essay character embeddings and i-vectors
3 L2F 0.8377 0.8391 BPE n-grams, NN fusion, i-vector post-processing
3 ZCD 0.8358 0.8355 Ensemble of word/char. n-gram and i-vector SVM classifiers

Baseline: essay/transcript/i-vector 0.7901 0.7909 SVM trained on word unigrams (essay/transcript) + i-vectors

Baseline: Essay + Transcript 0.7786 0.7791 Linear SVM trained on word unigrams (essays + transcripts)

4 ut.dsp 0.7748 0.7764 n-gram language models over chars/words (essay+transcript)

5 ltl 0.7346 0.7345 No paper submitted.
Random Baseline 0.0910 0.0910 Randomly select an L1

Table 3: Official results in the fusion track. The official metric is the macro-averaged F1-score. Accuracy
(Acc.) is also reported. Team rankings are determined by statistical significance testing (see §3.1).

ETRI-SLP (Oh et al., 2017) submitted a system
for the Fusion task that was similar to their sub-
missions for the Essay and Speech tasks, although
the SVM and DNN classifiers were not used in the
ensemble classifier; their ensemble classifier for
the fusion task only combined the LSA-LDA fea-
tures and the i-vectors. As with the Speech task,
they experimented with both late fusion and early
fusion for combining the text-based features with
the i-vectors and obtained the best results with an
early-fusion ensemble classifier.

NRC (Goutte and Léger, 2017) explored various
ways of building ensemble models to make the
final prediction. Relatively simple features were
used (character, word, and POS n-grams). For the
fusion track, their best submission used half sam-
pling which uses one half of the data to estimate
the best number of models to include in the fi-
nal voting ensemble, and the other half to estimate
which models to include.

tubasfs (Rama and Çöltekin, 2017) obtain their
best result with an ensemble model based on mean
probability combination. The ensemble includes
individual SVM models trained on word and char-
acter n-grams from essays and transcripts, and an
LDA classifier trained on the i-vector features.

GadjahMada (Sari et al., 2017) extended their
essay-based character embedding model to in-
clude i-vectors for the fusion track. They did not
use the speech transcript data.

L2F (Kepler et al., 2017) designed a system that
combined three types of text-based classifiers (an
RNN with a bidirectional GRU layer, a Naive
Bayes classifier with byte n-grams, and a Naive
Bayes classifier with n-grams based on representa-
tions of the words using Byte Pair Encoding) with
versions of the i-vector features that were post-
processed using centering and whitening in an at-
tempt to reduce channel variability. These classi-
fiers were combined together in a Neural Network
fusion approach and the authors demonstrated that
the i-vector features were the main driver of per-
formance.

ZCD (Zampieri et al., 2017a) used an approach
based on ensembles of multiple SVM classifiers.
Separate SVM classifiers were trained using char-
acter n-grams (with n ranging from 1 to 10) and
word n-grams (with n ranging from 1 to 2). In-
dividual classifiers with cross-validation perfor-
mance lower than 0.8 were retained in the ensem-
ble; the classifiers that were retained were based
on character n-grams with n in 6, 7, 8. These n-
gram-based classifiers were then combined into an
ensemble with a classifier based on the i-vector
features and the majority vote from the ensemble
was taken as the final prediction.

ut.dsp (Mohammadi et al., 2017) apply their n-
gram language model from the essay-only track to
the combination of essays and transcripts.
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5 Discussion and Analysis

In this section we synthesize the overarching find-
ings from this edition of the NLI shared task.

5.1 Primary Trends

Multiple Classifier Systems are very effective.
Almost all of the top ranked teams employed some
type of multiple classifier system, including meta-
classifiers (classifier stacking), ensemble combi-
nation methods (voting and probability based fu-
sion), and multiple kernel learning. Their use has
become much more prevalent compared to the pre-
vious shared task.

Lexical n-grams are the best single feature type.
Surface form features such as word and character
n-grams continue to be the powerhouse feature for
the text classification tasks. Evidence from vari-
ous participants suggests that high-order character
n-grams (as high as n = 10) are extremely useful
for this task. This is likely because when extracted
across word boundaries, these features capture not
only sub-word (e.g. morphological) information,
but also dependencies between words. However,
it should also be noted that the top systems in all
tracks made use of syntactic features which can
give them a slight performance boost. This is not
surprising as it has been shown that lexical and
syntactic features each capture diverse types of in-
formation that are complementary (Malmasi and
Cahill, 2015).

Feature weighting schemes are important.
Similar to past results, many of the top teams ap-
ply a form of feature weighting (such as TF-IDF
or log-entropy) to their data.

Acoustic features are highly informative for
speech-based NLI. Using only text-based fea-
tures over the transcripts did not work well, and
teams that did not utilize the i-vector features per-
formed much worse in the speech-only track. The
top-ranked teams combined the transcripts and i-
vectors.

Speech transcript features did not perform
well. Teams that used only the transcript features
did not fare well in the speech track. This could be
due to the different types of linguistic phenomena
that are present in spontaneous speech, which may
be less informative than those found in the essays.

Various teams also hypothesize that this may po-
tentially be due to their relatively shorter lengths
compared to the essays (see §3 for stats).

Fusion of writing and speech features provides
the best results. The substantial performance in-
crease between the essay/speech tracks and the fu-
sion track indicates that the acoustic features are
complementary and lead to much more reliable re-
sults.

Traditional classifier models continue to domi-
nate text classification tasks. It has been noted
that traditional supervised learning models out-
perform newer deep learning approaches on high-
dimensional text classification tasks (Malmasi
et al., 2016, §6.2). The results from this NLI task
do not provide any evidence to suggest otherwise;
almost all of the top teams in the essay-only track
used an SVM or similar linear model. Uvic-NLP
(Chan et al., 2017) compared SVMs and neural
network models, finding that SVM models achieve
better results with shorter training times.

Average performance is much higher than
2013. Although much of the training data remains
the same, the submissions were much more com-
petitive than the first NLI shared tasks. This
is likely due to NLI being a much more estab-
lished task, as well as the aforementioned preva-
lence of more sophisticated models such as meta-
classifiers.

A number of open questions remain. For ex-
ample, it is not clear if any one approach is dom-
inant across all tracks as most of the top-ranked
teams in the essay track did not participate in the
other tracks. It is hard to say how well their sys-
tems would have done in the other tracks, but the
trends from the teams who did participate in all
tracks suggest that their approaches could have
done well.

It is also clear that ensemble-based systems at-
tain some of the best results, but while we note
that meta-classifiers were particularly popular, it
is difficult to draw conclusions about the best ap-
proach as most teams used different configurations
(e.g. different base classifiers and meta-classifier
models). A comprehensive and detailed study is
needed to provide an empirical comparison of the
different methods.
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2013 2017
Essay Speech Fusion

# Systems 29 17 9 10

Shared Task Best 0.8359 0.8818 0.8755 0.9319

Oracle 0.9791 0.9628 0.9572 0.9809
Accuracy@3 0.9555 0.9592 0.9508 0.9764
Accuracy@2 0.9218 0.9501 0.9290 0.9700

Plurality Vote 0.8425 0.8793 0.8508 0.9319

Table 4: Oracle results on the NLI 2013 and 2017 shared task systems. The ensemble includes each
team’s best system in each track. Results are reported as the macro-averaged F1-score.

5.2 Ensemble Analysis
One interesting research question is to measure the
upper-bound on accuracy for this year’s task. This
can be measured by treating each team’s best sub-
mission as an independent system, and combining
the results using ensemble methods such as a plu-
rality vote or an oracle. This type of analysis has
previously been applied to the NLI 2013 task and
shown to be helpful in other work (Malmasi et al.,
2015). Following the approach of Malmasi et al.
(2015), we apply the following combination meth-
ods to the 2017 data.

Plurality Voting: This is the standard combina-
tion strategy that selects the label with the highest
number of votes, regardless of the overall percent-
age of votes it received (Polikar, 2006). This dif-
fers from a majority vote combiner where a label
must obtain over 50% of the votes.

Oracle: An oracle is a type of fusion method that
assigns the correct class label for an instance if
any of the classifiers in the ensemble produces the
correct label for that data point. This method has
previously been used to analyze the limits of ma-
jority vote classifier combination (Kuncheva et al.,
2001). It can help quantify the potential upper
limit of an ensemble’s performance on the given
data and how this performance varies with differ-
ent ensemble configurations and combinations.

Accuracy@N : To account for the possibility that
a classifier may randomly predict the correct la-
bel (with a probability determined by the random
baseline) and thus exaggerate the oracle score, an
Accuracy@N combiner has been proposed (Mal-
masi et al., 2015). This method is inspired by the
“Precision at k” metric from Information Retrieval
(Manning et al., 2008) which measures precision
at fixed low levels of results (e.g. the top 10 re-

sults). Here, it is an extension of the Plurality vote
combiner where instead of selecting the label with
the highest votes, the labels are ranked by their
vote counts and a sample is correctly classified if
the true label is in the top N ranked candidates.4

Another way to view it is as a more restricted ver-
sion of the Oracle combiner that is limited to the
top N ranked candidates in order to minimize the
influence of a single classifier having chosen the
correct label by chance. In this study we experi-
ment with N = 2 and 3. We also note that setting
N = 1 is the same as the Plurality voting method.

We applied the above combiners to all three
tracks in the NLI 2017 task. The results are pre-
sented in Table 4. The results for each track are
compared against the best system in the shared
task. The equivalent results from the NLI 2013
shared task are also included for comparison.

We note that the 2017 oracle performance is
similar to that of 2013, despite having fewer sys-
tems. The Accuracy@2 results are also substan-
tially higher. Another difference in 2017 is that the
voting ensemble did not outperform the single best
system in any track, which was the case in 2013.
Taken together, these trends seem to suggest that
the 2017 entries were more accurate, rather than
the test set being easier to classify (in which case
we would have expected higher oracle results).

Results from the Accuracy@2 combiner show
that a great majority of the texts are close to be-
ing correctly classified: this value is significantly
higher than the plurality combiner and not much
lower than the oracle itself. This shows that the
correct label receives a significant portion of the
votes, and when not the winning label, it is often
the runner-up.

4In case of ties we choose randomly from the labels with
the highest number of votes.
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Figure 2: Results (macro-F1) for ensembles of dif-
ferent sizes using each team’s best system in the
Essay track. Systems are added according to their
absolute rank. Oracle combination (top) and plu-
rality voting (bottom) are shown.
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Figure 3: Results (macro-F1) for creating ensem-
bles of different sizes using each team’s best sub-
mission in the Fusion track. Systems are added
according to their absolute rank. Oracle combina-
tion (top) and plurality voting (bottom) are shown.
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Figure 4: Results (macro-F1) for ensembles of
different sizes using each team’s best system in
the NLI Shared Task 2013 (test set). Systems are
added in order of their rank. Oracle combination
(top) and plurality voting (bottom) are shown.

It is also evident that the results for the fusion
track are much higher, again highlighting the util-
ity of combining multiple modalities for NLI.

In addition to using each team’s best system, We
also experimented with creating ensembles of dif-
ferent sizes. For each track we created N ensem-
bles E1 . . . EN , with N being the number of sys-
tems in that track. Each ensemble En contains the
top n systems in the given track, so that the first
ensemble contains only the top system, the second
contains the top two systems, and so on, with the
final ensemble containing every team’s system.

This analysis enables us to assess the ensemble
performance as more predictions are added. The
results for the Oracle and Plurality Vote ensem-
bles in the essay and fusion tracks are shown in
Figure 2 and Figure 3. For comparison we also in-
clude the ensemble combinations generated from
the 2013 test set, as shown in Figure 4.

For both tracks we observe that oracle accuracy
increases as more systems are added, which is to
be expected. For voting combination, performance
increases as the top systems are added, but then
begins to drop off as errors are introduced from
the less accurate systems. This suggests that it
might be possible to develop a system that per-
forms slightly better than the top-ranked system.

On balance, the analysis presented in this sec-
tion suggests that it will be challenging to de-
velop NLI systems that attain statistically signif-
icant gains on this data.

6 Conclusion and Future Work

We presented the results of the NLI Shared Task
2017. This edition of the task introduced the use
of transcriptions and i-vector features for speech-
based NLI, as well the as the fusion task which
jointly uses the spoken and written responses.

The task attracted strong participation with 19
entrants, many of whom developed systems that
built on recent research in the field. The fu-
sion track demonstrated that the combination of
the written and spoken response can provide a
substantial boost in classification accuracy. Mul-
tiple classifier systems (such as ensembles and
meta-classifiers) were the most effective across all
tracks. Mainly using lexical and syntactic features,
models were mostly based on traditional classifi-
cation methods (e.g. SVMs) which were not out-
performed by deep learning approaches. Taken to-
gether, their results have generated a number of
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new insights for this task, and serve as a building
block for future work. The results obtained here
will also provide an important benchmark for as-
sessing future results.

There are a number of avenues for future NLI
research. Although we were not able to include
the raw audio data in this task, its inclusion in the
speech and fusion tasks could be an interesting ad-
dition. The expansion of the L1 classes to include
a larger number of linguistically diverse languages
can also be insightful. Most NLI research to date
has been limited to approximately a dozen lan-
guages, so it is not clear how these systems will
fare as the number of classes increases.

The relatively low performance of transcription-
based features also merits further investigation. A
first step would be to assess whether the primary
issue is related to the shorter lengths of the texts.
This hypothesis can be tested by obtaining tran-
scripts of longer spoken responses, or even arti-
ficially creating longer texts by concatenating the
existing data.

Finally, the essay-based NLI results obtained on
English L2 data have been replicated on a range
of other languages (Malmasi and Dras, 2015). It
would be interesting to see to what degree the
speech-based NLI methodologies would work on
other languages. The paucity of spoken responses
from learners of languages other than English
makes this a challenging research question.
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Abstract

This study provides a detailed analysis of
evaluation of English pronoun reference
questions which are created automatically
by machine. Pronoun reference questions
are multiple choice questions that ask test
takers to choose an antecedent of a target
pronoun in a reading passage from four
options. The evaluation was performed
from two perspectives: the perspective of
English teachers and that of English learn-
ers. Item analysis suggests that machine-
generated questions achieve comparable
quality with human-made questions. Cor-
relation analysis revealed a strong cor-
relation between the scores of machine-
generated questions and that of human-
made questions.

1 Introduction

Asking questions has been widely used as a
method to assess the effectiveness of teaching and
learning activities. By asking questions, teach-
ers can get feedback whether students understand
about the teaching materials. In this context, creat-
ing questions becomes an important task in teach-
ing and learning activities. Questions are usu-
ally made by human experts, which demands man-
ual efforts; thus it is time-consuming and expen-
sive. Automatic question generation is a solution
to solve this problem.

Several past studies worked on various kinds
of automatic question generation. Heilman and
Smith (2009) worked on the automatic question
generation for the purpose of reading compre-
hension assessment and practice. Liu and Calvo
(2012) worked on the automatic generation of trig-
ger questions (directive and facilitative) for sup-
porting writing activities. Chali and Hasan (2015)

worked on the automatic generation of all possi-
ble questions given a topic of interest. Serban
et al. (2016) worked on the automatic generation
of questions about an image.

Research on automatic question generation has
been active, yet there are few studies which elab-
orate the detailed evaluation process and in-depth
analysis of the machine-generated questions. QG-
STEC 2010 is the first shared task about question
generation that comprises two subtasks: question
generation from paragraphs and question genera-
tion from sentences (Rus et al., 2010). Human
judges were utilised to evaluate question quality
by considering five criteria: syntactic correctness
and fluency, question type, relevance, ambiguity,
and variety.

Liu and Calvo (2012) evaluated their trigger
question generation system for academic writing
support by comparing machine-generated trigger
questions to human-made trigger questions based
on five aspects: clarity, correctness, relevance,
usefulness for learning concepts, and usefulness to
improve the literature review documents. Twenty-
three students were instructed to write essays and
then to assess the trigger questions if these ques-
tions could improve their essays. Because the
machine-generated trigger questions were created
based on the collected student essays, their anal-
ysis showed that they were effective only for the
collected student essays while the human-made
trigger questions were effective for general essays
as well as the collected essays.

Zhang and VanLehn (2016) employed students
to rate machine-generated questions and human-
made questions based on relevance, fluency, am-
biguity, pedagogy and depth. Araki et al. (2016)
evaluated their question generation system by
judging the questions on three metrics: grammat-
ical correctness, answer existence and inference
steps.
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On John Black Tuley's land, on Meshach Creek, 6
miles northeast of Tompkinsville, two human
skeletons were found in a small opening, which has
since been known as the Bone Cave. It is a room not
over 10 feet across at any part, in a limestone
conglomerate, and may be of quite recent origin.
Being inconvenient of access, it is not in a position
for residence purposes. The skeletons were probably
those of Indian hunters. They were less than 2 feet
below the surface. The material in which the little
cave is formed will crumble easily in cold weather,
being rather wet from the soil water soaking through
the hill above it.

The word “they” in the passage 
refers to
(A) skeletons
(B) feet
(C) purposes
(D) hunters

1: reading passage

2: target pronoun

3: correct answer

4: distractors

Figure 1: Example of pronoun reference question

Susanti et al. (2017) utilised English teachers
and students to evaluate their question generation
system. English teachers were asked to distin-
guish machine-generated questions from human-
made questions apart. The English teachers also
judged the questions on their usability in a real test
and their difficulties using five scale rating. They
also received suggestions to improve the questions
from the English teachers. Furthermore, students
were asked to answer the machine-generated ques-
tions and human-made questions; their answers
were analysed using item analysis and the analysis
based on Neural Test Theory (Shojima, 2007).

To sum up, the evaluation of automatic question
generation systems in the past research was per-
formed by utilising human judges and students.
In this study, we provide detailed evaluation ex-
periments and analysis of automatically generated
pronoun reference questions. Pronoun reference
questions consist of four components, i.e. a read-
ing passage, a target pronoun, a correct answer,
and three distractors as illustrated in Figure 1. We
focus on pronoun reference questions because they
measure the test taker’s ability to resolve pronoun
in reading passages. We argue that resolving pro-
noun is an important skill for reading comprehen-
sion.

The evaluation target of this study is the English
pronoun reference questions generated by our sys-
tem (Satria and Tokunaga, 2017). To the best of
our knowledge, there is no other system for gen-
erating pronoun reference questions. The system
generates questions from human-written texts by
performing a sentence splitting technique on non-
restrictive relative clauses. The details of the ques-
tion generation system are explained in Section 2.
We evaluate the questions from two different per-
spectives following Susanti et al. (2017). The first

perspective is from English teachers. We argue
that English teachers have the ability to differenti-
ate the good questions from the bad ones because
creating questions is one of the teacher’s respon-
sibilities in the classroom; thus asking English
teachers to judge the quality of machine-generated
questions is reasonable. The second perspective is
from English learners. Good questions can dis-
criminate high proficiency learners from low pro-
ficiency learners. English learners were instructed
to answer the questions and their responses were
used for analysing the characteristics of the ques-
tions.

In what follows, we explain the automatic ques-
tion generation system to be evaluated (Section 2),
followed by the elaboration of the evaluation from
the English teacher perspective (Section 3) and the
English learner perspective (Section 4). We con-
clude the evaluation results and point out the pos-
sible future research direction (Section 5).

2 Generating pronoun reference
questions

Pronoun reference questions such as in Figure 1
ask test takers to identify the antecedent of the
target pronoun in the reading passage; thus the
correct answer can be obtained by employing an
anaphora resolution system to identify the an-
tecedent of the target pronoun. Using this ap-
proach, the performance of the anaphora resolu-
tion system directly affects the quality of the gen-
erated questions. Since the performance of the
state-of-the-arts anaphora resolution system is still
insufficient to be employed for generating pro-
noun reference questions, we proposed to utilise
nonrestrictive relative clauses to obtain pairs of
the correct answer (antecedent) and the target pro-
noun (Satria and Tokunaga, 2017). The core idea
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of our method is transforming a sentence with a
nonrestrictive relative clause into two sentences
by applying a sentence splitting technique with re-
placing the relative pronoun with a personal pro-
noun. An assumption behind our method is that
the antecedent identification of relative pronouns
is relatively easier than that of personal pronouns
because the antecedents of the relative pronouns
appear in a restricted region in the sentence.

The system receives human-written texts from
Project Gutenberg1 that span several genres (i.e.
science, technology and history) and produces
question components based on the texts. The
question generation process comprises four steps:
correct answer generation, reading passage gen-
eration, target pronoun generation, and distractor
generation.

The nonrestrictive relative clause is vital in our
system because we transform human-written texts
by applying the sentence splitting technique re-
garding nonrestrictive relative clauses to create the
correct answer, the reading passage and the tar-
get pronoun. Nonrestrictive relative clauses are
clauses that do not specify its modifying noun;
they only give additional information to it in-
stead. Thus, they can be detached from their main
clauses. This property allows the sentence split-
ting technique to work most of the cases without
changing the meaning of the texts.

There are cases, however, where the sentence
splitting induces a change of text meaning, mostly
due to the introduced pronoun refers to a differ-
ent antecedent from that referred to by the relative
pronoun in the original sentence. For instance, the
text (2) is derived from the text (1) by extracting
the nonrestrictive relative clause (underlined part)
and replacing the relative pronoun “which” with a
pronoun “it”. The antecedent of “it” in the third
sentence looks to be “legend”, a subject in the pre-
vious sentence. But it should be “knowledge” in
the previous sentence when we look at the original
sentence where “which”, the counterpart of “it” in
(2), obviously refers to “knowledge”. To exclude
such spurious anaphora, we apply the Centering
theory (Brennan et al., 1987; Grosz et al., 1995)
to see the introduced pronoun refers to the same
antecedent as in the original sentence. In this par-
ticular example, the Centering theory tells us that
“legend” in the second sentence of (2) has a higher
status than “knowledge” because the former is a

1https://www.gutenberg.org/

subject and the latter is an element in the prepo-
sitional phrase. Thus “legend” is a more probable
antecedent of “it”, which contradicts the original
sentence of (1).

(1) The church of S. Croce has seen another
strange death of a Pope, that of Sylvester
II. (999-1003), a Frenchman, Gerbert by
name. A legend, related first by car-
dinal Benno in 1099, describes him as
deep in necromantic knowledge, which he
had gathered during a journey through the
Hispano-Arabic provinces.

(2) The church of S. Croce has seen another
strange death of a Pope, that of Sylvester
II. (999-1003), a Frenchman, Gerbert by
name. A legend, related first by car-
dinal Benno in 1099, describes him as
deep in necromantic knowledge. He had
gathered it during a journey through the
Hispano-Arabic provinces.

2.1 Correct answer generation

The identified antecedent of the relative pronoun
is used as a correct answer. To identify the an-
tecedent of the relative pronoun, we employed
both lexical parser and dependency parser. The
lexical parser produces a parse tree of the target
sentence, i.e. a sentence that contains a nonre-
strictive relative clause. The parse tree is traversed
based on hand-made rules (Satria and Tokunaga,
2017) which consider the syntactic attachment and
the linguistic feature, i.e. number. The depen-
dency parser produces a set of dependencies which
include the acl:relc2 dependency relation. If only
both results from the lexical parser together with
hand-made rules and the dependency parser agree
on the antecedent of the relative pronoun, the tar-
get sentence is further processed in the next steps.
The system discards the target sentence which
causes discordance on the antecedent of the rel-
ative pronoun.

2.2 Reading passage and target pronoun
generation

We create a reading passage by splitting a sen-
tence at a nonrestrictive relative clause. Sentence
splitting divides the target sentence into two sen-
tences: the main clause and the relative clause.

2http://universaldependencies.org/docs/en/dep/acl-
relcl.html
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Table 1: Example of the evaluation table filled by the evaluators

question quality reading passage target pronoun correct answer distractors comments

Q1 2 X X
...

Q2 1 X
...

...
...

...
...

...
...

...

Q60 3
...

When splitting the target sentence, the connection
between two sentences must be maintained in or-
der to retain the sentence meaning. The connec-
tion of those sentences is maintained through the
target pronoun. The system creates the target pro-
noun by replacing the relative pronoun with a per-
sonal pronoun with considering linguistic features.
Because the target pronoun resides in the reading
passage, splitting target sentence and replacing the
relative pronoun with the target pronoun complete
the reading passage generation. For instance, the
text (4) is derived from (3). The underlined non-
restrictive relative clause in (3) is taken out into a
separate sentence and placed after the main clause
in (4). At the same time, the relative pronoun in
the relative clause is replaced with the personal
pronoun “they”. We further confirm that the intro-
duced pronoun “they” surely refers to the subject
in the previous sentence regarding the Centering
theory.

(3) The flowers, which are individually larger
than those of the False Acacia, are of a
beautiful rosy-pink, and produced in June
and July.

(4) The flowers are of a beautiful rosy-pink,
and produced in June and July. They are
individually larger than those of the False
Acacia.

2.3 Distractor generation

Distractor generation comprises the following
three steps.

Candidate generation Since we restrict the an-
tecedent of the pronoun, i.e. the correct answer,
to a noun or a noun phrase, distractors must also
be nouns or noun phrases. The part-of-speech tag-
ger was employed to extract all nouns and noun
phrases in the passage. The incompatible candi-
dates on linguistic features are eliminated from the
distractor candidates.

Coreference chain extraction A coreference
chain consists of a list of expressions that refer to
the same entity in a text. Thus, expressions in the
same coreference chain with the correct answer
are also a possible correct answer. Therefore, they
are eliminated from the distractor candidates.

Candidate ranking Since we need only three
distractors, the distractor candidates are ranked on
the recency principle. Recently mentioned enti-
ties are likely to be maintained in human mem-
ory because they are still fresh; thus those entities
are likely to be referred to by pronouns. More re-
cently mentioned entities are ranked higher than
the less recently mentioned entities. Finally, the
three highest ranked candidates are selected as the
distractors.

3 Evaluation from English teacher
perspective

3.1 Experimental setting
We asked five English teachers3 to evaluate the
quality of 60 machine-generated questions by as-
signing a score of one, two or three to each ques-
tion. The meaning of the scores is described be-
low.

1. problematic, the question is not usable in a
real test. Significant modifications are neces-
sary for real use.

2. acceptable but can be improved, the ques-
tion is usable in a real test as it is, but it can
be further improved.

3. acceptable, the question has no problem to
be used in a real test without any change.

If the question quality is judged to be one
or two, the evaluators must further identify the
problematic question components by checking

3They are non-native English speakers but the TESOL
(http://www.tesol.org) certificate holders.
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the corresponding columns as shown in Table 1.
The evaluators leave the problematic components
columns empty for acceptable quality questions.
The evaluators may optionally give comments on
problematic components or suggestions to im-
prove the question quality.

Table 2: Distribution of pairwise disagreement

evaluator\score {1,2} {1,3} {2,3}
(A, B) 7 4 28
(A, C) 2 7 14
(A, D) 4 6 24
(A, E) 2 8 20
(B, C) 1 1 28
(B, D) 1 0 28
(B, E) 3 4 30
(C, D) 1 0 27
(C, E) 4 3 22
(D, E) 1 5 19

total 26 38 240

Table 3: Distribution of rating

evaluator\score 1 2 3 total

A 10 18 32 60
B 1 35 24 60
C 1 20 39 60
D 0 18 42 60
E 6 16 38 60

total 18 107 175 300

3.2 Result and discussion
First, we investigated the agreement between the
evaluators by computing the ordinal Krippen-
dorff’s alpha (Krippendorff, 1970); it was 0.05 in-
dicating very low agreement between the evalua-
tors. We further investigated the reason of the low
agreement. We calculated the pairwise disagree-
ment frequency between every pair of the eval-
uators as shown in Table 2. The table indicates
that the disagreement between the judgement “ac-
ceptable but can be improved” and “acceptable”
({2, 3}) is dominant (80%). This fact suggests the
decision on these two categories is highly subjec-
tive. Since they are both acceptable categories, we
recalculated the Krippendorff’s alpha after merg-
ing them into a single category to obtain the value
0.06. The average of the pairwise observation
agreement was 0.89 after merging. Table 3 shows
the distribution of scores judged by each evaluator.
As the table shows, the highly skewed distribution
of judgment can be considered as the main reason

of a very low alpha despite the fairly high obser-
vation agreement.

Table 4: Majority quality scores of 60 questions

majority score frequency

1 0
2 12
3 39

tie 9

total 60

Table 4 shows the distribution of the quality
score calculated by the majority principle. The
majority principle means that when at least three
evaluators rate a same value, that particular value
is defined as the question quality score. Table 5 in-
dicates that there are 39 questions (65%) which the
majority of the evaluators rated “acceptable (3)”.
All nine tie cases get at most two “problematic”
rating, i.e. the “problematic” can not be the ma-
jority. This means all generated questions were
judged “usable in a real test” based on the major-
ity principle.

Table 5: Average quality scores of 60 questions

average score frequency

1.6 1
1.8 1
2.0 4
2.2 8
2.4 7
2.6 22
2.8 13
3.0 4

total 60

Table 5 summarises the average quality scores
of five evaluators with their frequency. Even
though the majority quality is the same, the actual
rating may be different; thus it yields a different
average quality. The question with the score 1.6
gets two ones and three twos. All evaluators agree
that this particular question has an error in the cor-
rect answer. The question with the score 1.8 gets
two ones, two twos and one three. Four evaluators
agree that this particular question has an error in
the correct answer.

Table 6 summarises the comments from the five
evaluators with their frequency. The most com-
mon comments are related to the correct answer.
This tendency is consistent with the component-
wise evaluation of our past research (Satria and
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Table 6: Evaluator’s comments with frequency

comments frequency

other option could be the correct answer 71
the reading passage is too long 28
the distractors do not distract 18
the distractors are too distracting 11
the reading passage offers little context 6
there are multiple correct answers 5
the reading passage has many technical word 4

(i.e. too difficult)
the correct answer is too obvious 1
the target pronoun is inadequate 1

Tokunaga, 2017). We counted the number of ques-
tions with a checked cell in the “correct answer”
column of the evaluation table (Table 1) to find
80 such cells in total. This number is roughly
the same as that of the comments on correct an-
swers. Among these 80 questions, 12 questions
were rated 1 (problematic) and 68 were rated 2
(acceptable but can be improved). These cases
suggest that the filtering with the Centering theory
should be further improved.

4 Evaluation based on English learner
perspective

The evaluation from the English learner perspec-
tive was conducted to evaluate the behaviour of
machine-generated questions in measuring test
taker’s proficiency.

4.1 Experimental setting

We prepared three sets of questions each of
which contains ten machine-generated questions
(MGQs) and ten human-made questions (HMQs),
in total 20 questions. These 30 HMQs were ran-
domly selected from TOEFL preparation books
while these 30 MGQs were randomly selected
from the set of MGQs which were judged accept-
able on the majority principle in the evaluation by
the English teachers as described in Section 3. The
question sets were created so that the difference of
the average of question difficulty across the ques-
tion sets was minimised. The balance of ques-
tion difficulty among three groups, and between
MGQs and HMQs is important because we cal-
culate the student-wise score correlation between
scores from MGQs and HMQs as explained later
in 4.2.

To balance question difficulty among the ques-
tion sets, we utilised the reading passage diffi-
culty. A question is considered difficult if its read-

Dr.1 M. Aurel9 Stein9, principal2 of1 the1 Oriental7
College1 at1 Lahore9, has1 now1 ready1 for1 publication4

the1 first1 volume2 of1 his1 critical3 edition4 of1 the1

Rajatarangini9, or1 Chronicles8 of1 the1 Kings1 of1
Kashmir9, upon1 which1 he1 has1 been1 engaged3 for1
some1 years1. This1 work1 is1 of1 special1 interest1
as1 being1 almost1 the1 sole4 example1 of1 historical2
literature2 in1 Sanskrit9. It1 was1 written2 by1 the1 poet2
Kalhana9 in1 the1 middle1 of1 the1 twelfth1 century1.

Figure 2: Example of reading passage with word
difficulty level (subscripts correspond to the level)

Table 7: Mean of reading passage difficulty

metric question set MGQ HMQ

average Qs1 2.15 2.14
JACET8000 Qs2 2.13 2.13

Qs3 2.12 2.12

Flesch-Kincaid Qs1 9.9 11.2
grade level Qs2 10.0 9.8

Qs3 9.6 10.7

Flesch-Kincaid Qs1 60.3 46.1
reading ease Qs2 59.9 58.9

Qs3 65.2 50.5

Dale-Chall Qs1 9.0 9.9
readability formula Qs2 9.0 9.1

Qs3 8.9 9.7

ing passage is difficult and vice versa. The read-
ing passage difficulty is calculated based on the
word difficulty in the passages. We employed
JACET8000 (Uemura and Ishikawa, 2004), a list
of 8,000 English words divided into eight levels
of word difficulty based on their word frequency.
Level 1 is the most frequent (i.e. the easiest) while
level 8 is least frequent (i.e. the most difficult).
Words that do not appear in the list are considered
even less frequent than level 8; thus they are con-
sidered to be level 9. To obtain the reading passage
difficulty, we assigned a JACET8000 word diffi-
culty level to every word in the reading passage as
illustrated in Figure 2 and calculated the average
of the difficulty levels. The average of reading pas-
sage difficulty for each question set is presented in
Table 7.

Many metrics to measure text readability have
been proposed in the past, such as Flesch-Kincaid
grade level (Kincaid et al., 1975), Flesch-Kincaid
reading ease (Kincaid et al., 1975) and Dale-Chall
readability formula (Dale and Chall, 1948). The
first two calculate text difficulty with respect to
the number of sentences, words and syllables in
the text. The third one takes into account the dif-
ficulty of each word as well. Table 7 also shows
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Table 8: TOEIC score of each group

student question TOEIC score number of
group set mean SD students

1 Qs1 561 146 31
2 Qs2 559 123 25
3 Qs3 554 122 25

the mean values of these metrics for each question
set and generation mode, i.e. machine-generated
vs. human-made. Overall, the difficulty of read-
ing passages in every question set is well balanced
against every metric.

Eighty-one Japanese university students (57
first year and 24 second year students) were re-
cruited and divided into three groups, 27 students
for each group, considering their TOEIC scores;
we did our best to minimise the difference of
the score distribution and the mean of the scores
across these three groups. Each student group was
assigned a different question set and instructed to
finish the assigned question set within 30 minutes.

4.2 Result and discussion
Although we made three groups of the same num-
ber of students (27) and assigned a different ques-
tion set to each group, four students mistakenly
worked on a wrong question set. Therefore the
distribution of the number of students in a group
was skewed as shown in Table 8. Table 8 also
shows the average TOEIC score of each group
with a standard deviation (SD).

Table 9: Item difficulty of MGQs and HMQs

MGQ HMQ

mean 0.59 0.60
standard deviation 0.24 0.17
minimum 0.20 0.26
maximum 0.96 0.90

The item analysis investigates the test taker’s re-
sponses to individual question items to evaluate
the quality of those items. It often uses two mea-
sures: the item difficulty and the item discrimina-
tion index. The item difficulty is a proportion of
the number of test takers who answered correctly
to the number of all test takers (Brown, 2013). The
value ranges from 0 to 1 with a larger value repre-
senting an easier item. Table 9 shows the descrip-
tive statistics of the item difficulty of the sets of 30
MGQs and 30 HMQs.
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Figure 3: Distribution of item difficulty

Table 9 shows no big difference in mean of the
item difficulty between MGQs and HMQs. This
result suggests that MGQs have similar difficulty
with HMQs. This is consistent with the fact we
maintained the balance of question difficulty be-
tween MGQs and HMQs as explained in Sub-
section 4.1. We also provide the distribution of
the item difficulty of the MGQs and HMQs in
Figure 3. Although the mean is similar between
the MGQs and HMQs as shown in Table 9, Fig-
ure 3 reveals that the distribution of the item diffi-
culty for HMQs is closer to the normal distribution
than that for MGQs. We conducted the Levene’s
test (Levene et al., 1960) to assess the item dif-
ficulty variance homogeneity between MGQs and
HMQs to find that their variances are not homoge-
neous. As we do not care about controlling item
difficulty when generating question items, this is a
natural consequence.

Mexico, 1818. This species, though not hardy enough for
every situation, is yet sufficiently so to stand unharmed as
a wall plant. It grows from 10 feet to 12 feet high, with
deep-green leaves that are hoary on the under sides. The
flowers are bright blue, and produced in June and the fol-
lowing months. They are borne in large, axillary panicles.
In a light, dry soil and sunny position this shrub does well
as a wall plant, for which purpose it is one of the most or-
namental. There are several good nursery forms, of which
the following are amongst the best: C. azureus Albert Pet-
titt, C. azureus albidus, C. azureus Arnddii, one of the best,
C. azureus Gloire de Versailles, and C. azureus Marie Si-
mon.
(A) leaves
(B) sides
(C) flowers← correct answer
(D) months

Figure 4: The easiest question

Figure 4 shows the easiest question item while
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There are two recesses in the cliff on the opposite side of
the little creek formed by the spring. They are 40 to 50
feet above the water, each with an irregular floor of 20 by
30 feet under shelter of the rock. No solid rock is visible
in front of them, but a projecting ledge appears on either
side about 6 feet below the present average level of the
floor; and this is probably the depth of accumulation at the
front. It seems continuous. It may be less toward the rear.
The cavities are in a stratum which is somewhat shelly and
crumbles easily.
(A) ledge← correct answer
(B) depth
(C) accumulation
(D) front

Figure 5: The most difficult question
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Figure 6: Distribution of item discrimination in-
dex

Figure 5 shows the most difficult one in the MGQs
in which the target pronoun is in bold and the op-
tions are underlined in the reading passage for the
readability purpose. Twenty-four out of 25 stu-
dents answered correctly for the easiest one. This
question item is easy because the subject pronoun
refers to the subject of the previous sentence. Only
five out of 25 students answered correctly for the
most difficult question item. Both extremes are not
preferable in measuring test taker’s proficiency be-
cause too easy items lead to very high scores while
too difficult items lead to very low scores for the
most of test takers.

We calculated the Pearson correlation coeffi-
cient between the JACET8000 based reading pas-
sage difficulty as we defined in Table 7 and the
item difficulty of the MGQs and obtained the value
of 0.56. This result suggests that the reading pas-
sage difficulty can be one of the important factors
for predicting and controlling the item difficulty of
question items.

The item discrimination index is a metric to
measure the discrimination power of question

items (Brown, 2013). The discrimination power
is the ability of question items in discriminating
high-proficiency test takers from low-proficiency
test takers. This metric is vital for language test-
ing because a good test must be able to discrim-
inate test taker’s proficiency precisely. The item
discrimination index of a question item i is com-
puted as follows

IDi =
Ui − Li

n
,

where Ui and Li represent the number of test tak-
ers who correctly answered the question item i in
the high proficiency group and the low proficiency
group respectively, and n denotes the number of
test takers in a group. The groups of high and
low proficiency are defined as the top 27% of the
test takers and bottom 27% of the test takers re-
spectively. The threshold value of 27% is utilised
to maximise two characteristics; those two groups
must be as different as possible to discriminate
clearly, and the number of test takers in each group
must be as large as possible to achieve reliabil-
ity (Popham, 1981; Kelley, 1939).

We computed the item discrimination index for
each question item and the average of them. The
average is 0.33 for the MGQs and 0.37 for the
HMQs. A question item is considered to be ac-
ceptable if its discrimination index is greater than
or equal to 0.2 (Brown, 1983). According to this
criteria, we counted the number of question items
of which the discrimination index is greater than
or equal to 0.2. Out of 30 question items, the
22 MGQs and 24 HMQs items cleared this con-
dition. Figure 6 shows the distribution of the dis-
crimination index. There seems to be no big dif-
ference between the MGQs and HMQs in terms of

The region may be roughly characterized as a vast sandy
plain, arid in the extreme; or rather as two such plains,
separated by a chain of mountains running northwest and
southeast. In the southern part of the reservation this
mountain range is known as the Choiskai mountains, and
here the top is flat and mesa-like in character, dotted with
little lakes and covered with giant pines. They in the sum-
mer give it a park-like aspect. The general elevation of
this plateau is a little less than 9,000 feet above the sea
and about 3,000 feet above the valleys or plains east and
west of it.
(A) plains
(B) mountains
(C) lakes
(D) pines← correct answer

Figure 7: MGQ example with a poor discrimina-
tion index (ID = 0.125)
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the average discrimination index (0.33 vs. 0.37)
and the number of items clearing the 0.2 crite-
rion (22 vs. 24). Their distribution reveals that
the HMQs shows a slightly better distribution than
the MGQs. However, the MGQs have comparable
discrimination power as the HMQs.

Figure 7 shows an example of MGQ which has
a poor discrimination index, i.e. ID = 0.125.
Three test takers in the high proficiency group and
two test takers in the low proficiency group an-
swered correctly. The distractor “mountains” dis-
tracted test takers in the high proficiency group
very much; thus the number of correctly answered
test takers was almost the same between the two
groups. The potential reason is that “mountains”
appears twice in the text, so it lured the test takers
to choose “mountains”.

To assess the ability of the MGQs in measuring
test taker’s proficiency, we calculated the correla-
tion between the test taker’s score of the MGQs
and other scores including that of the HMQs and
TOEIC scores. We argue that the test taker’s
TOEIC scores provide their true English profi-
ciency. The Pearson correlation coefficient (Pear-
son, 1896) was calculated, presented in Table 10.
The p-value of all the correlation coefficients is
less than 0.05.

Table 10 shows that there is no big difference
between the MGQs and HMQs in terms of the cor-
relation between the test taker’s scores and their
TOEIC scores. Furthermore, the correlation with
the TOEIC Reading scores is stronger than that
with the TOEIC Listening scores. This is a rea-
sonable tendency because the pronoun reference
questions are designed for assessing reading com-
prehension ability.

5 Conclusion

This paper presented the evaluation of auto-
matically generated pronoun reference questions
which ask test takers the antecedent of the spec-
ified pronoun in the reading passage. A pronoun
reference question was automatically generated by
splitting a sentence in a human-written text at a
nonrestrictive relative clause and replacing the rel-
ative pronoun with a personal pronoun.

The evaluation was performed from two differ-
ent perspectives: the English teacher perspective
and the English learner perspective. Automati-
cally generated 60 question items were evaluated
by five English teachers, resulting in that 39 out

Table 10: Peason correlation coefficients between
test taker’s scores

MGQ HMQ

TOEIC Listening 0.56 0.57
TOEIC Reading 0.65 0.68
TOEIC Listening & Reading 0.74 0.77
HMQ 0.61 —

of 60 (65%) question items were considered ac-
ceptable to be used in a real test. We administered
30 MGQs from these acceptable question items to-
gether with 30 HMQs from TOEFL preparation
books to the 81 university students. The analy-
sis results of the test taker’s responses showed that
the MGQs achieved comparable quality with the
HMQs on their item difficulty and item discrimi-
nation index. Furthermore, there was a strong cor-
relation between the MGQ scores and the TOEIC
scores of the same test takers.

Possible future work includes controlling item
difficulty of the generated questions and generat-
ing other types of questions. For instance, our ex-
perimental result suggested that the item difficulty
of the generated questions had a moderate corre-
lation with the reading passage difficulty. Thus,
controlling the passage difficulty might enable us
to control the difficulty of the question items. We
also need to further explore other factors affecting
the item difficulty.
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Abstract

Public speakings play important roles in
schools and work places and properly us-
ing humor contributes to effective pre-
sentations. For the purpose of automat-
ically evaluating speakers’ humor usage,
we build a presentation corpus containing
humorous utterances based on TED talks.
Compared to previous data resources sup-
porting humor recognition research, ours
has several advantages, including (a) both
positive and negative instances coming
from a homogeneous data set, (b) con-
taining a large number of speakers, and
(c) being open. Focusing on using lexical
cues for humor recognition, we systemati-
cally compare a newly emerging text clas-
sification method based on Convolutional
Neural Networks (CNNs) with a well-
established conventional method using lin-
guistic knowledge. The advantages of the
CNN method are both getting higher de-
tection accuracies and being able to learn
essential features automatically.

1 Introduction

The ability to make effective presentations has
been found to be linked with success at school and
in the workplace (Hill and Storey, 2003; Stevens,
2005). Humor plays an important role in success-
ful public speaking, e.g., helping to reduce pub-
lic speaking anxiety often regarded as the most
prevalent type of social phobia, generating shared
amusement to boost persuasive power, and serv-
ing as a means to attract attention and reduce ten-
sion (Xu, 2016).

Automatically simulating an audience’s reac-
tions to humor will not only be useful for presenta-
tion training, but also improve conversational sys-

tems by giving machines more empathetic power.
The present study reports our efforts in recogniz-
ing utterances that cause laughter in presentations.
These include building a corpus from TED talks
and using Convolutional Neural Networks (CNNs)
in the recognition.

The remainder of the paper is organized as fol-
lows: Section 2 briefly reviews the previous re-
lated research; Section 3 describes the corpus we
collected from TED talks; Section 4 describes the
text classification methods; Section 5 reports on
our experiments; finally, Section 6 discusses the
findings of our study and plans for future work.

2 Previous Research

Humor recognition refers to the task of deciding
whether a sentence/spoken-utterance expresses a
certain degree of humor. In most of the previous
studies (Mihalcea and Strapparava, 2005; Puran-
dare and Litman, 2006; Yang et al., 2015), humor
recognition was modeled as a binary classification
task.

In the seminal work (Mihalcea and Strappar-
ava, 2005), a corpus of 16,000 “one-liners” was
created using daily joke websites to collect hu-
morous instances while using formal writing re-
sources (e.g., news titles) to obtain non-humorous
instances. Three humor-specific stylistic features,
including alliteration, antonymy, and adult slang
were utilized together with content-based features
to build classifiers. In a recent work (Yang et al.,
2015), a new corpus was constructed from the Pun
of the Day website. Yang et al. (2015) explained
and computed stylistic features based on the fol-
lowing four aspects: (a) Incongruity, (b) Ambi-
guity, (c) Interpersonal Effect, and (d) Phonetic
Style. In addition, Word2Vec (Mikolov et al.,
2013) distributed representations were utilized in
the model building.
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Beyond lexical cues from text inputs, other
research has also utilized speakers’ acoustic
cues (Purandare and Litman, 2006; Bertero and
Fung, 2016b). These studies have typically used
audio tracks from TV shows and their corre-
sponding captions in order to categorize charac-
ters’ speaking turns as humorous or non-humorous
based on canned laughter.

Convolutional Neural Networks (CNNs) have
recently been successfully used in several text
categorization tasks (e.g., review rating, senti-
ment recognition, and question type recognition).
Kim (2014); Johnson and Zhang (2015); Zhang
and Wallace (2015) suggested that using a simple
CNN setup, which entails one layer of convolu-
tion on top of word embedding vectors, achieves
excellent results on multiple tasks. Deep learning
recently has been applied to computational humor
research (Bertero and Fung, 2016b,a). In Bertero
and Fung (2016b), CNN was found to be the best
model that uses both acoustic and lexical cues for
humor recognition. However, it did not outper-
form the Logistical Regression (LR) model when
using text inputs exclusively. Beyond treating hu-
mor detection as a binary classification task, Bert-
ero and Fung (2016a) formulated the recognition
to be a sequential labeling task and utilized Re-
current Neural Networks (RNNs) (Hochreiter and
Schmidhuber, 1997) on top of CNN models (serv-
ing as feature extractors) to utilize context infor-
mation among utterances.

From the brief review, it is clear that there is
a great need for an open corpus that can sup-
port investigating humor in presentations.1 CNN-
based text categorization methods have been ap-
plied to humor recognition (e.g., in (Bertero and
Fung, 2016b)) but with limitations: (a) a rigorous
comparison with the state-of-the-art conventional
method examined in Yang et al. (2015) is missing;
(b) CNN’s performance in the previous research
is not quite clear; and (c) some important tech-
niques that can improve CNN performance (e.g.,
using varied-sized filters and dropout regulariza-
tion (Hinton et al., 2012)) were not applied. There-
fore, the present study is meant to address these
limitations.

1While we were working on this paper, we found a recent
Master’s thesis (Acosta, 2016) that also conducted research
on detecting laughter on the TED transcriptions. However,
that study only explored conventional text classification ap-
proaches.

3 TED Talk Data

TED Talks2 are recordings from TED conferences
and other special TED programs. Many effects in
a presentation can cause audience laugh, such as
speaking content, presenters’ nonverbal behaviors,
and so on. In the present study, we focused on
the transcripts of the talks. Most transcripts of the
talks contain the markup ‘(Laughter)’, which rep-
resents where audiences laughed aloud during the
talks. This special markup was used to determine
utterance labels.

We collected 1,192 TED Talk transcripts3. An
example transcription is given in Figure 1. The
collected transcripts were split into sentences us-
ing the Stanford CoreNLP tool (Manning et al.,
2014). In this study, sentences containing or im-
mediately followed by ‘(Laughter)’ were used as
‘Laughter’ sentences, as shown in Figure 1; all
other sentences were defined as ‘No-Laughter’
sentences. Following Mihalcea and Strapparava
(2005) and Yang et al. (2015), we selected the
same numbers (n = 4726) of ‘Laughter’ and ‘No-
Laughter’ sentences. To minimize possible topic
shifts between positive and negative instances, for
each positive instance, we randomly picked one
negative instance nearby (the context window was
7 sentences in this study). For example, in Fig-
ure 1, a negative instance (corresponding to ‘sent-
2’) was selected from the nearby sentences rang-
ing from ‘sent-7’ to ‘sent+7’. More details about
this data set can refer to Lee et al. (2016). The
TED data set can be obtained by contacting the
authors.

4 Methods
4.1 Conventional Model

Following Yang et al. (2015), we applied Random
Forest (Breiman, 2001) to perform humor recog-
nition by using the following two groups of fea-
tures. The first group are humor-specific stylistic
features covering the following 4 categories4: In-
congruity (2), Ambiguity (6), Interpersonal Effect
(4), and Phonetic Pattern (4). The second group
are semantic distance features, including the hu-
mor label classes from 5 sentences in the training
set that are closest to the sentence being evalu-
ated (found by using a k-Nearest Neighbors (kNN)

2http://www.ted.com
3The transcripts were collected on 7/9/2015.
4The number in parenthesis indicates how many features

are in that category.
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sent-7 . . .
. . . . . .
No-Laughter He has no memory of the past, no knowledge of the future, and he only cares about two

things: easy and fun.
sent-1 Now, in the animal world, that works fine.
Laughter If you’re a dog and you spend your whole life doing nothing other than easy and fun things,

you’re a huge success! (Laughter)
sent+1 And to the Monkey, humans are just another animal species.
. . . . . .
sent+7 . . .

Figure 1: An excerpt from TED talk “Tim Urban: Inside the mind of a master procrastinator” (http:
//bit.ly/2l1P3RJ)

method), and each sentence’s averaged Word2Vec
representations (n = 300). More details can be
found in Yang et al. (2015).

4.2 CNN model

Our CNN-based text classification’s setup follows
Kim (2014). Figure 2 depicts the model’s details.
From the left side’s input texts to the right side’s
prediction labels, different shapes of tensors flow
through the entire network for solving the classifi-
cation task in an end-to-end mode.

Firstly, tokenized text strings were converted to
a 2D tensor with shape (L × d), where L rep-
resents sentences’ maximum length while d rep-
resents the word-embedding dimension. In this
study, we utilized the Word2Vec (Mikolov et al.,
2013) embedding vectors (d = 300) that were
trained on 100 billion words of Google News.
Next, the embedding matrix was fed into a 1D
convolution network with multiple filters. To
cover varied reception fields, we used filters of
sizes of fw − 1, fw, and fw + 1. For each fil-
ter size, nf filters were utilized. Then, max pool-
ing, which stands for finding the largest value from
a vector, was applied to each feature map (to-
tal 3 × nf feature maps) output by the 1D con-
volution. Finally, maximum values from all of
3× nf filters were formed as a flattened vector to
go through a fully connected (FC) layer to predict
two possible labels (Laughter vs. No-Laughter).
Note that for 1D convolution and FC layer’s in-
put, we applied ‘dropout’ (Hinton et al., 2012)
regularization, which entails randomly setting a
proportion of network weights to be zero during
model training, to overcome over-fitting. By using
cross-entropy as the learning metric, the whole se-
quential network (all weights and bias) could be

optimized by using any SGD optimization, e.g.,
Adam (Kingma and Ba, 2014), Adadelta (Zeiler,
2012), and so on.

5 Experiments
We used two corpora: the TED Talk corpus (de-
noted as TED) and the Pun of the Day corpus5

(denoted as Pun). Note that we normalized words
in the Pun data to lowercase to avoid a possibly
elevated result caused by a special pattern: in the
original format, all negative instances started with
capital letters. The Pun data allows us to verify
that our implementation of the conventional model
is consistent with the work reported in Yang et al.
(2015).

In our experiment, we firstly divided each cor-
pus into two parts. The smaller part (the Dev
set) was used for setting various hyper-parameters
used in text classifiers. The larger portion (the
CV set) was then formulated as a 10-fold cross-
validation setup for obtaining a stable and com-
prehensive model evaluation result. For the PUN
data, the Dev contains 482 sentences, while the
CV set contains 4344 sentences. For the TED data,
the Dev set contains 1046 utterances, while the
CV set contains 8406 utterances. Note that, with
a goal of building a speaker-independent humor
detector, when partitioning our TED data set, we
always kept all utterances of a single talk within
the same partition.

When building conventional models, we de-
veloped our own feature extraction scripts and
used the SKLL6 python package for building Ran-
dom Forest models. When implementing CNN,

5The authors of Yang et al. (2015) kindly shared their data
with us. We would like to thank them for their generosity.

6https://github.com/
EducationalTestingService/skll
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Figure 2: CNN network architecture

Acc. (%) F1 Precision Recall
Pun set

Chance 50.2 .498 .506 .497
Base 78.3 .795 .757 .839
CNN 86.1 .857 .864 .864

TED set
Chance 51.0 .506 .510 .503

Base 52.0 .595 .515 .705
CNN 58.9 .606 .582 .632

Table 1: Humor recognition on both Pun and TED
data sets by using (a) random prediction (Chance),
conventional method (Base) and CNN method

we used the Keras Python package7. Regarding
hyper-parameter tweaking, we utilized the Tree
Parzen Estimation (TPE) method as detailed in
Bergstra et al. (2013). After running 200 itera-
tions of tweaking, we ended up with the follow-
ing selection: fw is 6 (entailing that the vari-
ous filter sizes are (5, 6, 7)), nf is 100, dropout1
is 0.7 and dropout2 is 0.35, optimization uses
Adam (Kingma and Ba, 2014). When training the
CNN model, we randomly selected 10% of the
training data as the validation set for using early
stopping to avoid over-fitting.

On the Pun data, the CNN model shows consis-
tent improved performance over the conventional
model, as suggested in Yang et al. (2015). In par-
ticular, precision has been greatly increased from
0.762 to 0.864. On the TED data, we also ob-
served that the CNN model helps to increase pre-
cision (from 0.515 to 0.582) and accuracy (from
52.0% to 58.9%). The empirical evaluation results
suggest that the CNN-based model has an advan-
tage on the humor recognition task. In addition,
focusing on the system development time, gener-

7Our code implementation was based on
https://github.com/shagunsodhani/
CNN-Sentence-Classifier

ating and implementing those features in the con-
ventional model would take days or even weeks.
However, the CNN model automatically learns
its optimal feature representation and can adjust
the features automatically across data sets. This
makes the CNN model quite versatile for support-
ing different tasks and data domains. Compared
with the humor recognition results on the Pun data,
the results on the TED data are still quite low, and
more research is needed to fully handle humor in
authentic presentations.

6 Discussion

For the purpose of monitoring how well speak-
ers can use humor during their presentations, we
have created a corpus from TED talks. Com-
pared to the existing corpora, ours has the fol-
lowing advantages: (a) it was collected from au-
thentic talks, rather than from TV shows per-
formed by professional actors based on scripts; (b)
it contains about 100 times more speakers com-
pared to the limited number of actors in exist-
ing corpora. We compared two types of lead-
ing text-based humor recognition methods: a con-
ventional classifier (e.g., Random Forest) based
on human-engineered features vs. an end-to-end
CNN method, which relies on its inherent rep-
resentation learning. We found that the CNN
method has better performance. More importantly,
the representation learning of the CNN method
makes it very efficient when facing new data sets.

Stemming from the present study, we envision
that more research is worth pursuing: (a) for pre-
sentations, cues from other modalities such as au-
dio or video will be included, similar to Bertero
and Fung (2016b); (b) context information from
multiple utterances will be modeled by using se-
quential modeling methods.
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Abstract

We present crowdsourced collection of er-
ror annotations for transcriptions of spo-
ken learner English. Our emphasis in data
collection is on fluency corrections, a more
complete correction than has traditionally
been aimed for in grammatical error cor-
rection research (GEC). Fluency correc-
tions require improvements to the text,
taking discourse and utterance level se-
mantics into account: the result is a more
naturalistic, holistic version of the origi-
nal. We propose that this shifted empha-
sis be reflected in a new name for the task:
‘holistic error correction’ (HEC). We anal-
yse crowdworker behaviour in HEC and
conclude that the method is useful with
certain amendments for future work.

1 Introduction

By convention, grammatical error detection and
correction (GEC) systems depend on the availabil-
ity of labelled training data in which tokens have
been annotated with an error code and a correc-
tion. In (1) for example, taken from the open FCE
subset of the Cambridge Learner Corpus (CLC)
(Nicholls, 2003; Yannakoudakis et al., 2011), the
original token ‘waken’ is coded as a ‘TV’ (verb
tense) error and annotated with the correct token
‘woken’ on the right-hand side of the pipe.

(1) In the morning, you are <NS type=“TV”>
waken|woken </NS> up by a singing puppy.

Such efforts to annotate learner corpora are
time-consuming and costly, but with sufficient
quantities it is possible to train GEC systems to
identify and correct errors in unseen texts. For ex-
ample, 29 million tokens of the CLC have been

error-annotated, of which the FCE is a publicly-
available 500k token subset (Yannakoudakis et al.,
2011). The Write & Improve1 GEC system (W&I)
has been built on these resources (Andersen et al.,
2013), providing automated assessment and per-
token error feedback. In common with other GEC
systems, W&I prizes precision ahead of recall – so
as to avoid false positive corrections being pre-
sented to the user.

Indeed the field of GEC as a whole adopts a
conservative stance on error correction (hence pre-
ferring precision to recall in the well-established
F0.5 metric), is focused at the token level, and
has tended to train separate classifiers for each er-
ror type (De Felice and Pulman, 2008; Tetreault
et al., 2010; Dahlmeier and Ng, 2012), has adopted
a machine translation approach (Brockett et al.,
2006; Park and Levy, 2011; Yuan et al., 2016),
or a hybrid of the two (Rozovskaya and Roth,
2016). Ease of correction varies by class of er-
ror, with Table 1 showing best-to-worst recall of
the top-performing system for each error type in
the CoNLL-2014 shared task on GEC of NUCLE
data (Ng et al., 2014).

It is apparent that detection rates are relatively
high for certain error types, namely issues of regis-
ter, subject-verb agreement, determiner errors and
noun number. We note that there are several error
types in the lower half of Table 1 – such as sen-
tence fragments, linking words, redundancy, un-
clear meaning and wrong collocations – which re-
late to fluency broadly defined. This indicates that
these error types are harder to solve, or at least
have not been worked on so much. Either way
they require further attention.

Some notable blind-spots of the current GEC
approach are found above the token level, in sen-
tence and discourse level semantics and coher-

1https://writeandimprove.com
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Code Error Training % Recall % System
Wtone inappropriate register 1.3 81.8 AMU
SVA subject-verb agreement 3.4 70.3 CUUI
ArtOrDet article/determiner error 14.8 58.9 CUUI
Nn noun number 8.4 58.7 AMU
Spar parallelism 1.2 50.0 RAC
WOadv adjective/adverb order 0.8 47.6 CAMB
Wform word form 4.8 45.6 AMU
Mec spelling & punctuation 7.0 43.5 RAC
Prep preposition 5.4 38.3 CAMB
V0 missing verb 0.9 36.7 NARA
Vm modal verb 1.0 35.9 RAC
Vform verb form 3.2 27.6 NARA
Vt verb tense 7.1 26.2 RAC
Sfrag sentence fragment 0.6 25.0 UMC
Pform pronoun form 0.4 22.6 CAMB
Trans linking words 3.1 21.4 CAMB
Npos possessive 0.5 20.0 NARA
Rloc– redundancy 10.5 20.2 CAMB
Pref pronoun reference 2.1 19.4 CAMB
Um unclear meaning 2.6 15.8 PKU
Ssub subordinate clause 0.8 15.4 NARA
Wci wrong collocation 11.8 12.0 AMU
WOinc word order 1.6 6.7 UMC
Others miscellaneous 3.3 3.1 RAC
Cit citation 1.5 0 _
Smod dangling modifier 0.1 0 _
Srun run on sentence 1.9 0 _
Wa acronym 0.1 0 _

Table 1: Best recall by error type in the CoNLL-2014 shared task on GEC (Ng et al., 2014), including
frequency of error type in the training data, and recall against gold-standard edits3.

ence. Hence there has been a call for greater em-
phasis on fluency in error correction (Sakaguchi
et al., 2016). We may think of fluency as en-
compassing the grammaticality-per-token focus of
GEC thus far, with added layers of sentence and
discourse level semantics and coherence. It is also
more than just spoken fluency, which is a common
usage of the term. Instead, it is a holistic notion of
all-linguistic performance competence.

For example, in (2) we see the kind of sentence
which in the GEC approach might only be cor-
rected for the ungrammaticality of ‘shorten’, as in
(3). But in fact the new version still lacks native-
like fluency. The meaning is clear, a fact we can
use to offer the fluent correction seen in (4).

(2) From this scope, social media has shorten our
distance4.

(3) From this scope, social media has shortened
our distance.

(4) From this perspective, social media has short-
ened the distance between us.

Furthermore, in speech the problem is height-
ened by the fact that, relative to grammaticality,

4Examples (2)–(4) from Sakaguchi et al (2016).

fluency is arguably of greater importance than it
is in writing. In the immediate communication
scenario of spontaneous conversation – the default
setting for speech, though there are others – the
signal is ephemeral and interlocutors are both for-
giving of errors and adept at rapid repair (Clark
and Schaefer, 1987; Cahn and Brennan, 1999;
Branigan et al., 2007).

Except in classroom settings or when explicitly
asked to do so, the listener rarely corrects or points
out the speaker’s grammatical errors. Instead she
tends to signal understanding, offer signs of agree-
ment or other emotional reaction, and seek clarifi-
cation – all of which have been listed among the
typical acts of ‘alignment’ in dialogue (Pickering
and Garrod, 2004). She focuses more on the mean-
ing of what is said, and the fluency of linguistic
construction plays an important role in how suc-
cessfully meaning is conveyed. We work with spo-
ken data from learners, and the implication is that
fluency takes on added importance in our view.

We therefore support the call for greater em-
phasis on fluency rather than grammaticality (Sak-
aguchi et al., 2016), propose that we represent
that changed emphasis with a changed label for
the field – ‘holistic error correction’ (HEC) is our

92



suggestion – and finally we present and evaluate
a crowdsourcing method for fluency correction of
transcriptions of spoken learner English. We anal-
yse crowdworker behaviour in this task, discuss
how the data can be used, and assess how the
method can be improved in future work with a
view to creating an open dataset of fluency anno-
tations.

2 Crowdsourcing

Annotation of language corpora is an expensive
process in both cost and time. And yet the la-
belling of corpora is highly desired as it opens the
data up to further linguistic analysis and machine
learning experiments. We describe our efforts to
use the crowd for fast, low-cost annotation tasks
and conclude as others have done before that, ‘they
can help’ (Madnani et al., 2011) – the resultant an-
notations are good enough to be useful.

We engaged 120 crowdworkers through Pro-
lific Academic5 to provide fluency corrections
for transcriptions of spoken learner English.
A recent evaluation of Prolific Academic and
two other widely-used crowdsourcing services,
CrowdFlower and Amazon Mechanical Turk, re-
ported favourable comparisons for Prolific in
terms of both data quality and participant diversity
(Peer et al., 2017). We recruited workers from Pro-
lific on condition that they had an approval rating
of 95% or more, that they reported English to be
their first language, and that they were educated to
at least U.K. GCSE level or equivalent (normally
taken at 16 years).

This meant that the worker pool was reduced
to 17,363 from an original pool of 23,973 at the
time of recruitment (January 2017). Nevertheless
recruitment proceeded at a rapid pace and all tasks
had been completed within 24 hours of launch.
Workers were paid £1 for what was estimated to
be 10 minutes of work correcting 16 items (plus
the two test items we put in to catch pathological
contributions6). In fact our 120 workers spent an
average of 16 minutes on the task (max=43 mins,
min=7.2 mins, st.dev=7.6 mins). Workers de-
clared themselves to be 45% female and 55% male

5http://www.prolific.ac
6These were the straightforward grammatical errors in,

‘The currency of the USA be dhollars’, and, ‘The capital of
the UK are Londoin’, where we could pattern match for the
corrections we expected. The absence of such corrections
warned us to check the worker’s whole contribution and judge
whether to reject it and refuse payment.

and were in the age range 17–70 years (mean=33).
The data were language learner monologues

from Cambridge English Language Assessment
Business Language Testing Service (BULATS)
oral exams7. The learners were prompted to dis-
cuss business topic scenarios and allowed to talk
for up to a minute at a time. Recordings were tran-
scribed by two different workers from the Ama-
zon Mechanical Turk crowdsourcing service and
subsequently combined into a single transcript by
finding the best path through a word network con-
structed out of the two transcript versions, using
automated speech recognition (van Dalen et al.,
2015). This method is of course not error-free:
van Dalen et al report a word error rate of 28%
on a 55k token test set.

The learners’ first languages (L1s) were Arabic,
Dutch, French, Polish, Thai and Vietnamese (Ta-
ble 2), and their proficiency was judged by two
examiners such that they could be placed on the
CEFR scale (Common European Framework of
Reference for Languages) as shown in Table 3.

Whilst the learners are fairly well-balanced by
L1 in terms of both speaker numbers and token
counts, it is clear that there’s a skew towards the
middle ranks of the CEFR scale – namely, A2
to C1 – with fewer A1 learners and only two C2
level learners. As would be expected, the token-
to-speaker ratio rises with increasing proficiency:
thus there are more tokens for each proficiency
level (excepting C2), even where speaker numbers
do not go up.

We prepared a web application using R Shiny
and shinyapps hosting (R Core Team, 2017; Chang
et al., 2016; Allaire, 2016). We named it ‘Correct-
ing English’ and directed crowdworkers to it from
Prolific Academic. If necessary, transcriptions
were divided into ‘speech-units’ (Moore et al.,
2016) – analogous to the sentence in writing – and
presented speech-unit by speech-unit (SU). Work-
ers were greeted with a welcome page explaining
that they would be shown transcriptions of spo-
ken learner English, that the learners were talking
about business topics, and that they could expect
to see mistakes.

Workers were asked to make corrections so that,
“it sounds like something you would expect to
hear or produce yourself in English”. Whether the
target should be the proficiency of a native speaker
or a high proficiency learner is a fraught ques-

7http://www.bulats.org
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L1 Speakers Tokens SUs
Arabic 40 12,181 425
Dutch 33 11,549 396
French 37 11,716 383
Polish 40 9729 393
Thai 37 10,207 414
Vietnamese 39 9858 361
Total 226 65,240 2372

Table 2: L1 of speakers in the BULATS corpus:
number of tokens and speech-units per group.

CEFR Speakers Tokens SUs
A1 38 4553 325
A2 48 9584 451
B1 48 14,766 520
B2 48 16,854 509
C1 42 17,749 541
C2 2 624 26
Total 226 65,240 2372

Table 3: CEFR proficiency level of speakers
in the BULATS corpus: number of tokens and
speech-units per group.

tion in second language acquisition research, so
we avoid reference to any such target and instead
ask the worker to envisage how they might express
the information contained in the SU. We intended
that this gave the worker a concrete standard of
English to aim for, and we assume that they are
native speakers in any case, since we filtered for
that in the recruitment stage. Moreover it encour-
ages them to think about how they would speak the
same thought, the intention being that this would
lead them to think more about fluency than about
grammaticality. We added that they should make
as many changes as necessary, echoing Sakaguchi
and colleagues’ instruction for ‘fluency edits’ as
opposed to ‘minimal edits’ (2016).

On the annotation page, workers were also able
to view the context of a learner’s response: that
is, a summary of the ‘prompt’ to which they had
responded. They could opt to skip the given tran-
scription if they could not make any sense of it
(and it would be replaced with another: such a
move did not ‘run down’ the 18 required annota-
tions). They could indicate with a tick-box that
the transcription needed no correction. And they
could grade their own confidence in their judge-
ments, from ‘not sure’ to ‘very sure’ with ‘quite
sure’ in between. A screenshot of a Correcting
English page is given in Figure 1.

Once the worker completed 18 annotations (the
16 BULATS items and 2 test items) they were
redirected to Prolific Academic and we were re-

Figure 1: Screenshot from the Correcting English
web application for crowdsourcing fluency correc-
tions of spoken learner English: note that the orig-
inal speech-unit is reproduced verbatim in the cor-
rection text-box, ready for the crowdworker to edit
(or not).

quired to approve or reject their submission. In
total we approved 120 submissions.

3 Results

The BULATS dataset is different to those pre-
viously submitted for crowdsourced error anno-
tation, to the best of our knowledge, in that it
is spoken data and it is learner English. In all,
1507 unique SUs were selected at random and pre-
sented to crowdworkers for annotation, represent-
ing 63.5% of the 2372 SUs in the corpus. Workers
made a total of 5706 judgements, excluding the
test items.

3.1 Skipped speech-units

The majority of judgements were ‘skip’ moves to
reject the presented SU. Overall workers skipped
almost two-and-a-half SUs for every one they an-
notated (Table 4).

We found that variation in proficiency level ex-
plains the SU skip rate to some extent. The ra-
tio of skipped to annotated SUs decreases from
5.8:1 to 1.5:1 from level A1 to C1, indicating that
workers were more willing to annotate SUs uttered
by higher proficiency speakers. There is a non-
significant correlation between the percen and the
grade assigned to the recording (r = −0.182, p <
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CEFR Skips Annotations Skip:Annotation Unique SUs Corpus %
A1 507 87 5.8 46 14.2
A2 832 238 3.5 117 25.9
B1 948 387 2.4 162 31.2
B2 837 359 2.3 164 32.2
C1 870 582 1.5 232 42.9
C2 23 18 1.3 6 23.1
Total 4017 1671 2.4 727 30.6

Table 4: CEFR proficiency level of speakers in the BULATS corpus: number of tokens and speech-units
per group.

0.001, df = 1155). As a consequence our cor-
pus of annotations is skewed towards higher pro-
ficiency levels (ignoring the small C2 subset for
now), with almost half of the C1 SUs in our cor-
pus being annotated at least once, in contrast to
just one-sixth of A1 SUs (Table 4).

Of the SUs presented to crowdworkers, 348
were never skipped (Table 5). Recall that the skip
action was intended for workers to indicate that
they could make no sense of the speech-unit, and
therefore could not reasonably be expected to cor-
rect it. Of the skipped SUs, 282 were skipped once
only. Since linguistic intuitions are highly subjec-
tive, we put these aside as singular opinions on the
SUs while we wait for a second opinion. There-
fore we have 877 SUs which have been skipped
two or more times, and we pay attention to this
subset in some way.

Skips SUs Skips SUs
0 348 9 27
1 282 10 9
2 259 11 7
3 194 12 8
4 128 13 5
5 97 14 3
6 59 15 5
7 48 16 2
8 24 18 2

Table 5: Number of skips per speech-unit in the
BULATS corpus.

Examples of highly-skipped SUs include the
following:

(5) A lot of coaching ment mentor.

(6) Ah we work very very well together ah we uh
very close we can share lots of things er we
also have time to uh sit down and talk about
how school is developing and ah whether we
are doing the right things together or not.

(7) Uh so I think I think location of facility is
where the is good to store it to store.

In (5) the SU is too short, disfluent and lacking
in a main verb to make any sense of. In contrast
(6) is very long, peppered with filled pauses (‘ah’,
‘uh’, ‘er’), and made up of several main clauses
run on to one another in a chain. Both are difficult
to make sense of for different reasons. Both were
spoken by learners of CEFR level C1, whereas in
(7) the level is B1 and the difficulty in interpreta-
tion perhaps stems more from the low proficiency
level of the speaker.

How can we make use of the information in
crowdworkers’ skipping actions? We could inter-
pret them as judgements as to the futility of at-
tempting automatic correction on these units. For
example, we could choose to exclude those SUs
which have been skipped on at least two of the oc-
casions they have been presented to crowdwork-
ers. These SUs would constitute a ‘nonsensical’
portion of the corpus which (for now) we might
deem too hard to automatically correct, as it is not
possible to infer what the speaker intended to say.
With the proposed threshold, 282 SUs would have
to be set aside – or, 38.8% of the 727 SUs in the
current dataset.

The implication for HEC evaluation is that we
are only judging system performance against those
SUs which we can reasonably expect to be cor-
rected. The implication for computer-assisted lan-
guage learning (CALL) applications is that if such
an utterance were automatically detected, the sys-
tem could ask the learner to clarify what they said
or ask them to try again, rather than attempting
a correction and damaging the system’s reputa-
tion through nonsensical corrections to nonsensi-
cal SUs. However, it is apparent that many SUs
would be trimmed through this method and with
the proposed threshold. Is this a sensible ap-
proach? We leave this as a matter for debate, and
welcome feedback in this regard.
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3.2 Corrected speech-units

In terms of annotations then, 727 (30.6%) of the
2372 SUs in the corpus were annotated at least
once (Table 4). If all 120 crowdworkers had sub-
mitted 16 SU annotations of suitable quality, it
would give us a corpus of 1920 annotated SUs.
However, in a quality control stage we removed
249 units due to poor contributions by workers,
thereby losing just over one-eighth of the total sub-
missions and leaving us with 1671 remaining an-
notations. Data loss of 13% seems a reasonable
amount to allow for in designing a crowdsourc-
ing study, and certainly we never expected a 100%
success rate in terms of data quality.

These 1671 remaining annotations represent
727 unique SUs. Thus we have approximately
two annotations for each SU on average. How
can we assess what changes crowdworkers made
to the original texts? Firstly we note that on the
whole SUs were shortened in correction: the mean
character difference between the original and cor-
rected SU is -9.2 characters, while the median was
-4 characters.

Self-reported confidence levels are generally
high: workers rated their confidence level as ‘very
sure’ or ‘quite sure’ for 85% of their annotations.
We could choose to exclude the remaining 15% of
annotations of which the workers declared them-
selves unsure. This would reduce the 1671 anno-
tations to 1425 and the number of included SUs
from 727 to 632. That would be the conser-
vative approach, and probably the decision one
would take before training a HEC system. Nev-
ertheless we can use this information in evaluating
HEC outputs, weighting scoring so that hypothe-
ses measured against gold-standard fluency edits
(of which the worker is at least quite sure) are
valued more highly than those measured against
silver-standard edits (the ‘not sure’ annotations).

Moreover, confidence level tends to be lower
the greater the character difference between orig-
inal and corrected SUs: in Figure 2 we see that
the character difference values are more widely
spread around the zero mark for the lower confi-
dence levels, ‘not sure’ and ‘quite sure’. For ‘very
sure’ on the other hand, there is a peak of char-
acter differences around the zero mark, suggesting
that no change has been made in the majority of
cases. This indicates that crowdworkers tended to
feel unsure when they took action: whether this
is a property of the dataset or human nature is a

matter for further investigation. It could also be
that where no change was needed, the worker felt
no need to change the confidence level from its
default setting (‘very sure’). Thus in future work
we will consider alternative methods of collecting
confidence ratings: either with larger scales or an
interface other than radio buttons.

Another indicator of the changes made by
the crowdworkers comes from lexical diver-
sity scores: the mean type-token ratio (TTR)
of the original SUs is 0.872 (st.dev=0.114),
whereas mean TTR of the corrected SUs is 0.915
(st.dev=0.089). This overall increase in diver-
sity suggests that one way in which workers ‘im-
proved’ the SUs was to make them more expres-
sive in terms of vocabulary use.

Of the 727 SUs annotated by crowdworkers,
433 were annotated at least twice. For all pair-
wise comparisons within a set of SU annotations
we measured identical corrections, like Sakaguchi
and colleagues (2016) on the basis that interanno-
tator agreement is difficult to operationalise and
arguably an inappropriate measure for error anno-
tation (Bryant and Ng, 2015). Having made 7676
comparisons in this way, we find that 14.8% of er-
ror corrections are identical, a figure close to the
15.3% reported for the ‘expert’ annotators in Sak-
aguchi et al’s study (and well above the 5.9% for
the ‘non-expert’ crowdworkers).

We also report translation edit rate (TER) – a
measure of the number of edits needed to trans-
form one text into another, where an edit is an in-
sertion, deletion, substitution, or phrasal shift, and
where TER is expressed as edits per token (Snover
et al., 2006).

In Table 6 we selected a speech-unit from the
BULATS corpus along with two crowdsourced
corrections. In the first correction, minimal ed-
its have been made to make the SU more accept-
able in grammatical terms (that’s→ is, a the→ a,
are→ is). In the second version the correction is
more holistic, even with punctuation (which was
not called for), and the resulting SU is fluent. This
latter type of correction is the one we seek, though
it’s clear from this example that not all corrections
were done in a holistic way. One method to deter-
mine the success of crowdsourcing fluency edits
would be to sample and rate corrections for flu-
ency. We will incorporate this approach into fur-
ther inspection of speech-units and the way they
were corrected in future work.
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Figure 2: Density plot of the difference between corrected SU and original SU in characters, by crowd-
workers’ self-reported confidence level.

Version Speech-unit TER
original I think in a newspaper that’s an option and a the reference from a past employer

are very important
0

corrected.1 I think in a newspaper is an option and a reference from a past employer is very
important

3/19

corrected.2 I think that when advertising in a newspaper that’s an option and also asking for
a reference from a past employer is very important

10/19

Table 6: Example crowdsourced corrections for a speech-unit from the BULATS corpus.

In Figure 3 we show that for each CEFR level,
firstly the proportion of SUs marked ‘fine’, or
in need of no correction, tends to increase with
increasing proficiency, and secondly mean TER
scores for each SU rise from levels A1 to B1,
and then fall again to C1 and C2. We hypothe-
sise that the reason for this is that learners become
more ‘adventurous’ in the linguistic constructions
they attempt to use as they move from the A1 and
A2 proficiency levels to B1 and B2. Thus their
speech-units become in need of more correction,
despite their improving capability with English.
Part of their development into C1 and C2 level
speakers is to become more accurate with the more
complex construction types; hence SUs are in less
need of correction. This is a ‘U-shaped’ develop-
mental trajectory previously observed in language
acquisition (Gershkoff-Stowe and Thelen, 2004).

4 Related work

Our work relates to previous attempts to collect er-
ror annotations through crowdsourcing (Tetreault
et al., 2010; Madnani et al., 2011), which have
concluded in its favour on the whole. Moreover we
focus on fluent error corrections, as Sakaguchi and
colleagues do (2016). Note also that crowdwork-
ers were engaged in speech transcription, which is
itself an established practice (Snow et al., 2008;
Novotney and Callison-Burch, 2010).

Within second language acquisition research,
we are focused on the fluency part of the well-
established ‘complexity accuracy fluency’ frame-
work (Housen and Kuiken, 2009). In future work
we intend to turn to the complexity and accuracy
dimensions as well. The framework gives us a
useful way to consider automated assessment and
feedback for language learners.
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Figure 3: Proportion of SUs marked ‘fine’ by crowdworkers x Mean TER score for each CEFR level
(width of ‘violins’ indicates density; horizontal lines mark first, second and third quartiles).

5 Conclusion and future work

In this paper we have presented our efforts to
crowdsource fluency corrections of spoken learner
English. We found that crowdworkers were tenta-
tive in applying corrections to SUs, more so for
low CEFRs. When they did attempt to correct
SUs though, we did find an overall decrease in SU
length, an increase in lexical diversity, and TER
scores which suggest U-shaped edit quantities by
proficiency level.

Further evaluation of annotation quality re-
mains to be carried out, including fluency ratings
of the corrected versions. Also in future work
we intend to repeat this work on an open dataset,
such as the CrowdED Corpus (Caines et al., 2016),
so that the resulting annotations can be released
to others. Currently the BULATS corpus is not
openly available.

One option for future annotations is to offer
the original and corrected speech-units in parallel
corpus format for machine translation approaches
to error correction (Brockett et al., 2006; Park
and Levy, 2011; Susanto et al., 2014; Junczys-
Dowmunt and Grundkiewicz, 2016; Yuan et al.,
2016), and with automatically aligned error anno-
tations at the token level for classifier and rule-
based approaches – the format used for GEC so
far, as in the FCE and NUCLE datasets (Yan-
nakoudakis et al., 2011; Dahlmeier et al., 2013).

This would be in line with the call by Sakaguchi
and colleagues for new annotated corpora for HEC
research (Sakaguchi et al., 2016). We believe that
whole sentence or speech-unit corrections lend
themselves well to the recent emergence of neu-
ral network MT systems for error correction, since
these are essentially sequence-to-sequence trans-
lations (Yuan and Briscoe, 2016). The challenge
would be to build a sufficiently large training cor-
pus for NMT: crowdsourcing would seem to be
a fast and good-enough data collection method.
Moreover, a hybrid MT-classifier system (Ro-
zovskaya and Roth, 2016) may suit the goal of au-
tomated feedback, whereby the learner can be in-
formed of detected errors and how to avoid them.

In any future data collection we need to install
controls against crowdworkers’ tendency to anno-
tate higher proficiency items in preference to lower
proficiency items. For example, we could remove
the facility for skipping items, or there could be
only a limited facility to do so (since we do find
this information useful too). We could also present
more context than the prompt alone – for example,
the preceding and following speech-units. Finally,
we will further investigate correction behaviours:
to what extent crowdworkers followed our request
to consider spoken English as the model, rather
than written norms, and to what extent they aimed
for holistic fluency corrections rather than mini-
mal grammatical edits.
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Abstract 
 
No significant body of research examines writing 
achievement and the specific skills and knowledge in 
the writing domain for postsecondary (college) stu-
dents in the U.S., even though many at-risk students 
lack the prerequisite writing skills required to persist in 
their education. This paper addresses this gap through 
a novel exploratory study examining how automated 
writing evaluation (AWE) can inform our understand-
ing of the relationship between postsecondary writing 
skill and broader indicators of college success. The ex-
ploratory study presented in this paper was conducted 
using test-taker essays from a standardized writing as-
sessment of postsecondary student learning outcomes. 
Findings showed that for the essays, AWE features 
were found to be predictors of broader outcomes 
measures: college success indicators and learning out-
comes measures. Study findings expose AWE’s poten-
tial to support educational analytics -- i.e., relationships 
between writing skill and broader outcomes –moving 
AWE beyond writing assessment and instructional use 
cases.   
 
1   Introduction 
 
Writing is a challenge, especially for at-risk stu-
dents who may lack the prerequisite writing skills 
required to persist in U.S. 4-year postsecondary 
(college) institutions (NCES, 2012). Educators 
teaching postsecondary courses that require writ-
ing could benefit from a better understanding of  
writing achievement and its role in postsecondary 
success (college completion).  U.S K-12 research 
examines writing achievement and the specific 
skills and knowledge in the writing domain 
(Berninger, Nagy & Beers, 2011; Olinghouse, 
Graham, & Gillespie, 2015). No parallel signifi-
cant body of research exists for postsecondary stu-
dents. There has been research related to essay 
writing on standardized tests and college success  
                                                
1 https://apstudent.collegeboard.org/home 

 
 
 
indicators for exams, such as the College Board 
Advanced Placement1 (Bridgeman & Lewis, 
1994). However, only the final overall essay score 
is evaluated.  In this work, we try to drill deeper 
into essays to explore if specific features in the 
writing of college students is related to measures 
of broader outcomes. 
 Automated writing evaluation (AWE) systems 
typically support the measurement of pertinent 
writing skills for automated scoring of large-vol-
ume, high-stakes assessments (Attali & Burstein, 
2006; Shermis et al, 2015) and online instruction 
(Burstein et al, 2004; Foltz et al, 2013; Roscoe et 
al, 2014). AWE has been used primarily for on-
demand essay writing on standardized assess-
ments. However, the real-time, dynamic nature of 
NLP-based AWE affords the ability to explore 
linguistic features and skill relationships across a 
range of writing genres in postsecondary educa-
tion, such as, on-demand essay writing tasks, ar-
gumentative essays from the social sciences, and 
lab reports in STEM courses (Burstein et al, 
2016). Such relationships can provide educational 
analytics that could be informative for various 
stakeholders, including students, instructors, par-
ents, administrators and policy-makers. 

This paper discusses an exploratory secondary 
data analysis, using AWE to examine interactions 
between writing and broader outcomes measures 
of student success.  An evaluation was conducted 
using test-taker essays from a standardized writing 
assessment of postsecondary student learning out-
comes. Findings suggested that AWE features 
from the essays were found to be predictors of 
broader outcomes measures: college success indi-
cators and learning outcomes measures. Recent 
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work has shown similar results, examining rela-
tionships between AWE and read ing skills (Allen 
et al, 2016) versus broader outcomes measures 

Figure 1. Construct representation of the 
AWE features extracted from pilot study es-
says. 
 
 (discussed here).  
 The work presented here broadens the lens -- 
exposing AWE’s potential to inform our under-
standing of the relationship between writing and 
critical educational outcomes above and beyond  
prevalent use cases for assessment and instruction 
of writing itself. 
 
2   The Study 
 
An exploratory secondary data analysis was con-
ducted to examine relationships between re-
sponses to a 45-minute, timed standardized writ-
ing assessment of postsecondary student learning. 
The writing assessment contains two components: 
an on-demand essay task requiring students to 
compose an essay in response to a prompt wherein 
they must adopt or defend a position or a claim 
presented in the prompt; and 15 selected-response 
(SR) (multiple choice) items related to one read-
ing passage. The SR portion measures writing do-
main knowledge skills, such as English conven-
tions, vocabulary choice, evaluating evidence, an-
alyzing arguments, understanding the language of 
argumentation, evaluating organization, distin-
guishing between valid and invalid arguments, 
and evaluating tone. The writing assessment is 
one of three component skills assessments from 
an outcomes assessment suite. A second critical 
thinking component test is also used for this study. 
It is also a 45-minute, timed assessment, com-

                                                
2 https://collegereadiness.collegeboard.org/sat 

posed of 27 or 29 selected-response items depend-
ing on the test form (i.e., version of a test). The 
pilot study includes 5 forms (versions) for the crit-
ical thinking test. The five forms were developed 
under the same test specification and their scores 
were linked to each other and can be used inter-
changeably (Liu, et al., 2016). 

In this study, we examine relationships between 
AWE features found in essay responses of 4-year 
postsecondary students who took the writing as-
sessment, and indicators of college success. 

2.1   Data 

To evaluate the psychometric properties of the 
assessment and to gather evidence on the reliabil-
ity and validity of the test prior to its release, the 
authors’ organization had previously conducted 
an extensive pilot test of the assessment at more 
than 33 colleges and universities. Analyses used 
all data collected from 929 students (37% first-
year, 29% sophomores, 16% junior, and 18% sen-
iors) enrolled at the institutions; students had 
completed one of two pilot forms of the writing 
assessment. Of the 929 students, 514 also had 
scores from the pilot critical thinking assessment.  
 In addition to the writing assessment essay 
text, the pilot test data includes human ratings for 
the essay responses, and selected-response items 
scores. We also had access to students’ college 
GPA and some external measures  such as, the 
critical thinking assessment scores, SAT2 or 
ACT3 scores, high school grade point average 
(GPA). Although these variables were missing for 
subsamples of students. 

2.2   Methods 

 Several hundred AWE features were generated 
for the essay writing data.  These features were 
drawn from a large portfolio of features used for 
analysis of student writing (including features 
from a commercial essay scoring engine). As this 
was an initial exploratory analysis, one of the au-
thors selected an initial, manageable set of 61 con-
struct-relevant features related to subconstructs, 
including English writing conventions (e.g., er-
rors in grammar and mechanics), coherence (e.g., 
flow of ideas), organization and development, vo-
cabulary, and topicality. See Figure 1 (above). 
The author hypothesized that this 61-feature sub-
set would have strong predictive potential based 
on the subconstruct that each feature was intended 
3 http://www.act.org/ 
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Feature Name Subconstruct Class NLP-Based Feature / Resource Description 

argumentation 
 
argumentation 

Detection of sentences containing argumentation (Beig-
man Klebanov et al, 2017) 

dis_coh1 coherence 
Aggregate discourse coherence quality measure (So-
masundaran et al, 2014) 

gen_max_lsa coherence 
Latent semantic analysis values computed for long-dis-
tance sentence pairs (Somasundaran et al, 2014) 

dis_coh2, dis_coh3, 
dis_coh4 

 
coherence 

Three measures related to topic distribution in a text 
(Beigman Klebanov et al, 2013; Burstein et al, 2016) 

fphajnp 

 
 
collocation  

Noun phrase collocations identified  using a rank-ratio 
based collocation detection algorithm trained on the 
Google Web1T n-gram corpus (Futagi et al, 2008) 

logdta 

 
 
discourse 

Aggregate value based on length of essay-based dis-
course element (Attali & Burstein, 2006) derived from a 
discourse structure detection method that identifies essay-
based discourse elements (e.g., thesis statement) 
(Burstein et al, 2003) 

grammaticality English conventions  
Aggregate value generated for relative grammaticality 
(Heilman et al, 2014) 

logg English conventions 
Aggregate value from a set of 9 automatically-detected  
grammar error feature types (Attali & Burstein, 2006) 

nsqm English conventions 
Aggregate value from a set of 12 automatically-detected  
mechanics error feature types  (Attali & Burstein, 2006) 

nsqu English conventions 
Aggregate value from a set of 10 automatically-detected  
word usage error feature types (Attali & Burstein, 2006) 

statives narrativity 
Count measures using a manually-compiled list of stative 
verbs (i.e., express states vs. action, e.g., feel). 

PR1, PR2 personal reflection  
Aggregate scores generated related to use of personal re-
flection language (Beigman Klebanov et al, 2017) 

complexnp phrasal complexity 

Noun phrases identified with a hyphenated adjective or a 
prepositional phrase modifier using regular expressions 
defined on constituency parses. 

svf sentence variety 
Aggregate value generated based on sentence-type factors 
(Burstein et al, 2013) 

topicdev topic development 
Detection of main topics and related words (Beigman 
Klebanov et al , 2013; Burstein et al, 2016) 

nwf_median 
vocabulary sophistica-
tion 

Aggregate measure generated related to word frequency 
(Attali & Burstein (2006) 

wordln_2 
vocabulary sophistica-
tion 

Aggregate measure generated related to average word 
length for all words in a text (Attali & Burstein, 2006) 

variants1, variants2 vocabulary usage 

Detection of morphologically complex inflectional (vari-
ants1) and derivational (variants2) word forms using an 
algorithm that first over-generates variants using rules 
and then filters using co-occurrence statistics computed 
over Gigaword. (Madnani et al, 2016) 

metaphor vocabulary usage 
Detection of metaphor (Beigman Klebanov et al (2015); 
Beigman Klebanov et al (2016) 

sentiment vocabulary usage 
Count measures based on VADER4 sentiment lexicon en-
tries. 

vocab_richness vocabulary usage 

Aggregate feature composed of a number of text-based 
vocabulary-related measures (e.g., morphological com-
plexity, relatedness of words in a text). This work is not 
yet published. 

colprep vocabulary usage 
Aggregate measure related to collocation and preposition 
use (described in Burstein et al, 2013). 

 
Table 1: The 26 Features, Subconstructs & Methods

                                                
4 https://github.com/cjhutto/vaderSentiment 
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to address, and its alignment with the writing as-
sessment construct Before modeling the interac-
tions between the 61 AWE features and other 
measures, an analysis was conducted to identify 
features that were functionally related or strongly 
correlated to remove redundant features. This 
analysis identified 35 features that were mono-
tonic functions of other features (e.g., one feature 
equaled the log of a second features), very highly 
linearly correlated, or have very small variance. 
Among features that were functionally related or 
highly correlated, the feature most highly corre-
lated with human ratings of the essay were re-
tained. The outcome of this analysis was the set of 
26 features listed in Table 1 (below). Only the 26 
features in this subset were used for the analysis 
reported here.  

The analysis consisted of linear regression anal-
yses with the AWE features as the independent (or 
predictor) variables and scores on the critical 
thinking assessment, SAT or ACT, writing as-
sessment selected-response (SR) items, and col-
lege GPA as the dependent variables. Separate re-
gression analyses were conducted for each de-
pendent variable. For example, there was a model 
predicting GPA as a function of argumentation, 
another model predicting GPA as function of 
dis_coh1, another model predicting GPA as a 
function of gen_max_lsa, and so on for each of the 
features. This modeling process was repeated for 
each of the dependent variables. The goal of the 
analysis was to determine how strongly each fea-
ture was related to each outcome. However, since 
better writers will probably get better scores on 
other tests too, we wanted to know if the features 
contained unique information for predicting the 
dependent variables, above and beyond how well 
the essay was written. That is, we wanted to know 
if two students who appear to be comparable writ-
ers based on human scores can be further differ-
entiated by the additional properties of their writ-
ing as captured by AWE. Therefore, for each de-
pendent variable, a series of regression models 
were fit that predicted the dependent variable not 
only as a function of each of the feature values, 
but also included the length of the essay and the 
average of the human ratings on a 6-point scale 
(where 1 indicates the lowest proficiency and 6, 
the highest). The regression models included 
these two additional predictors because both are 

related to the quality of the essay. Essay length is 
generally a good predictor of human ratings of es-
says and related to many AWE features (Cho-
dorow & Burstein, 2004). By including these two 
additional predictors in the model, we were better 
able to isolate the relationship between the fea-
tures and the dependent variable distinct from 
quality of the essay. 

3   Results 

 
Tables 2 to 8 (below) present the results of the re-
gression analyses for each of the 6 outcomes. For 
presentation purposes, the table for each depend-
ent variable includes only those features where the 
coefficient for that feature was significantly 
greater than zero with a p-value less than 0.05. 
Across all the dependent variables, 25 of the 26 
variables appear in the table for one or more de-
pendent variables. Only one feature, metaphor, 
did not emerge from the analyses. Given that 26 
features were tested for each dependent variable, 
there is a considerable chance that p-values below 
0.05 were sometimes due to chance and did not 
indicate a statistically significant relationship. 
Controlling for multiple comparisons would be 
required to reduce the probability of spurious p-
values of less than 0.05. P-values were used to re-
duce the size of the tables and focus on features 
with the strongest evidence of a relationship with 
each dependent variable.  

Each row contains a standardized coefficient 
from a model that included 3 features: (1) the 
AWE feature, (2) the square root of the number of 
words (length), and (3) the raw average of 2-3 hu-
man ratings per essay. In addition to the coeffi-
cient for the AWE feature and its standard error, 
the table includes the overall R-squared (R2) for 
the three independent variables (AWE feature, 
length, and average human rating) and the part of 
the R-squared attributable to the AWE features 
(Inc. R2).  The R2 measures the variance explained 
by the predictor.  

All features in the tables explain some amount 
of variance showing promise of relationships be-
tween AWE features and college success and 
learning outcomes. Results show that for all out-
comes, a breadth of features emerge, covering the 
English conventions, coherence or argumenta-
tion, and vocabulary subconstructs. Features 
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shown in italics in Tables 2-8 indicate relatively 
stronger predictors (i.e., greater explained vari-
ance), using Inc. R2 of 0.05 as a “cutoff”. Vocab-
ulary sophistication (“wordln_2”) and vocabulary 
usage (“vocab_richness”) were the stronger pre-
dictors of the critical thinking assessment scores, 
the SAT/ACT Composite Score and SAT Ver-
bal Score. Vocabulary usage (“sentiment”) 
was a stronger predictor in ACT Science. 
 

4   Discussion and Future Work 

This exploratory, secondary data analysis illus-
trates that 1) writing can provide meaningful in-
formation about student knowledge related to 
broader outcomes (college success indicators and 
learning outcomes measures) and 2) AWE has 
greater potential for educational analytics above 
and beyond current prevalent uses for writing as-
sessment and instruction. Vocabulary features 
were the most consistent and strongest predictors. 
This is not surprising since most of the college 
success predictors used in this study involved in-
tensive reading, and vocabulary knowledge is 
shown to be related to reading comprehension 
(Qian & Schedl, 2004; Quinn et al, 2015).  The 
detailed analyses illustrated in Tables 2 – 8 do 
show statistically significant relationships be-
tween the full set of writing skill feature measures 
and broader outcomes. The big picture is that this 
line of research could inform instructional curric-
ulum, assessment development, and educational 
policy vis-à-vis the improvement of college stu-
dent success factors. 

The limitations of this project are the small size 
of the data set since students were missing some of 
the dependent variables, and the examination of 
writing data from a single writing genre – i.e., on-
demand essay writing. However, these will be ad-
dressed in next steps, in Fall 2017-Spring 2018. 
The authors will conduct a larger study with seven 
4-year postsecondary partner institutions. A larger 
sample of student writing will be collected from ap-
proximately 2,000 students from the sites. Student 
writing data collected will include not only on-de-
mand essay writing, but students will each also pro-
vide multiple authentic writing assignments from 
their courses. Both writing and disciplinary courses 
will be included in the study. Student success factor 

data, such as, SAT and ACT scores, college GPA, 
course grades, and course completion, will also be 
collected. We will administer the same writing as-
sessment and critical thinking assessment to our 
outcomes measures. Using the new data, we will 
apply knowledge from this study to continue to 
evaluate how AWE can provide analytics related to 
broader outcomes measures. Further, this larger 
data set will span different genres which will afford 
the opportunity to 1) replicate this exploratory 
study on the same writing assessment as a baseline, 
and 2) apply current and enhanced analyses to au-
thentic writing data collected from college stu-
dents.  
 AWE has traditionally been used for writing 
assessment (automated essay scoring), and writ-
ing instruction (automated feedback about writ-
ing). The work presented in this paper explores 
new territory, and brings awareness to the poten-
tial impact of NLP in a bigger educational space – 
i.e., to support understanding of relationships be-
tween writing and broader outcomes of student 
success.  

 

Variable Coeffcient 
Std. 
Error R2 Inc. R2 

logg 0.10 0.04 0.22 0.01 
nsqu 0.17 0.04 0.24 0.02 
nsqm 0.11 0.04 0.22 0.01 
svf 0.27 0.06 0.25 0.03 
nwf_median 0.18 0.04 0.24 0.03 
wordln_2 0.25 0.04 0.27 0.06 
PR1 -0.08 0.04 0.22 0.01 
fphajnp 0.08 0.04 0.22 0.01 
complexnp 0.12 0.04 0.23 0.01 
variants1 0.23 0.04 0.26 0.04 
vocab_richness 0.27 0.05 0.26 0.05 
dis_coh1 0.40 0.13 0.23 0.01 
sentiment 0.15 0.04 0.23 0.02 

 
Table 2: Critical Thinking Composite 

Score; Baseline R2 with human rating and 
length = 0.21 
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Variable Coefficient 
Std. 

Error R2 Inc. R2 
nsqu 0.12 0.03 0.23 0.01 
nsqm 0.21 0.03 0.25 0.04 
svf 0.11 0.04 0.22 0.01 
wordln_2 0.19 0.03 0.24 0.03 
grammaticality 0.12 0.03 0.22 0.01 
colprep 0.08 0.03 0.22 0.01 
dis_coh3 -0.10 0.03 0.22 0.01 
dis_coh4 -0.11 0.05 0.22 0.00 
fphajnp 0.11 0.03 0.22 0.01 
complexnp 0.08 0.03 0.22 0.01 
variants2 0.13 0.03 0.22 0.01 
vocab_richness 0.13 0.03 0.22 0.01 
dis_coh1 0.23 0.09 0.22 0.01 
sentiment 0.06 0.03 0.22 0.00 
statives -0.13 0.03 0.23 0.02 

 
Table 3: Writing Assessment Selected Re-

sponse Score; Baseline R2 with human rating 
and length = 0.21 
 

Variable Coefficient 
Std. 

Error R2 Inc. R2 
logg 0.09 0.04 0.17 0.01 
nsqu 0.10 0.04 0.17 0.01 
nsqm 0.17 0.04 0.18 0.03 
svf 0.25 0.05 0.19 0.03 
nwf_median 0.14 0.04 0.18 0.02 
wordln_2 0.25 0.04 0.21 0.06 
grammaticality 0.08 0.04 0.16 0.01 
colprep 0.10 0.04 0.17 0.01 
PR1 -0.12 0.04 0.17 0.01 
PR2 -0.12 0.04 0.17 0.01 
fphajnp 0.13 0.04 0.18 0.02 
complexnp 0.12 0.04 0.17 0.01 
variants2 0.20 0.04 0.19 0.03 
gen_max_lsa5 -0.12 0.06 0.16 0.01 
vocab_richness 0.31 0.04 0.22 0.06 
dis_coh1 0.26 0.12 0.16 0.01 
sentiment 0.17 0.04 0.19 0.03 

 
Table 4: SAT/ACT Composite Score (ACT 

rescaled to the SAT Scale); Baseline R2 with  
human rating and length = 0.16 

Variable 
Coeffi-
cient 

Std. Er-
ror R2 Inc. R2 

logg 0.11 0.04 0.18 0.01 
nsqu 0.14 0.04 0.18 0.02 
nsqm 0.15 0.04 0.18 0.02 
svf 0.29 0.06 0.21 0.04 
nwf_median 0.15 0.04 0.19 0.02 
wordln_2 0.29 0.04 0.24 0.07 
grammaticality 0.11 0.05 0.17 0.01 
colprep 0.12 0.05 0.18 0.01 
argumentation 0.13 0.05 0.18 0.01 
PR1 -0.15 0.04 0.19 0.02 
PR2 -0.12 0.05 0.18 0.01 
fphajnp 0.11 0.05 0.17 0.01 
complexnp 0.12 0.05 0.18 0.01 
variants1 0.13 0.05 0.18 0.01 
variants2 0.22 0.05 0.20 0.04 
gen_max_lsa5 -0.13 0.06 0.17 0.01 
vocab_richness 0.33 0.05 0.23 0.07 
dis_coh1 0.28 0.13 0.17 0.01 
sentiment 0.12 0.04 0.18 0.01 

 
Table 5. SAT Verbal Score; Baseline R2 with  hu-

man rating and length = 0.16 
 

Variable Coefficient Std. Error R2 Inc. R2 
nsqm 0.22 0.05 0.14 0.04 
svf 0.19 0.06 0.12 0.02 
nwf_median 0.14 0.05 0.12 0.02 
wordln_2 0.20 0.05 0.14 0.03 
colprep 0.10 0.05 0.11 0.01 
PR1 -0.12 0.05 0.12 0.01 
PR2 -0.13 0.05 0.11 0.01 
fphajnp 0.10 0.05 0.11 0.01 
complexnp 0.11 0.05 0.11 0.01 
variants2 0.15 0.05 0.12 0.02 
gen_max_lsa -0.16 0.07 0.11 0.01 
vocab_richness 0.24 0.05 0.14 0.04 
sentiment 0.18 0.04 0.13 0.03 
 

Table 6. SAT Math Score; Baseline R2 with hu-
man rating and length = 0.10 
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ACT English 

Variable Coefficient 
Std. 

Error R2 Inc. R2 
nsqu 0.11 0.05 0.16 0.01 
nsqm 0.15 0.05 0.17 0.02 
logdta -0.19 0.06 0.18 0.03 
svf 0.17 0.07 0.17 0.02 
wordln_2 0.16 0.06 0.18 0.02 
dis_coh2 0.21 0.11 0.16 0.01 
argumentation 0.16 0.07 0.17 0.01 
variants1 0.13 0.05 0.17 0.02 
vocab_richness 0.16 0.06 0.17 0.02 
sentiment 0.24 0.07 0.19 0.03 

ACT Math 

Variable Coefficient 
Std. 

Error R2 Inc. R2 

svf 0.18 0.07 0.12 0.02 
wordln_2 0.15 0.06 0.13 0.02 
complexnp 0.16 0.06 0.13 0.02 
variants2 0.15 0.06 0.12 0.02 
variants1 0.15 0.06 0.12 0.02 
vocab_richness 0.21 0.07 0.13 0.03 
dis_coh1 0.38 0.17 0.12 0.02 
sentiment 0.19 0.06 0.14 0.03 

ACT Reading 

Variable Coefficient 
Std. 

Error R2 Inc. R2 

logg 0.11 0.05 0.14 0.01 
svf 0.17 0.07 0.15 0.02 
wordln_2 0.17 0.06 0.16 0.03 
PR1 -0.11 0.05 0.15 0.01 
variants1 0.16 0.06 0.15 0.02 
vocab_richness 0.23 0.07 0.16 0.03 
sentiment 0.20 0.06 0.17 0.04 
statives -0.14 0.05 0.15 0.02 

ACT Science 

Variable Coefficient 
Std. 

Error R2 Inc. R2 
logdta -0.14 0.07 0.09 0.01 
svf 0.22 0.08 0.10 0.03 
wordln_2 0.14 0.06 0.09 0.02 
fphajnp 0.15 0.06 0.10 0.02 
complexnp 0.16 0.06 0.10 0.02 

variants1 0.17 0.06 0.10 0.02 
vocab_richness 0.26 0.07 0.12 0.04 
sentiment 0.23 0.06 0.12 0.05 

 
Table 7. ACT Subject Test Scores; Baseline R2 
with  human rating and length: ACT English = 
0.15; ACT Math = 0.11; ACT Reading = 0.13; 

ACT Science = 0.08 
 

Variable Coefficient 
Std. 

Error R2 Inc. R2 

nsqu 0.09 0.05 0.05 0.01 

nsqm 0.16 0.05 0.07 0.02 

wordln_2 0.13 0.05 0.06 0.02 

grammaticality 0.13 0.05 0.06 0.01 

argumentation 0.13 0.06 0.05 0.01 

topicdev -0.10 0.05 0.05 0.01 

vocab_richness 0.12 0.05 0.05 0.01 
 

Table 8. Cumulative GPA; Baseline R2 with  hu-
man rating and length = 0.04 
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Abstract

Characterizing the content of a technical
document in terms of its learning utility can
be useful for applications related to educa-
tion, such as generating reading lists from
large collections of documents. We refer
to this learning utility as the “pedagogical
value” of the document to the learner.While
pedagogical value is an important concept
that has been studied extensively within the
education domain, there has been little work
exploring it from a computational, i.e., natu-
ral language processing (NLP), perspective.
To allow a computational exploration of this
concept, we introduce the notion of “peda-
gogical roles” of documents (e.g., Tutorial
and Survey) as an intermediary component
for the study of pedagogical value. Given
the lack of available corpora for our explo-
ration, we create the first annotated corpus
of pedagogical roles and use it to test base-
line techniques for automatic prediction of
such roles.

1 Introduction
We define “pedagogical value” as the estimate of
how useful a document is to an individual who seeks
to learn about specific concepts described in the
document. A computational task that operational-
izes the concept of pedagogical value is generating
an ordered reading list of documents that a learner
can traverse in order to maximize understanding of
a subject. When a professor manually constructs a
reading list about a specific subject for a student, the
professor incorporates substantial knowledge of the
subject history and interdependencies with other
related subjects. The student’s background and the
relative qualities of documents on similar subjects
are also considered. Techniques for automatically

generating reading lists should also consider the
extent to which a learner will be able to learn from
a particular document.

Previously, Tang and McCalla (2009) have stud-
ied the “pedagogical value of papers” in the context
of paper recommendation. In their work, they define
the multiple “pedagogical values” of a paper as the
paper’s overall ratings, popularity, degree of peer
recommendation, learner gain in new knowledge,
learner interest, and learner background knowl-
edge. Other efforts on generating reading lists and
document recommendation have focused on mod-
eling concepts represented in documents (Jardine,
2014), modeling concept dependencies (Gordon
et al., 2016), and user modeling (Bollacker et al.,
1999), but there appears to be very limited work on
characterizing the learning utility between a learner
and a document. The abstract nature of pedagogical
value motivates us to identify explicit document
features that are salient to pedagogical value. With
graduate students as our target learners, we start
with a simplified model of novice, intermediate,
and advanced learners, and we focus on identify-
ing pedagogical features of documents that could
benefit different learners.

In our document annotation process, we collected
annotations for the qualitative and largely objec-
tive judgments of categories that documents belong
to: Tutorial, Survey, Software Manual, Resource,
Reference Work, Empirical Results, and Other. We
identify the seven categories based on document
objectives in presenting content, e.g., Tutorials
teach the reader step by step how to do something,
Resource papers point the reader to datasets and
implementations. Motivated by the need to con-
ceptually organize information to be pedagogically
useful, we refer to documents with different objec-
tives as fulfilling different “pedagogical roles.” In
the rest of this paper, we will use the document
category names to refer to the pedagogical roles.
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Identifying important qualitative features of ped-
agogical value, such as the pedagogical role, gives
a greater degree of interoperability and insight into
how we can help students learn more effectively.
Education research explains the distinction between
declarative and functioning knowledge: the former
is knowledge of content and the latter is knowledge
of how to interpret and put the content to work
(Biggs, 2011). To apply content, learners must first
understand the content; this explains why a novice
and an advanced learner trying to learn the same
subject would seek out documents with different
pedagogical roles. Tutorials, Reference Works, and
Survey papers are better introductions for a novice
with no knowledge of a subject. In contrast, an
expert would have enough background knowledge
to dive right into advanced papers presenting state-
of-the-art empirical results. Although pedagogical
roles are not the same as pedagogical value, these
pedagogical features offer some insight as a starting
point for estimating learning utility. For our study,
we collected annotations for over 1000 documents,
which we document and make available for others
to use.1

We also collected annotations for three ordinal-
scale questions of document complexity and quality
as an exercise to gauge the feasibility of the task
despite its subjective nature. However, the resulting
inter-annotator agreement results were too low to
be meaningful. These results stress the importance
of identifying more objective user and document
features relevant to pedagogical value; in this initial
work, we focus on document features.

Our contribution is twofold: We provide the first
annotated corpus of pedagogical roles for the study
of pedagogical value, and we present baseline clas-
sification results using state-of-the-art techniques
for others to work with. Our goal is to establish a
framework that can be extended to other domains,
provide empirical results to validate our dataset and
algorithms, and demonstrate the feasibility of the
proposed role classification task. In the rest of this
paper, we will describe our methods for collecting,
evaluating, and automatically generating annota-
tions in Section 2, the results of our evaluations in
Section 3, related work in Section 4, and concluding
remarks in Section 5.

1https://doi.org/10.6084/m9.figshare.5202424

2 Methods
2.1 Creating guidelines for annotation
We performed a few rounds of annotation to de-
velop a set of roles that would be adequate and
insightful for an initial investigation. We identified
the following pedagogical roles:

• Survey: Is this document a broad survey? A
broad survey examines or compares across a
broad concept.

• Tutorial: Is this document a tutorial? Tutorials
describe a coherent process about how to use
tools or understand a concept, and teach by
example.

• Resource: Does this document describe the
authors’ implementation of a system, corpus,
or other resource that has been distributed
(e.g., public data sets or tools that have been
released under an open-source license or are
commercially available)?

• Reference Work: Is this document a collection
of authoritative facts intended for others to
refer to? Reports of novel, experimental results
are not authoritative facts; the statement “grass
is green” is.Reference Works describe different
subtopics within a concept.

• Empirical Results: Does this document de-
scribe results of the authors’ experiments?

• Software Manual: Is this document a manual
describing how to use different components
of a software?

• Other: Other role. This includes theoretical
papers, papers that present a rebuttal for a
claim, thought experiments, etc.

Additionally, we developed annotation guide-
lines instructing annotators to select all applicable
pedagogical roles for each document. A document
could present results of a novel method and also
direct readers to an implementation of the method,
thus making the paper both an Empirical Results
paper and a Resource paper. Another document
could simultaneously give a step-by-step tutorial
about how to use a system, present specific com-
mands on how to use components of the system,
and provide a link to where readers can download
the system, making the document a Tutorial, Soft-
ware Manual, and Resource. Although a document
could validly belong to multiple pedagogical roles,

110



we have carefully gone through several iterations
of pedagogical roles to maximize the differences
between roles. In other words, the distribution of
the number of pedagogical roles per document is
skewed such that most of the documents have one
role. The Other role is an alternative category for
all other possible pedagogical role types; we do
not focus on documents with this role in this work.
We believe most of the Other documents have high
pedagogical value to a small group of experts and
are beyond the scope of this initial investigation. In
addition to these guidelines, we also provided a few
examples of documents of each pedagogical role to
annotators.

2.2 Annotation

The corpus of documents we annotated is drawn
from a collection of pedagogically diverse docu-
ments related to natural language processing. The
collection is based on the ACL Anthology, us-
ing the plain-text documents included in the ACL
Anthology Network corpus (Radev et al., 2009).
The ACL Anthology primarily consists of expert-
level empirical research papers, so the collection
was expanded to include other document types, as
described in Gordon et al. (2017). Although we
generally targeted specific document sources for
specific pedagogical roles, we still found a variety
of pedagogical roles from each source, i.e., not all
documents from Wikipedia are Reference Works,
and not all papers found while searching the web for
“tutorials” are Tutorials. For annotation, we tried
to identify a balanced sample of documents with
different roles in this corpus by using simple regular
expression pattern matching in document titles and
abstracts. For example, to roughly target Software
Manuals, we looked for documents with the phrase
“software manual,” “manual,” or “technical manual”
in the title or abstract.
To choose a reliable group of annotators, we

internally annotated pedagogical roles for a set of
documents and compared it with annotations done
by a group of students pursuing master’s degrees in
computer science. We selected 11 students whose
annotations had the highest correlation with our
annotations. These annotators were instructed to
read the abstract if there was one and to skim the rest
of the document in enough detail such that theywere
able to annotate features for the document accurately
and in a timely manner. We met regularly to discuss
and come to a consensus on general document

characteristics that were confusing to interpret.
We divided the documents for annotation into

subsets of 100 to distribute among annotators so
that each document was annotated by three anno-
tators, and each subset was annotated by the same
three annotators. We also manually filtered through
and internally annotated 155 more supplementary
documents to make up for a lack of documents that
were annotated as Surveys, Resources, and Soft-
ware Manuals. This supplementary set consists of
76 documents from the expanded ACL corpus and
79 additional documents collected from searching
the web for more Surveys, Resources, and Software
Manuals.2

2.3 Automatic prediction of pedagogical roles
We represent each document as a bag of sentence-
embedding clusters. This technique embeds all
sentences into vectors, clusters sentence vectors,
and then represents documents as distributions over
clusters. To evaluate the effectiveness of represent-
ing each document as a bag of sentence-embedding
clusters and performing k-nearest neighbors classi-
fication, we also run two baseline techniques. One
baseline technique is a multi-label centroid-based
algorithm with sentence embeddings that is related
to the single label centroid-based algorithm pre-
sented by Han and Karypis (2000) and the naïve
Rocchio (1971) classification algorithm, a popular
method for text classification (Rogati and Yang,
2002). The other baseline technique is a random for-
est classification of TF–IDF scores, which allows
us to evaluate if sentence embeddings are more
useful than word frequencies for this task.
We use sentence embeddings because specific

sentences in documents are key indicators of the
pedagogical roles of the document. As an explicit
example, one might find the following in a Survey
paper: “This paper presents a survey of the field
of machine translation. . . ” A more implicit exam-
ple might be a Resource paper that mentions that
one can find the corpus created by the authors at
a specific link. We want to give much weight to
the sentences that are the best indicators of the
pedagogical roles of the document and leverage this
information to automatically predict the pedagogi-
cal roles of documents. Skip-thought vectors3 are
able to effectively capture the semantics and syntax
of sentences in several different tasks (Kiros et al.,

2Supplementary annotations are included in our publicly
available annotation dataset.

3https://github.com/ryankiros/skip-thoughts
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2015). To generate sentence embeddings needed
for the centroid-based algorithm and the bag of sen-
tence embedding clusters, we apply skip-thought
vectors to embed each sentence from our annotated
documents into a 4800-dimensional vector. We use
the pre-trained skip-thought vector model to create
sentence embeddings for each sentence.4

In our techniques, we do not pre-select sentences
to include as features for classifying a document.
We also do not treat sentences differently given
their location in different sections of a document,
e.g., introduction versus conclusion. Our corpus
is composed of research papers, book chapters,
Wikipedia articles, and web documents, so there
is not a standard format that all documents follow.
Our goal is to discover different types of sentences
that could support our defined set of pedagogical
roles as well as point to the existence of other roles.

Random Forest baseline classifier (RF): TF–
IDF scores of words in our annotated documents
are used as features for a random forest classifier.
To calculate the TF–IDF scores, we included words
that were in at least 10% and at most 90% of the
documents. We used five-fold cross-validation to
evaluate the results.5

Multi-label centroid-based algorithm with sen-
tence embeddings (CEN): Each pedagogical
role is represented by an average centroid vector,
which is calculated by adding all sentence vectors
in every document that belongs to the role, and then
dividing the sum by the total number of sentence
vectors added. When classifying a new document,
we assign each sentence vector in the new docu-
ment to a role label based on the nearest average
vector. The role labels that are predicted for more
than a third of the document’s sentences are then
predicted to be the document’s role(s). Although
this baseline method limits each document to two or
fewer role predictions, it works as a rough baseline.
99.1% of the annotated documents have one or two
pedagogical roles, and we assume our sample of
annotated documents is representative of a larger
collection of documents.

Bag of Sentence Embedding Clusters (BoSEC):
Starting with the hypothesis that semantic and syn-
tactic features of sentences are useful indicators of
pedagogical roles, we employ k-means clustering6

4Model parameter details in Supplemental Material A.1.
5Model parameter details in Supplemental Material A.2.
6http://scikit-learn.org, model parameter details in Supple-

mental Material A.3.

over sentence vectors to generate a representation
basis (of N clusters) for computing a single N × 1
feature vector per document. Each entry in the
feature vector is the relative frequency of the spe-
cific sentence vector cluster being observed in the
document.

K-Nearest Neighbors with Bag of Sentence Em-
bedding Clusters (KNN+BoSEC): We use k-
nearest neighbors classification to search for docu-
ments which exhibit the most similar distributions
of clusters and predict the pedagogical roles of
documents. To predict the roles of document A,
we look for the three nearest documents in the
N-dimensional vector space as calculated by the
Manhattan distancemetric. Themajority roles of the
three nearest documents are then predicted to be the
roles of document A. The details of KNN+BoSEC
are shown in Figure 1.

KNN+BoSEC with custom sentence encoder
(KNN+BoSEC+): The content and style of writ-
ing in the scientific papers in our corpus differs
from that of books used to train the pre-trained skip-
thoughts vector model. We also run experiments
using the KNN+BoSEC technique with a custom
sentence embedding model trained on our entire
collection of (annotated and unannotated) NLP doc-
uments. The custom sentence embedding model is
trained using the default parameters described in
the skip-thoughts training code.7

3 Results

3.1 Annotation agreement evaluation
The kappa value, which measures the likelihood
of annotator agreement occurring above chance,
is 0.68 for the pedagogical role annotations. This
kappa value was calculated as an average over the
kappa values for each subset of 100 documents.
Given the difficulty of annotating pedagogical roles,
which was confirmed by annotators, we believe
a kappa of 0.68 indicates substantial agreement
between annotators (Landis and Koch, 1977).

Table 1 shows the details of inter-annotator agree-
ment for annotated pedagogical roles from docu-
ments with only one majority role. The rows are
the majority roles, which we take to be the ground
truth pedagogical roles of documents. The columns
show the third annotator’s annotations; if the third

7https://github.com/ryankiros/skip-thoughts; model param-
eter details in Supplemental Material A.4.
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(a) (b) (c) (d)

Figure 1: An end-to-end overview of the BoSEC+KNN technique. In (a), we generate skip-thought
sentence vectors for every sentence in all documents. We partition all sentence vectors into clusters in (b).
In (c), we represent each document as a distribution over the clusters formed in (b). (d) shows the KNN
pedagogical role classification of documents based on the majority votes of annotated documents.

annotation matches the majority, then the partic-
ular annotation falls on the diagonal of Table 1.
Although there are 1264 majority pedagogical role
annotations, we calculated the confusion matrix for
1206 roles from documents with only one majority
role each, for ease of interpretation. From the 1206
pedagogical roles, there are 1245 role pairs between
the majority role and the third annotator’s annotated
role(s).
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Sur. 10 1 0 7 4 0 5 27
Tut. 2 44 6 22 6 4 14 98
Res. 0 0 5 1 1 3 5 15
Ref. 36 20 3 151 4 1 28 243
Emp. 13 8 8 15 526 3 56 629
Sof. 0 1 0 0 2 1 2 6
Other 12 24 6 47 29 2 107 227
Total 73 98 28 243 572 14 217 1245

Table 1: Confusion matrix for annotated pedagogi-
cal roles from documents with only one majority
role. Rows are the majority roles (chosen by two
or three annotators) that we treat as ground truth.
Columns are the third annotator’s corresponding
annotations.

From Table 1, we can see that Survey documents
are sometimes confused with Reference Works, Re-
source papers are sometimes confused with Other
documents, and Software Manuals are rare. We also
see that Other documents have relatively higher
rates of misclassification. These results are con-

sistent with feedback from annotators. The reason
why Survey documents are sometimes mistaken
for Reference Works is because both examine a
broad number of subjects in a domain; the distinc-
tion we make in our annotation guidelines is that
Reference Works are a collection of established
authoritative facts such as those one might find
in an encyclopedia, whereas Surveys focus on the
discoveries of other publications. When looking
for Resource papers, annotators rely on looking for
few indicator sentences that may be missed with a
more superficial skim of the document. Also, the
Other documents belong to a range of additional
pedagogical roles, though we do not make finer
distinctions here.
For each annotated document, we kept the ped-

agogical roles that had majority annotation agree-
ment across the three annotators who annotated
the document. If a document had no majority la-
bels, the document was filtered out of the annotated
document set. This filtered document set of 1235
documents with 1264 annotated pedagogical roles
is the one we use along with a supplementary set
for all pedagogical role prediction techniques.

Other
Software Manual
Empirical Results

Reference Work
Resource
Tutorial
Survey

226
90

657
247

89
115

65

Figure 2: Distribution of all pedagogical role anno-
tations in the full annotated corpus used for training
classifiers
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Wenoticed a lack of Surveys,Resources, and Soft-
ware Manuals, so we internally annotated another
supplementary set of 155 documents consisting
mostly of documents of the underrepresented roles.
The full annotated corpus we use for classification
has the distribution of roles shown in Figure 2; this
full corpus includes the filtered set of 1235 docu-
ments annotated by three annotators each and 155
internally annotated documents, for a total of 1489
pedagogical role annotations over 1390 documents.
Given the corpora we selected our set of documents
to annotate from, it is not surprising that most of the
documents are Empirical Results, Reference Works,
Tutorials, or Other. 94% of the annotated docu-
ments have just one pedagogical role, and 99.1%
have one or two pedagogical roles.8 The top three
most common combinations of roles for a document
are Resource and Empirical Results; Resource and
Software Manual; Tutorial, Resource, and Software
Manual.9 Many documents with multiple peda-
gogical roles are Resource documents because the
authors make their work publicly available.

3.2 Pedagogical role classification evaluation
In Table 2, we see that for both random forest
classification of TF–IDF scores (RF) and sen-
tence embedding methods (CEN, KNN+BoSEC,
KNN+BoSEC+), the more samples there are for a
pedagogical role, the higher the scores are for the
role. The scores for Other documents are an antic-
ipated exception to the trend, because we do not
make more fine-grained distinctions between other
pedagogical roles in this work. Software Manuals
are also an exception to this trend, as their scores
are relatively high for the number of samples; this
is because Software Manuals are typically written
in a very distinct style. CEN generally performs
poorly across roles, doing worse than the baseline
random forest classification with TF–IDF. This sug-
gests that word frequency is more informative about
the pedagogical roles of a document than a single
representative vector per role.
With the exception of Software Manuals, RF

is able to predict roles with more samples (Refer-
ence Work, Empirical Results, Other) with higher
precision compared to roles with fewer samples
(Survey, Tutorial, Resource). KNN+BoSEC and
KNN+BoSEC+ have comparable precision for roles
with more samples, but have significantly higher
precision for roles with fewer samples. Compared

8See Figure 3 in Supplemental Material for more details.
9See Figure 4 in Supplemental Material for more details.

to RF, KNN+BoSEC and KNN+BoSEC+ also have
higher recall across all roles. KNN+BoSEC+ has
the highest F1 scores for all pedagogical roles. We
attribute the fact that KNN+BoSEC+ is generally
able to do better than KNN+BoSEC to using a
custom sentence encoder trained on scientific docu-
ments.

Given that we use keyphrases to find documents
that likely belong to specific pedagogical roles, we
also want to see if we could achieve performance
similar to that of our sentence embedding-based
methods by simply classifying documents based on
keyphrases. We manually curate a list of keyphrases
for two pedagogical roles: “softwaremanual,” “man-
ual,” and “technical manual” for Software Manuals,
and “tutorial” for Tutorials. We then classify a docu-
ment as a certain role if any of the role’s keyphrases
are present in the first five sentences of the docu-
ment, where the title counts as the first sentence.
Classifying Software Manuals with this method
has a precision of 0.15, a recall of 0.09, and an F1
score of 0.11. KNN+BoSEC+ dramatically outper-
forms this method with the specified keyphrases
for Software manuals. Classifying Tutorials with
this method has a precision of 0.60, a recall of
0.50, and an F1 score of 0.55. While the keyphrase
classification results for Tutorials are closer to the
corresponding KNN+BoSEC+ results, we think
that the KNN+BoSEC+ results would also improve
if it had access to the list of keyphrases as features,
though we leave that for future experimentation.
These initial keyphrase classification experiments
suggest that sentence-embedding-based methods
are generally more effective and robust than hand-
crafting keyphrases for each pedagogical role.
The confusion matrix in Table 3 allows us to

make judgments about documents of different peda-
gogical roles, as predicted by KNN+BoSEC+. The
rows are the ground truth roles, and the columns
are the predicted roles. We can see that Surveys, Re-
sources, and Other documents are often mistaken to
be documents with Empirical Results. Additionally,
there are relatively more instances of Surveys, Re-
sources, and Other documents where the classifier
is unable to make a prediction. Overall, these results
suggest that the misclassifications are an effect of
an unbalanced dataset with many more samples of
Empirical Results, rather than an inherent lack of
distinctness between documents of different roles.

Through a qualitative analysis of sentences from
the clusters most frequently associated with each
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Survey 0 0.02 0.23 0.31 0 0.21 0.20 0.18 0 0.03 0.21 0.23 13
Tutorial 0.50 0.10 0.64 0.66 0.05 0.21 0.55 0.52 0.08 0.11 0.57 0.58 23
Resource 0.20 0 0.70 0.53 0.01 0 0.19 0.24 0.03 0 0.29 0.32 17.8
Ref. Work 0.77 0.07 0.71 0.78 0.33 0.32 0.70 0.71 0.46 0.11 0.70 0.74 49.4
Emp. Res. 0.86 0 0.83 0.85 0.77 0 0.86 0.89 0.81 0 0.85 0.87 131.4
Sof. Man. 0.98 0.05 0.93 0.95 0.34 0.16 0.72 0.86 0.49 0.07 0.81 0.90 18

Other 0.63 0.06 0.57 0.65 0.10 0.40 0.27 0.48 0.17 0.10 0.36 0.55 45.2
avg / total 0.71 0.03 0.73 0.76 0.44 0.15 0.64 0.70 0.50 0.05 0.66 0.72 297.8

Table 2: Precision, recall, and F1 scores by pedagogical roles for all methods. Support is the actual number
of documents with each role. avg / total computes weighted averages of scores across all roles. All values
are averaged over a five-fold cross validation.
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Sur. 2 0.2 0 0.8 4.2 0 1.2 1.6 10
Tut. 0.2 9.4 0 2.6 0.8 0.8 2 2.2 18
Res. 0.2 0 1.2 0 3 0 0.6 1.8 6.8
Ref. 1.2 1.6 0.2 34 3.6 0.2 3.2 4.2 48.2
Emp. 0.8 1.4 1.8 3 109.2 0 4 4.2 124.4
Sof. 0 1.6 0.6 0.2 0 9.8 0 0.4 12.6
Oth. 3.4 0.6 0.6 3.2 8 0 21.8 7.6 45.2
Tot. 7.8 14.8 4.4 43.8 128.8 10.8 32.8 22 265.2

Table 3: Ground truth pedagogical roles (rows) ver-
sus predicted roles (columns) usingKNN+BoSEC+.
We calculate the confusion matrix for documents
with only one ground truth role. All values are
averaged over a five-fold cross validation.

pedagogical role, we observe that example sen-
tences from different roles align with our intuitions
of what exemplary sentences from different roles
should be. The Survey sentences describe progress
in different areas of research; the Tutorial sentences
explain details of specific concepts and methods;
the Software Manual sentences give information
about how to use a tool.10 Sentences from the most

10For more details, see Table 4 in Supplemental Material.

frequent clusters of a role do not explicitly mention
the roles of the paper, e.g., “This paper presents
a tutorial. . . ” This phenomenon makes sense for
two reasons. One reason is that the majority of
documents do not explicitly say what kind of docu-
ment they are. The second reason is that even when
documents do explicitly state their role, the actual
content of the document may disagree with the
declared role. For example, some papers are writ-
ten to accompany tutorials presented at workshops.
The papers will explicitly declare themselves to be
tutorials, but the paper will only include an abstract
and not the tutorial itself. Following our annotation
guidelines, we do not label these documents as Tuto-
rials. This implicit characterization of a document’s
pedagogical roles through sentences means that a
method that merely searches for explicit mentions
of keywords or declaration of the document’s roles
would not be an effective approach to this prob-
lem. Thus, these example sentences qualitatively
validate our embedding and clustering approach to
pedagogical role classification.

4 Related Work

To the best of our knowledge, there is not much
prior work that is directly related to investigating
relevant pedagogical features of documents through
pedagogical roles. There are some document recom-
mendation systems that try to find documents that
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are both conceptually relevant to a user’s query and
pertinent to the user’s interest, level of background
knowledge, etc. For example, Semantic Scholar11
allows users to filter an automatically generated
reading list by “overviews,” which are analogous to
our definition of Surveys. PageRank accounts for
popularity when identifying documents of interest
(Page et al., 1999). Tang and McCalla (2004) con-
sider the user’s background knowledge, interest to-
wards specific topics, and motivation when making
recommendations. Gori and Pucci (2006) present a
research paper recommender system based on the
random walk algorithm and a small set of papers
that users mark as relevant. Santos and Boticario
(2010) emphasize that recommendation systems in
the e-learning domain should be “guided by educa-
tional objectives” and define a semantic model for
recommendation objects.

Previous efforts at investigating the value of doc-
uments include evaluating the reading difficulty of
documents, citation graphs, and surveys, though
none really address the problem of estimating the
pedagogical value of a document to a learner while
focusing on the interpretability of the results. The
interpretability of results is especially important
in education because educators need to be able to
provide clear feedback to students. In automatic
essay scoring, researchers look at features such as
word count, semantic and syntactic coherence, sen-
tence length, vocabulary complexity, and the use
of certain phrases that facilitate the flow of ideas,
e.g., “first of all” (Burstein et al., 2004; Shermis and
Burstein, 2013). These features are a starting point
to estimate the value of a document, but to estimate
pedagogical value, we must consider if and how
these features would affect different learners. Other
directions of research use the influence of a paper
within a citation graph as a proxy for the value
of the paper, following the reasoning that good
quality papers would be more important “nodes” in
a citation graph (Ekstrand et al., 2010); however,
documents that are important “nodes” in the graph
do not necessarily have high pedagogical value
for all learners. Tang and McCalla (2009) present
surveys to students as an annotation method to es-
timate the value of the paper to the learner. They
annotate individual features of job-relatedness, in-
terestingness, usefulness, etc., using ordinal-scale
values, and study the partial correlations between
features to analyze the composition of features that

11https://www.semanticscholar.org

contribute to the pedagogical value of a document.
Our approach is different in that (a) we develop an
intermediate representation of pedagogical value
that can be largely objectively annotated, (b) we
evaluate correlation between annotators and not
between features, and (c) we additionally present
baseline results of pedagogical role prediction.
The classification task described in this work

is also related to text classification, a task with a
long history in NLP. Sebastiani (2002) presents a
detailed survey of tasks and techniques used in text
classification up until the early 2000s. Joachims
(1998) presents experimental results that justify the
use of Support Vector Machines (SVMs) for text
classification. Soucy and Mineau (2001) use TF–
IDF scores and a KNN model to perform different
text categorization tasks.

5 Conclusion
In this paper, we have described (a) our creation of
the first annotated corpus of pedagogical roles for
the study of pedagogical value and (b) our use of
sentence embeddings and clustering techniques to
develop a baseline for pedagogical role classifica-
tion. The inter-annotator agreement for the annota-
tion of pedagogical roles is substantial and thus a
good basis to develop pedagogical role classification
techniques and intuitions about pedagogical value
upon. Analyses of our bag of sentence-embedding
clusters technique support our intuition that certain
sentences in a document are strong indicators of the
pedagogical roles of the document. The next steps
are to expand the set of roles as needed and apply
our techniques to other domains in order to work
towards a general approach to estimating pedagog-
ical value. We believe it is important to make our
corpus and annotations public, as feedback from
other researchers will help improve the quality and
scope of our corpus as we expand it.
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A Supplemental Material
A.1 Skip-thought vector parameters
Each sentence vector has 4800 dimensions, with
the first 2400 dimensions as the uni-skip model,

117



and the latter 2400 dimensions as the bi-skip model.
The model has the following parameters: recurrent
matrices initialized with orthogonal initialization,
non-recurrent matrices initialized from a uniform
distribution in [−0.1, 0.1], mini-batches of size 128,
gradients clipped when the norm of the parameter
vector is greater than 10, and the Adam algorithm
for optimization.

A.2 Random forest classification parameters
For the random forest classifier, we used the Gini
impurity function to estimate the quality of splits.
When looking for the best split, the classifier consid-
ers the square root of the total number of features.
The maximum depth of the tree is 75, and the classi-
fier splits on a minimum of 5 samples at the internal
nodes. We use 10 trees and a minimum of 1 sample
at each leaf node.

A.3 Mini-batch K-means parameters
In this clustering technique, random subsets of the
feature vectors are used in each iteration. We train
the model with 300 clusters, early stopping if there
is no improvement in the last 50 mini batches, a
mini batch size of 4800, and the fraction of the
maximum number of counts for a cluster center to
be reassigned is 0.0001. We had experimented with
different cluster sizes, and found 300 clusters to
be the right size to maintain coherency within and
distinction across clusters.

A.4 Custom skip-thought vector model
parameters

Specifically, the RNN word embeddings have 620
dimensions, and we use a uni-skip model with a
hidden state size of 2400. Both the encoder and
the decoder are GRUs. The size of the decoder
vocabulary is 20000, and the maximum length of a
sentence is 30 words; additional words in sentences
are ignored. Our custom model is trained for 5
epochs, has a gradient clipping value of 5, has a
batch size of 64, and uses the Adam optimization
algorithm.
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Figure 3: Distribution of number of pedagogical roles per document in full annotated corpus
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Figure 4: Distribution of pedagogical roles for documents in full annotated corpus with more than one role
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Pedagogical role Cluster ID Example sentence

Survey 250 This view has been worked out in the text generation and dialog
community more than in the text understanding community (Mann
and Thompson, 1987; Hovy, 1993; Moore, 1994).

123 Confronted with the claim that Game Theory should be the the-
oretical backbone to NLG, some people might respond that no
new backbone is needed, because the theory of formal languages,
conjoined with a properly expressive variant of Symbolic Logic,
provides sufficient backbone already.

Tutorial 209 As you guessed from my explanations of different notations,
different regex engine designers unfortunately have different ideas
about the syntax to use.

95 This information is incorporated in the tri-factorization model via
a squared loss term, where the notation Tr (4) means trace of the
matrix A.

Resource 147 >>> windowdiff(s1, s1, 3)

255 ... print('', repr(corpus.fileids())[:60])
Reference Work 155 The greater the resumption of the activity (i.e., mismatch nega-

tivity), the more different the neurological processing of the new
item.

86 A trajectory of an object is determined by its different centers of
gravity relative to an underlying coordinate system.

Empirical Results 183 5.3 Using Multiple Knowledge Sources
62 The NCC open track is shown in the following table 2.

Software Manual 147 >>> clf.fit(X, Y)

152 An example of this approach can be found in the /verbi folder in
the Italian MOR grammar.

Other 279 The problem in the cases (3) and (4) is how and why the hearer
fails to derive implicatures.

157 Proofs of the form suppose-absurd F D are called proofs by
contradiction.

Table 4: Example sentences from the clusters most frequently associated with each pedagogical role. The
clusters representing mostly punctuation, numbers, or incoherent strings were not included in calculating
most frequently associated clusters.
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Abstract

Given the lack of large user-evaluated cor-
pora in disability-related NLP research
(e.g. text simplification or readability as-
sessment for people with cognitive dis-
abilities), the question of choosing suit-
able training data for NLP models is not
straightforward. The use of large generic
corpora may be problematic because such
data may not reflect the needs of the target
population. At the same time, the avail-
able user-evaluated corpora are not large
enough to be used as training data. In
this paper we explore a third approach, in
which a large generic corpus is combined
with a smaller population-specific corpus
to train a classifier which is evaluated us-
ing two sets of unseen user-evaluated data.
One of these sets, the ASD Comprehen-
sion corpus, is developed for the purposes
of this study and made freely available.
We explore the effects of the size and type
of the training data used on the perfor-
mance of the classifiers, and the effects of
the type of the unseen test datasets on the
classification performance.

1 Introduction

When developing educational tools and applica-
tions for students with cognitive disabilities, it is
necessary to match the readability of the educa-
tional materials to the abilities of the students and
to adapt the text content to their needs. Both text
adaptation and readability research for people with
cognitive disabilities are thus dependent on evalu-
ation involving target users. However, there are
two main difficulties in collecting data from users
with cognitive disabilities: i) experiments involv-
ing those users are expensive to perform and ii)

the task of text evaluation is challenging for target
users because of their cognitive disability.

Following from the first difficulty, user-
evaluated data is scarce and the majority of NLP
research for disabled groups is done by exploit-
ing ratings or simplification provided by teachers
and experts (Inui et al., 2001; Dell’Orletta et al.,
2011; Jordanova et al., 2013). Examples of such
a corpora are the FIRST corpus (Jordanova et al.,
2013), which contains 31 original articles and ver-
sions of the articles that had been manually simpli-
fied for people with autism, and a corpus of man-
ually simplified sentences for congenitally deaf
Japanese readers (Inui et al., 2001). Henceforth
in this paper, we refer to such manually simpli-
fied corpora as population-specific corpora. These
corpora have not been evaluated by end users with
disabilities.

As a result of the second difficulty, the fact
that people with cognitive disabilities find text
evaluation challenging, the size of user-evaluated
datasets is rather limited. For example, to the
best of our knowledge, there is currently only one
readability corpus evaluated by people with intel-
lectual disability, called LocalNews (Feng, 2009).
This corpus contains 11 original and 11 simplified
news stories. In this paper we present another cor-
pus evaluated by people with autism containing a
total of 27 documents. Henceforth in the paper,
we refer to these type of corpora as user-evaluated
corpora.

Given the lack of large population-specific or
user-evaluated corpora in disability-related re-
search, the question of choosing suitable train-
ing data for NLP models is not straightforward.
While the use of large generic corpora as train-
ing data may be inadequate as such data may not
reflect the needs of the target population, the use
of population-specific and user-evaluated corpora
as training data is problematic due to the scarcity
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of such data. In this paper we explore a third ap-
proach, in which a large generic corpus is com-
bined with a smaller population-specific corpus to
train

a system to predict the difficulty of text for peo-
ple with autism. We compare the performance of
this approach to: i) an approach exploiting only
the large generic corpus and ii) an approach ex-
ploiting only the small population-specific corpus.
We also compare the performance of the classifi-
cation models derived from two different machine
learning algorithms. All classifiers trained on the
different corpora are then evaluated on two small
sets of user-evaluated corpora (unseen data), one
of which was developed for the purpose of this
study (Section 3).

Contributions We developed the ASD Com-
prehension Corpus containing 27 educational
articles evaluated by readers with autism and
classified as easy and difficult based on partici-
pants’ answers to comprehension questions. The
texts and the answers of each participant for
each question are currently available at: https:
//github.com/victoria-ianeva/
ASD-Comprehension-Corpus1. Further,
we explore i) the effects of the size and type of
the training data on the external validity of the
classifiers and ii) the effects of the type of unseen
test datasets (only original versus original + sim-
plified articles) on the classification performance.
The system used in these experiments is available
at: http://rgcl.wlv.ac.uk/demos/
autor_readability

The rest of this paper is organised as follows.
The next section presents related work relevant to
this research, while Section 3 describes the pro-
cess for the development of the ASD Comprehen-
sion corpus. Section 4 describes the corpora used
in the study. Section 5 presents the derivation of
the classification models, and Section 6 presents
a discussion of the main findings, which are sum-
marised in Section 7.

1The repository also contains the answers of participants
from a control group (without autism), which were not ex-
plored in this article but may be useful to the community for
investigating between-group differences. For more informa-
tion about the control group see Yaneva (2016).

2 Related Work

Previous work from the fields of psycholinguis-
tics, pertaining to language and autism, readability
assessment, and domain adaptation are relevant to
the research presented in our current paper.

2.1 Autism Spectrum Disorder

Autism Spectrum Disorder (ASD) is a neurode-
velopmental condition affecting communication
and social interaction. The reading difficulties of
some people with ASD include, but are not lim-
ited to, difficulties resolving ambiguity in mean-
ing (Happé and Frith, 2006; Happe, 1997; Frith
and Snowling, 1983; O’Connor and Klein, 2004),
difficulties comprehending abstract words (Happé,
1995), difficulties in the syntactic processing of
long sentences (Whyte et al., 2014), difficulties
identifying the referents of pronouns (O’Connor
and Klein, 2004), difficulties in figurative lan-
guage comprehension (MacKay and Shaw, 2004),
and difficulties in making pragmatic inferences
(Norbury, 2014). Adults with autism have also
been shown to process images inserted in easy-to-
read documents differently from non-autistic con-
trol participants (Yaneva et al., 2015).

2.2 Readability Assessment

Readability is a construct which has been defined
as the ease of comprehension because of the style
of writing (Harris and Hodges, 1995). Histori-
cally, the readability of texts has been estimated
via formulae exploiting shallow features such as
word and sentence length (Dubay, 2004); cog-
nitive models exploiting features such as age of
acquisition of words and text cohesion (McNa-
mara et al., 2014) and, more recently, thanks to
advances in Natural Language Processing (NLP),
readability has also been estimated via computa-
tional models (Collins-Thompson, 2014; François,
2015). Advances in the fields of NLP and Artifi-
cial Intelligence have enabled both the faster com-
putation of existing statistical features and the de-
velopment of new NLP-enhanced features (e.g.,
average parse-tree height, average distance be-
tween pronouns and their anaphors, etc.) which
can be used in more complex methods of assess-
ment based on machine learning. An example of a
readability model targeted to a specific application
of readability assessment are the unigram models
by Si and Callan (2001), which have been found
particularly suitable for assessment of Web con-
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tent, where the presence of links, email addresses
and other elements biases the traditional formulae.

In terms of readability assessment for readers
with cognitive disabilities, previous research has
shown that readability features such as entity den-
sity per sentence and lexical chains (synonymy
or hyponymy relations between nouns) are useful
for estimating the readability of texts for readers
with mild intellectual disability (Feng et al., 2010).
This is due to the fact that these readers strug-
gle to remember relations that hold within- and
between-sentences (Feng et al., 2010). Similarly,
features such as word length or word frequency are
more relevant for readability assessment for peo-
ple with dyslexia because they struggle with de-
coding particular letter and syllable combinations
(Rello et al., 2012). In the case of autism, an im-
portant issue has been the lack of corpora whose
reading difficulty levels have been evaluated by
people with autism. For this reason most read-
ability research for this population has so far fo-
cused on texts simplified by experts (Štajner et al.,
2014). User-evaluated texts were used for the first
time in a study, where the discriminatory power of
a number of features was evaluated on a prelimi-
nary dataset of 16 texts considered easy or difficult
to comprehend by people with autism (Yaneva and
Evans, 2015).

2.3 Domain adaptation

Supervised machine learning and statistical meth-
ods like the ones used in this paper benefit from
the availability of large amounts of training data.
However, in many cases it is not easy to obtain
enough training data for specific domains or ap-
plications. As a result it is not uncommon that re-
searchers train on data from one domain and test
on data from a different one. As would be ex-
pected, this usually leads to lower levels of per-
formance. The field of domain adaptation is ad-
dressing this problem by proposing methods that
can perform well even when the training and test-
ing domains are different. In many cases this is
achieved by exploiting a small training corpus of
the same domain as the test documents. Domain
adaptation has been used for a variety of tasks
in NLP, including statistical machine translation
(Axelrod et al., 2011), sentiment analysis (Blitzer
et al., 2007; Glorot et al., 2011) and text classifi-
cation (Xue et al., 2008).

Recent studies in the field of readability and lan-

guage proficiency have used a similar approach
to the one proposed in this paper. For example,
Pilán et al. (2016) tackle the problem of data spar-
sity when classifying language proficiency levels
of learner-written output by incorporating knowl-
edge in the trained model from another domain
consisting of input texts written by teaching pro-
fessionals for learners. Their results indicated
that the weighted combination of the two types of
data performed best, even when compared to sys-
tems based on considerably larger amounts of in-
domain data. In this paper we go a step further by
applying this approach to readability classification
for people with cognitive disabilities.

3 Evaluation of Text Passages by
Readers with Autism

We present a collection of 27 individual
documents for which the readability was
evaluated by 27 different people with a for-
mal diagnosis of autism. The collection is
henceforth referred to as the ASD Compre-
hension corpus and is available at: https:
//github.com/victoria-ianeva/
ASD-Comprehension-Corpus. Participants
were asked to read text passages and answer three
multiple choice questions (MCQs) per passage.
Evaluation of the difficulty of the texts was then
based on their answers to the questions2.

Participants The evaluation of the texts was
performed in three cycles of data collection and in-
volved 27 different participants with autism. Texts
1-9 and 21-27 were evaluated by Group 1, con-
sisting of 20 adult participants (13 male, 7 female)
with mean age in years µ = 30.75 and standard
deviation σ = 8.23, while years spent in educa-
tion, as a factor influencing reading skills, were
µ = 15.31, with σ = 2.9. Texts 10-17 were
evaluated by Group 2, consisting of 18 adult par-
ticipants (11 male and 7 female) with mean age
µ = 36.83, σ = 10.8 and years spent in educa-
tion µ = 16, σ = 3.33. Group 3 evaluated texts
18-20 and consisted of 18 adults (12 male and 6
female) with mean age µ = 37.22, σ = 10.3 and
years spent in education µ = 16, σ = 3.33. All
participants had a confirmed diagnosis of autism

2While reading the texts and answering the questions, the
eye movements of the participants were recorded using an
eye tracker; however, the recorded gaze data was not used in
this study, hence we do not report details about the gaze data
except when describing the data collection procedure. More
details can be found in Yaneva (2016).
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and were recruited through 4 local charity organi-
sations. None of the 27 participants had other con-
ditions affecting reading (e.g. dyslexia, intellec-
tual disability, aphasia etc.). All participants were
native speakers of English.

Materials A total of 27 text passages of varying
complexity were collected from the Web. The reg-
isters were miscellaneous, covering educational (7
documents), news (10 documents) and general ar-
ticles (3 documents), as well as easy-to-read texts
(7 documents). The average number of words
per text was µ = 156 with standard deviation
σ = 49.94. The texts covered a range of readabil-
ity levels, where the average was µ = 65.07 with
σ = 13.71 according to the Flesch Reading Ease
(FRE) score (Flesch, 1949), which is expressed on
a scale from 0 to 100 (the higher the score, the
easier the text).

A limitation of the study is the small size of the
corpus, which was necessary in order to avoid fa-
tigue in the participants and to comply with eth-
ical considerations. By comparison, LocalNews
(Feng, 2009), which is the only other corpus for
English whose readability has been evaluated by
people with cognitive disabilities contains 11 orig-
inal and 11 simplified texts.

Design of the Multiple-Choice Questions
Since people with ASD are generally known to
understand many parts of what they read literally
(Happé and Frith, 2006; Happe, 1997; Frith and
Snowling, 1983; O’Connor and Klein, 2004),
it is of interest to examine different types of
comprehension of the texts in the ASD corpus.
Impairment in specific types of reading com-
prehension merits the exploration of readability
features related to those specific types. Table
1 shows the main types of comprehension we
examine in our study following a taxonomy
formulated by Day and Park (2005). The table
also shows the relationship between the types of
comprehension examined and the reading profile
of people with autism.

These types of reading comprehension were ex-
amined through the inclusion of three multiple-
choice questions per text passage, each of which
contained three possible answers. The example
below is a question examining the ability to make
inferences:

Black peppered moths became more numerous in
urban areas because:

a) They were mutants
c) They were camouflaged due to the airborne

pollution
d) The airborne pollution blackened the white

moths with soot

Apparatus and Procedure All participants
were verbally instructed about the purpose and
procedure of the experiment and given a partici-
pant information sheet. Once they were familiar
with the implications of the research, they signed
a consent form, verbal instruction was reinforced
and demographic data about age, education and
diagnosis was collected. Eye tracking data was
recorded3, hence the eye tracker was calibrated by
each participant before the start of the experiment.
Texts were presented on a 19” LCD monitor. In or-
der to maximise the internal validity of the experi-
ment, the texts were presented in random order to
each participant. This controlled for factors such
as fatigue or participants becoming accustomed to
the types of questions asked. The order of ques-
tions after each text was also randomised, so that
it would not influence the answers given by the
participants. The effects of memory were con-
trolled by having the relevant passage constantly
displayed on the screen. Participants could there-
fore refer to it whenever they were not sure about
the information it contained. While the effects
of background knowledge could not be eliminated
entirely, the selection of texts was made in such
a way as to ensure that this effect would be min-
imised as far as possible. The participants read all
texts and answered all questions, taking as many
breaks as they requested. At the end of the experi-
ment, participants were debriefed.

Development of the Gold Standard for ASD
The 27 texts from the ASD corpus were used for
evaluation of the document-level classifiers. They
were divided into classes of easy and difficult texts
based on the answers to the multiple choice ques-
tions (MCQs). Each text was evaluated by three
MCQs and each correct answer was given 1 point,
while each incorrect answer was awarded 0 points.
Thus, if a participant had answered two out of
three questions correctly for a given text, then that
text had an answering score of two for this par-
ticipant. After that, all answering scores for the
participants were summed for each text. The texts

3The recorded eye tracking data is not examined in this
study.
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Comprehension Characteristics (Day and Park, 2005) Relation to ASD
Literal Understanding of the straightforward meaning

of the text: facts, dates, vocabulary, etc
Readers with ASD have predominantly literal
understanding of language (MacKay and Shaw,
2004).

Reorganisation The ability to combine explicitly given informa-
tion from different parts of the text: “Maria
Kim was born in 1945”; “Maria Kim died in
1990”. How old was Maria Kim when she
died?”.

Since this type of question is based on literal
understanding it could provide insights exclu-
sively into the role of context, the use of which
is challenging for people with ASD (O’Connor
and Klein, 2004).

Inference The ability to use two or more pieces of infor-
mation to arrive at a third piece of information
that is implicit: “He rushed off, leaving his bike
unchained” => He left his bicycle vulnerable
to theft.

Types of inferences challenging for ASD: Infer-
ring given or presupposed knowledge as well as
new or implied knowledge derived from mental
state words, bridging inferences, figurative lan-
guage.

Table 1: Types of comprehension examined and their relation to ASD

were then ranked and partitioned at a threshold
into two groups. Application of a Shapiro-Wilk
test showed that the data was non-normally dis-
tributed and the two groups were thus compared
using the non-parametric Wilcoxon Signed Rank
test. The results indicated that the two groups of
texts were significantly different from one another
(z = −6.091, p < 0.0001). Thus 18 texts were
classified as easy and 9 texts were classified as dif-
ficult.

4 Corpora

This section describes the corpora used for train-
ing and evaluation of the readability classifiers.
We train classifiers on three corpora, presented be-
low: i) the WeeBit corpus (Vajjala and Meur-
ers, 2012), a comparatively large generic corpus
used in readability research; ii) the FIRST cor-
pus, a small corpus containing original and man-
ually simplified texts, a subset of which have been
evaluated in terms of readability in experiments in-
volving 100 people with autism (Jordanova et al.,
2013) and finally, iii) a combination of the two.
After that we tested our classifiers by applying
them to previously unseen user-evaluated data.
These data consist of two corpora, the readabil-
ity of which has been evaluated by people with
autism (The ASD Comprehension corpus, pre-
sented above), and by people with intellectual dis-
ability (LocalNews corpus (Feng et al., 2009)).

4.1 The WeeBit Corpus

The WeeBit corpus (Vajjala and Meurers, 2012)
contains educational documents obtained from
the Weekly Reader4 and BBC-BiteSize5 web-

4http://www.weeklyreader.com/
5http://www.bbc.co.uk/education

sites and comprises two sub-corpora of the same
names. The Weekly Reader is an educational web-
newspaper containing fiction, news and science ar-
ticles. The WeeklyReader is intended for children
aged 7-8 (Level 2), 8-9 (Level 3), 9-10 (Level 4)
and 9-12 (Senior level). BBC-BiteSize is also an
educational site containing articles at 4 levels cor-
responding to educational key stages (KS) for chil-
dren between ages 5-7 (KS1), 7-11 (KS2), 11-14
(KS3) and 14-16 (GCSE). The combined WeeBit
corpus comprises 5 readability levels correspond-
ing to the Weekly Reader‘s Level 2, Level 3 and
Level 4 and BBC-BiteSize KS4 and GCSE levels.
The corpus contains 615 documents per level. The
average document length measured in number of
sentences is 23.4 sentences at the lowest level and
27.8 sentences at the highest level.

The WeeBit corpus was the most appropriate to
use for the purpose of our work due to the fact that
it contains educational and generally informative
articles and due to its large size relative to other
readability corpora for English. Examples of other
corpora include Encyclopedia Britannica (Barzi-
lay and Elhadad, 2003) (40 documents), Literacy-
works (Petersen and Ostendorf, 2007) (around 200
documents) or the WeeklyReader (Allen, 2009)
on its own. An alternative was to use Wikipedia
and Simple English Wikipedia6 as they contain
a very large number of articles; however, claims
that Simple English Wikipedia articles are more
accessible than English Wikipedia articles have
been disputed (Xu et al., 2015; Štajner et al., 2012;
Yaneva, 2015).

As the primary purpose of our work is to build
two-level readability classifiers, we normalized
the WeeBit corpus to include texts of only two

6http://simple.wikipedia.org/wiki/Main Page
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readability levels: easy and difficult. Thus, the dif-
ficult texts in our corpus were the ones with class
labels BitGCSE and BitKS3 (age 11-16) and the
easy documents were the ones with class labels
WRLevel2 and WRLevel3 (age 9 -11). Texts from
Weekly Reader Level4 were excluded from the
dataset, as they were intended for students aged
9-12, which overlaps with Weekly Reader Level3
(9-10), BitKS2 (7-11), and BitKS3 (11-14). Thus,
the remaining data consisted of 1,610 documents
divided into two equally sized classes of easy and
difficult documents.

4.2 The FIRST corpus
The FIRST corpus consists of 25 documents of
the registers of popular science and literature (13
texts) and newspaper articles (12 texts) (Jordanova
et al., 2013). These texts were presented in both
their original and simplified forms, so that the cor-
pus contains 25 paired original and simplified doc-
uments (50 documents in total). The simplification
was performed by 5 experts working with autistic
people, who were given ASD-specific text simpli-
fication guidelines, specified in (Jordanova et al.,
2013), which contains full details of the simplifi-
cation procedure and the characteristics of the cor-
pus. In addition to the 50 texts contained in that
corpus, original and simplified versions of 6 ad-
ditional texts were produced in accordance with
the specified guidelines. These 12 texts were then
evaluated on a sample of 100 adults with autism
as part of the evaluation method in the EC-funded
FIRST project.7 Statistically significant differ-
ences in the levels of comprehension for texts
from the two classes are reported (Jordanova et al.,
2013). These texts were added to the FIRST cor-
pus, which thus contains 31 original and 31 simpli-
fied versions of documents, of which 6 documents
per class were evaluated by people with autism.

4.3 LocalNews Corpus
Similar to the ASD Comprehension corpus, the
LocalNews corpus (Feng et al., 2009) is used as
test data for evaluating the classifiers. The Local-
News corpus consists of 11 original and 11 simpli-
fied news stories and is, to the best of our knowl-
edge, the only other resource in English, for which
text complexity has been evaluated by people with
intellectual disability. The articles were first man-
ually simplified by humans, a process in which

7FIRST project. [online] available at: http://www.first-
asd.eu/[Last accessed: 19/05/2017]

long and complex sentences were split and im-
portant information contained in complex prepo-
sitional phrases was integrated in separate sen-
tences. Lexical simplification included the substi-
tution of rare words with more frequent ones and
the deletion of sentences and phrases not closely
related to the meaning of the text. The texts were
then evaluated by 19 adults with mild intellectual
disability, who showed significant differences in
their comprehension scores for the two classes of
documents (Feng et al., 2009).

5 Model Training and Evaluation

This section presents the experiments comparing
the performance of the different classifiers.

5.1 Algorithms

The document-level classifier was built using su-
pervised learning algorithms implemented in the
Weka toolkit (Frank and Witten, 1998). We evalu-
ated a number of algorithms in the WEKA toolkit
and selected the two which performed best when
evaluated using 10-fold cross validation over the
WeeBit corpus (Random Forests) and the FIRST
corpus (Bayes Net). The Random Forest algo-
rithm (Breiman, 2001) is a decision tree algorithm
which uses multiple random trees to vote for an
overall classification of the given input. The Bayes
Net classifier is the implementation of a Bayesian
Network classifier (Heckerman et al., 1995) avail-
able in Weka. Bayesian networks are probabilis-
tic graphical models which were shown to be very
successful in domain adaptation problems (for ex-
ample Finkel and Manning (2009)). For both
learning algorithms we used the default values for
their parameters as provided by Weka. Although
there is scope for tuning of these parameters, we
did not have access to enough data to explore this
direction.

5.2 Baseline

We use the Flesch-Kincaid Grade Level readabil-
ity formula (Kincaid et al., 1981) as a baseline for
document classification due to the fact that it is one
of the best-performing predictors of text difficulty,
and has been used as a baseline in other readabil-
ity estimation models (Vajjala Balakrishna, 2015).
The baseline values are computed by using the
score of the formula as a single feature in the clas-
sification model.

126



Random Forests Bayes Net
Feature Description W F WF W F WF
1. Long words Proportion of words with 3 or more syllables − + − − − −
2. Average word length Average number of syllables, all words − + − − − −
3. Possible senses Sum of all senses for all words in the text − + − − − −
4. Polysemous words Words with more than one sense in WordNet − + − − − −
5. Polysemous type ratio Ratio polysemous word types / all word types − + + + − +
6. Type-token ratio Total number of types/number of tokens − − − − − −
7. Vocabulary variation Word types/ common words not in the text − − − − − −
8. Numerical expressions Number of numerical expressions − + − − − −
9. Infrequent words Not in 5,000 most freq. words in English − + − − − −
10. Total number of words Total number of words in the text − − − − − −
11. Dolch-Fry Index Fry 1000 Instant Word List/Dolch Word List − − − − − −
12. Number of passive verbs Number of passive verbs − + − − − −
13. Agentless passive density Incidence score of passive voice − − − − − −
14. Negations Number of negations + + + + + +
15. Negation density Incidence score of negations + − + + − −
16. Long sentences Proportion of sentences longer than 15 words + + + + − +
17. Words per sentence Total words / total sentences − + + + + −
18. Average sentence length Sentence length in words − + + + + +
19. Number of sentences Total number of sentences − + − − + −
20. Paragraph index 10 x total paragraphs / total words − + − − − −
21. Semicolons Number of semicolons − + − − + −
22. Unusual punctuation Number of occurences of &, %, + + + + − −
23. Comma index 10 x total commas / total words − + − − + −
24. Pronoun Score Occurence of pron. per 1,000 words − + − − − −
25. Definite description score Occurence of def. descr. per 1,000 words − + − − − −
26. Illative conjunctions Number of illative conjunctions − + + + − +
27. Comparative conjunctions Number of comparative conjunctions − + − − − −
28. Adversative conjunctions Number of adversative conjunctions − + + + − −
29. Word frequency Average frequency of words − + − − − −
30. Age of Acquisition (aver.) AOA norms from the MRC database + − + + − +
31. Familiarity (average) Familiarity norms from the MRC database − + − − − −
32. Concreteness (average) Concreteness norms from the MRC database − + − − − −
33. Imagability (average) Imagability norms from the MRC database − + + + − −
34. 1st pronominal reference Number of 1st pronominal ref. − − − − − −
35. 2nd pronominal ref. Number of 2nd pronominal reference + − + + − +
36. ARI ARI readability formula (Smith et al., 1989) − + − − + −
37. Coleman-Liau Coleman-Liau formula (Coleman, 1971) − + − − − −
38. Fog Index Fog Index formula (Gunning, 1952) + + + + + +
39. Lix Lix readability formula (Anderson, 1983) − − + + − −
40. SMOG SMOG formula (McLaughlin, 1969) − + − − − −
41. FRE Flesch Reading Ease (Flesch, 1948) − + − − − −
42. FKGL Flesch-Kincaid GL (Kincaid et al., 1981) − − − − + −
43. FIRST readability index FIRST readability ind. (Jordanova et al., 2013) − + − − − −

Table 2: A list of features, their description and their selection for the Random Forests and BayesNet
classifiers, where ‘W’ stands for WeeBit, ‘F’ stands for FIRST and ‘WF’ stands for WeeBit + FIRST

5.3 Features and feature selection

A total of 43 features were used in the experi-
ments. Table 2 presents the features, their descrip-
tions, and an indication of whether or not each
individual feature was selected for use in the fi-
nal model of the different readability classifiers.
The features used in this study included lexico-
semantic (numbers 1 - 14), syntactic (numbers 15-
22), cohesion (numbers 23 - 27), and cognitively-
motivated features (numbers 28 - 34), as well as 8
readability formulae (numbers 35 - 43) (Table 2).
The cohesion and cognitively motivated features
were inspired by those used in the Coh-Metrix

tool (McNamara et al., 2014). The source for
cognitively-motivated features were the word lists
in the MRC Psycholinguistic database (Coltheart,
1981), in which each word has an assigned score
based on human rankings. The number of personal
words in a text is hypothesised to improve ease
of comprehension (Freyhoff et al., 1998), which
is why evaluation of the number of first and sec-
ond person pronominal references were included
as features in the classification model.

Initially, the full-feature sets were used to ob-
tain the baseline models, which were subsequently
optimised using the attribute selection filter for su-
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Table 3: F Score Results for 10-fold cross validation
Random Forests Bayes Net

Baseline All features Selected features Baseline All features Selected features
WeeBit 0.78 0.988 0.984 0.838 0.968 0.978
FIRST 0.651 0.794 0.825 0.778 0.810 0.841

WeeBit+FIRST 0.77 0.957 0.973 0.831 0.953 0.966

Table 4: F Score Results for the ASD Comprehension corpus and the LocalNews corpus
ASD Comprehension Random Forests Bayes Net

Baseline All features Selected features Baseline All features Selected features
WeeBit 0.673 0.927 0.820 0.667 0.746 0.820
FIRST 0.747 0.782 0.782 0.817 0.782 0.784

WeeBit+FIRST 0.746 0.817 0.855 0.667 0.746 0.892
LocalNews Random Forests Bayes Net

Baseline All features Selected features Baseline All features Selected features
WeeBit 0.818 0.861 0.954 0.817 0.908 0.954
FIRST 0.676 0.76 0.705 0.705 0.705 0.760

WeeBit+FIRST 0.818 0.861 0.908 0.817 0.908 1

pervised learning which is distributed with Weka
(Frank and Witten, 1998) and through iterative
elimination of redundant features. This was done
at the stage of model evaluation through ten-fold
cross validation. The last six columns of Table
2 indicate the lists of selected features for each
model. It can be argued that the Random Forest
model is already performing a certain degree of
feature selection and therefore it may be not nec-
essary to carry out this task on the experiments
involving Random Forest. However, analysis of
the Random Trees generated by the algorithm re-
vealed that they contain a larger number of fea-
tures than those selected by our feature selection
step. In addition, by performing feature selection
we wanted to learn which linguistic features are
good indicators of text complexity.

5.4 Evaluation

First, all classifiers were evaluated using 10-fold
cross-validation, using the WeeBit, FIRST and
WeeBit + FIRST corpora as training sets (Table
3). After that each classifier was tested on previ-
ously unseen user-evaluated data. The two sets of
unseen data are the ASD Comprehension corpus
described in Section 3 and the LocalNews corpus
described in Section 4.3. Results for the evalua-
tion on unseen data are presented in Table 4.

For Random Forests we notice that the model
trained on the WeeBit corpus performs best when
classifying texts from the ASD Comprehension
corpus (F = 0.927) and from the LocalNews cor-
pus (F = 0.954). However, when using the model
trained on the Bayes Net algorithm, we see that
best external validity for both the ASD Compre-

hension corpus (F = 0.892) and the LocalNews
corpus (F = 1) is achieved by using the combined
WeeBit + FIRST training set.

6 Discussion

In terms of the effects of the size and type of train-
ing data used, the results indicate that, in isolation,
smaller, population-specific corpora (e.g. FIRST)
are not sufficient to achieve optimal classification
accuracy; however, in certain cases such as the
classification of the LocalNews texts, they do have
the potential to boost the performance of a classi-
fication model when combined with larger generic
corpora (F = 1) . Nevertheless, this improvement
is subject to choosing a classification algorithm
that has optimal performance when trained on the
smaller corpus. It is important to note that the
most accurate classification of the ASD Compre-
hension corpus was achieved by training the Ran-
dom Forests classifier on the WeeBit corpus alone
(F = 0.927). Hence, the infusion of population-
specific and generic corpora is only useful in cer-
tain cases, as discussed below. This is in line
with results in other fields. For example, Blitzer
et al. (2007) investigate domain adaptation for sen-
timent analysis. Given a pair of source and target
domains, they show how it is possible to improve
the performance of a sentiment classifier on the
target domain when it is trained on data from the
source domain with the help of a small annotated
corpus from the target domain. However, they
show that it is necessary to consider the distance
between the two domains as not any pair will lead
to good results. For future research, we will con-
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sider how it is possible to define a distance metric
that can prove useful in our context.

Regarding the effect of the type of the unseen
data, we notice that, surprisingly, the pairs of orig-
inal and simplified articles contained in the Lo-
calNews corpus were predicted 100% correctly by
the classifier trained on the combination of texts
from WeeBit + FIRST. A possible reason for this
is that the introduction of the FIRST corpus to-
gether with the larger WeeBit one enables the clas-
sifier to capture certain simplification operations
(e.g. sentence splitting and lexical simplification)
that are common in both LocalNews and FIRST.
Achieving such a high score could also have been
complemented by the fact that the genre of the
documents contained in the LocalNews corpus is
closer to the textual genre of the ones of both the
WeeBit and of the FIRST corpora. However, this
result was only achieved when combining FIRST
with the larger WeeBit corpus and was not other-
wise replicated by a classifier trained only on the
FIRST data. This implies that relatively large data
sets are still a prerequisite for the accurate classi-
fication of pairs of original and simplified texts. In
both cases, when using Random Forests and Bayes
Net, a better classification accuracy was achieved
for LocalNews (F = 0.954 and F = 1, respec-
tively) than for the ASD Comprehension corpus
(F = 0.927 and F = 0.892, respectively). This
suggests that corpora containing pairs of texts in
their original and simplified forms are generally
easier to classify than corpora containing only of
texts in their original form. This finding has im-
plications for general readability and text simplifi-
cation research where pairs of texts in their origi-
nal and manually simplified forms are commonly
used for evaluation purposes. In other words, eval-
uating on such corpora may result in overly opti-
mistic classification results which are less likely to
be replicated in a “real-world scenario” with natu-
rally written texts.

The experiments presented above have several
limitations. First, the small size of the corpora (a
key problem in disability-related research which
we target in this article) means that the texts used
in this study do not account for the great hetero-
geneity of natural language. In an attempt to com-
pensate for the small number of texts, we have
tried to include documents from miscellaneous
registers and with varying levels of readability.
Second, both the ASD Comprehension corpus and

the LocalNews corpus were evaluated by a rela-
tively small number of participants, which is why
individual differences in comprehension may have
larger effects on the definition of the gold standard
compared to generic readability studies. Never-
theless, as mentioned at the beginning of this ar-
ticle, collecting data from readers with cognitive
disabilities is a much needed but challenging task,
and the corpora used in this study are currently the
only ones of their kind. We contribute to future
research in this area by making available the ASD
Comprehension corpus.

7 Conclusion

This paper discussed the effects of algorithm se-
lection, training corpora and evaluation corpora
for readability research for people with cognitive
disabilities, with a view to addressing the prob-
lem of the scarcity of user-evaluated data in this
setting. First, we presented a collection of 27 in-
dividual documents, the readability of which was
evaluated by readers with Autism Spectrum Dis-
order. We then showed that the corpora used for
algorithm selection have an effect on the classi-
fication performance of the models and that com-
bining large generic readability corpora with small
population-specific ones has the potential to boost
the classification performance. Finally, we discuss
the effects of the type of evaluation data (original
articles versus pairs of original and simplified ar-
ticles) on the classification accuracy and we show
that original and simplified documents are easier
to classify, and that the combination of generic and
population-specific corpora is particularly useful
for the classification of such text pairs.
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Abstract

Flashcard systems are effective tools for
learning words but have their limitations
in teaching word usage. To overcome
this problem, we propose a novel flashcard
system that shows a new example sentence
on each repetition. This extension requires
high-quality example sentences, automati-
cally extracted from a huge corpus. To do
this, we use a Determinantal Point Process
which scales well to large data and allows
to naturally represent sentence similarity
and quality as features. Our human evalu-
ation experiment on Japanese language in-
dicates that the proposed method success-
fully extracted high-quality example sen-
tences.

1 Introduction

Learning vocabulary is a crucial step in learning
foreign languages and it requires substantial time
and effort. Word learning is often done using
flashcards: a way of organizing information into
question-answer pairs. An example of a flash-
card for the Japanese word “柿” is shown on Fig-
ure 1 (a, b). Flashcard systems frequently use
Spaced Repetition technique to optimize the learn-
ing process. The technique is based on the obser-
vation that people tend to remember things more
effectively if they study in short periods spread
over time (spaced repetition practice) opposed to
massed practice (i.e. cramming) (Pavlik and An-
derson, 2008; Cepeda et al., 2006). Anki1 is one
of the most well known open source Spaced Rep-
etition System (SRS).

One major drawback of building a vocabulary
with flashcards is that most of the time cards look
like the one displayed on Figure 1 (top): flashcards

1http://ankisrs.net

柿
かき
A persimmon

Flashcards, as usually seen

Our vision

...

...

Answer card First repetiton Second repetiton

隣の客はよく柿食う客だ。

かき かき

隣の客はよく
かき食う客だ。

秋のかきは
甘くて
美味しい。

A client next table eats

persimmons often.

柿
かき
A persimmon

隣の客はよく柿食う客だ。

秋の柿は甘くて美味しい。

A client next table eats

persimmons often.

...

Figure 1: Flashcards for the word “柿”

often lack usage context information. A question
card is usually a word alone, an answer card could
contain a fixed single example sentence present.
The example does not change from repetition to
repetition, and as a result does not show the full
spectrum of word usage. However, humans do not
use isolated words for communicating. Words are
always surrounded by other words, forming word
usages. Learning these word usages is as impor-
tant as learning words themselves.

To enhance the learning experience, we propose
a novel framework of learning words using flash-
cards. Instead of showing only a single field like
reading or writing of a flashcard in the question
card similarly to the Figure 1 (top), we propose to
use example sentences in both types of cards, see
Figure 1 (bottom). Moreover, we want to show
a new example sentence on each repetition as the
question. This approach gives users an opportu-
nity to learn correct word usages together with the
words themselves. Obviously, implementing it re-
quires a huge number of example sentences.

Because of this, we focus on automatic ex-
traction of high-quality example sentences to be
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used in a flashcard system as questions. Collect-
ing an enormous number of high-quality example
sentences manually does not scale well. Words
can have multiple senses and different usage pat-
terns. A database containing dozens of sentences
for each sense of each word would need to contain
millions of different sentences. For a set of exam-
ple sentences, we say that they are of high-quality
if the sentences have the following properties.

• (Intrinsic) Value: Each individual example
sentence should not be bad, for example un-
grammatical, a fragment or unrelated to tar-
get word. Additionally, the sentences should
not be too difficult for learners to understand
them.

• Diversity: Inside a set, the sentences should
cover different usage patterns, and word
senses.

In addition we would like our method to support
rare words and rare word senses.

For the task of example extraction, we are given
a huge monolingual text corpora and a target word
or a phrase to output a set of high-quality example
sentences.

We propose a system architecture consisting of
two components: a search engine which indexes a
huge raw corpus and can produce a relatively high
number of example sentence candidates, and the
selection part, which takes the list of candidates
and selects only a few of them. The search system
is designed in a way so the selected sentences are
syntactically rich near the target word (the target
word has parents/children).

The DPP allows us to naturally represent data in
terms of scalar quality and vector similarity. Ad-
ditionally, the DPP has several interesting prop-
erties. For example, it is possible to compute a
marginal probability of drawing a subset of items
from a DPP efficiently. Marginal here means
a probability of inclusion of a given set in any
subset drawn from the DPP. Furthermore, it is
proven that this marginal probability measure is
submodular. Because of this, it is possible to
build a greedy algorithm with reasonable guaran-
tees, which selects items one by one, using the
marginal probability measure as a weight. Also,
the DPP is computationally and memory efficient.
The computation of marginal probabilities can be
performed linearly in respect to number of sen-
tence candidates. This makes it possible to use

私は

私は
I slowly white rice ate

私
<N>は

ゆっくりと

ゆっくりと
ゆっくり
<Adv>と

白い

白い
<Adj>[Dic]

白い[Dic]

ご飯を

ご飯を

<N>を
ご飯

食べた

食べる[Pst]
食べる
<V>[Pst]

Input Bunsetsu

Tokens for
index

num=0

dep=4

num=1

dep=4

num=3

dep=4

num=4

dep=-1

num=2

dep=3

Figure 2: Word to token conversion for index-
ing a sentence. Tokens contain lexical information
(black), POS tags (green) and conjugation forms
(magenta). Dependency information is common
for a set of tokens spawned from a single word.
This information consists of word position and de-
pendency position.

the DPP with tens thousands of candidates in near-
realtime scenarios.

We have performed a human evaluation experi-
ment which has shown that our method was pre-
ferred by Japanese learners and a teacher com-
pared to two baselines.

2 Dependency Aware Search Engine

We want example sentences to have different pos-
sible usages of a target word. For example, verbs
should have multiple arguments with different
roles and in general it is better to have the vicinity
of a target word syntactically rich. We use depen-
dency information for approximating this informa-
tion. For accessing syntactic information, we au-
tomatically tokenize raw text, extract lemmas, per-
form POS tagging and parse sentences into depen-
dency trees.

To select syntactically rich sentences on a scale
of a huge corpus, we have developed a distributed
Apache Lucene-based search engine (Tolmachev
et al., 2016) which allows to query not only on
keywords as most systems do, but on dependency
relations and grammatical information as well. We
use this search engine to retrieve a relatively large
set of example sentence candidates.

Search engines usually build a reverse index
based on tokens, which are computed from the
original document. We encode seed tokens for our
engine as concatenation of lemma form and conju-
gation form tags, which are derived from the orig-
inal text. For example, the verb 帰った (kaetta –
“to leave” in past form) would be represented as
“帰る+PAST”. Each token also stores the position
of its parent.

The next step generates rewritten tokens from
the seed tokens until no more new tokens can be

134



1
1

2

2

24

24 N

N

23

23

Vectors

(Similarity Features)

Intrinsic

Value

Example

Candidates

私は走るの好き
走っている子供を見た

遊びに走る若者
…

… …

… …

…

酒に走りたい気持ち

悪事千里を走る

Selected

Similarity

Matrix

sim

0.73

0.94

0.95

0.88

0.85

Figure 3: Example sentence selection. The objective is to select “best” and non-similar example sen-
tences from the input list. Target word is marked red.

created using rewriting rules. Rewriting is done
by replacing content word lexical information with
part of speech information or removing some parts
of tokens. For example, case markers of nouns are
removed for some rules.

This representation allows to easily match same
forms of different words while getting the benefits
of reverse index in terms of performance. A list
of created tokens for a raw sentence is shown in
Figure 2. This example spawns three tokens for
each of its word.

For selecting candidates we use queries which
match a target word with up to 3 children or par-
ents. The exact types of parents of children depend
on POS of the target word. The number 3 was cho-
sen to have balance with different arguments and
to keep the syntactic vicinity of the target word di-
verse between the example sentence candidates.

3 Example sentence selection

After we have a relatively large list of example
sentence candidates, we select a few of them as
example sentences. The outline of the selection
part is shown in Figure 3. In this section we de-
scribe the ideas behind the DPP and the way how
we compute individual features.

3.1 Determinantal Point Process
In this section we provide a very basic explana-
tion of the DPP inner workings. We invite inter-
ested readers to refer the original paper (Kulesza
and Taskar, 2012) which gives a comprehensive
overview of the DPP. In the supplementary ma-
terial we show a toy task of greedily selecting a
diverse subset of points from a plane to give an
insight into how the DPP works.

Suppose we have a ground set Y = {1...N} of
N items (in our case items are example sentence

candidates from the search engine). In this stage
we want to select a subset Y ⊆ Y s.t. |Y | = k. In
its basic form, the DPP defines the probability of
drawing a subset Y from a ground set as

PL(Y ) ∝ det(LY ) (1)

Here LY denotes restriction of matrix L to the el-
ements of Y , LY = [Li,j ] : i, j ∈ Y . L gener-
ally can be any semi-positive definite matrix, but
for our task we compose it from two types of fea-
tures: a quality scalar qi and a similarity unit vec-
tor φi. Elements of L becomes a cosine similarity
between the similarity features scaled by the qual-
ity features

Li,j = qiφ
T
i φjqj . (2)

The intuition behind the DPP as follows: because
the right part of (1) contains determinant, when
off-diagonal elements of LY get larger (meaning
the cosine similarity of similarity features is large),
then the determinant value, or in the other words,
the probability of drawing Y , gets lower. At the
same time, the DPP prefers elements with large
values of quality features.

The DPP has a very interesting property. It is
easy to compute marginal probabilities of inclu-
sion of a set A in all subsets of the ground set Y:

PL(A ⊆ Y) =

∑
Y :A⊆Y⊆Y det(LY )∑

Y :Y⊆Y det(LY )
= det(KA).

KA is restriction of K with the elements of the
set A (similar to (1)). K itself is called marginal
kernel of the DPP and it can be computed as K =
L(L + I)−1, where I is an identity matrix.

Selecting diverse items
Because the elements of K can be used to com-
pute the marginal probability of selecting a subset
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of items from the ground set, it is possible to use
the marginal probabilities as a weight for a greedy
selection algorithm.

In the beginning we have an empty set A = ∅.
Then we repeatedly add an item i into the set
A s.t. i = arg maxi det(KA∪i) until the set A
reaches the required size. Please note that this al-
gorithm does not find a MAP answer, that problem
is shown to be NP-complete.

Computational complexity
Dealing with L and K directly requires O(N3)
floating point operations and O(N2) memory,
which can be unwieldy for sufficiently large N .

Fortunately, if L is formulated as (2), it is possi-
ble to work around these requirements. Let B be a
feature matrix with rows Bi = qiφi, so L = BT B.
Instead of computing N × N matrix L, we com-
pute a D × D matrix C = BBT . Note that if we
have an eigendecomposition L =

∑N
n=1 λnvnvT

n ,
we can get the marginal kernel K by rescaling
eigenvalues of L:

K =
N∑

n=1

λn

λn + 1
vnvT

n .

Remember that non-zero eigenvalues of L and C
are the same and their eigenvectors are related as
well. Namely, the eigendecomposition of L is also{

λn,
1√
λn

BT v̂n

}D

n=1

,

where v̂n are eigenvectors of C. Using this fact,
we can compute the elements of marginal kernel
K directly from the eigendecomposition of C and
the feature matrix B:

Kij =
D∑

n=1

(BT
i v̂n)(BT

j v̂n)
λn + 1

.

Computation of a single element of K takes
O(D2) floating point operations. For each step
of the selection algorithm, we need to compute N
new elements of K and compute N determinants
of |A| × |A| size. In addition we need to compute
an eigendecomposition of D. This leads to a total
complexity of O(D3+ND2k+Nk3) for selecting
k items using the DPP, which is linear of N .

3.2 Similarity Features
We construct similarity feature vector as a
weighted stacking of three individual feature parts

φi = f([w1s
lex
i ; w2s

synt
i ; w3s

sema
i ; r])

and a parameter r which makes all sentences simi-
lar to each other, following the text summarization
task in (Kulesza and Taskar, 2012). We set r = 0.7
in our experiments.

Three similarity feature parts are lexical, syn-
tactic and semantic similarity. Feature weights
wi allow us to prioritize similarity feature compo-
nents. Lexical and syntactic similarity features are
created as count-based vectors and have large di-
mensionality. Transformation f here is a compres-
sion into a 600-dimensional vector using Gaussian
random projections as recommended by Kulesza
and Taskar (2012) to make the dimensionality of
φi, D, small.

Lexical similarity features measure word over-
lap between two sentences, syntactic features mea-
sure structural (POS, grammar and dependency)
similarity between two sentences and semantic
features measure sense similarity of two sen-
tences. Lexical similarity uses tf weighting inside
example sentence candidate batch when inclusion
of a content word is given a weight of 1.0; non-
content words are given a weight of 0.1.

A syntactic similarity for two sentences should
be higher if they have similar syntactic structure
near the target word, meaning that it was used in
a similar syntactic way. In other words, depen-
dency structure, POS tags and grammatical words
should be similar near the target word. For in-
stance, let’s consider sentences: “He is a fast run-
ner”, “She is a slow runner” and “John isn’t a good
runner”. These three sentences have small content
word overlap, but have exactly the same syntactic
structure.

The idea for the syntactic similarity method is
based on efficient calculation of graph similarity
using graphlets. Graphlets are parts of graph, and
it is shown by (Shervashidze et al., 2009) that they
can be used for the fast approximate computation
of graph similarity.

The main idea is to generate subtrees up to a cer-
tain size, by growing them from the target word
and use those subtrees as features in the vector
space. Overall, the syntactic similarity model can
be thought of as a bag-of-subtrees model. De-
pendency trees in Japanese is build of bunsetsu
– a unit which consist of a lemma with attached
functional morphemes. Subtrees are treated as
unordered because bunsetsu in Japanese can be
moved on the same dependency level.

In the first step, the parse tree is stripped from
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lexical information for open parts of speech by re-
placing them with part of speech tags. Function
words are left as they were.

Secondly, a set of bunsetsu subtrees up to size of
3 is generated from the stripped tree. The genera-
tion starts from the bunsetsu containing the target
word and continues until no new subtrees can be
created.

Finally, the feature space is expanded by deriv-
ing new subtrees. Bunsetsu can contain compound
nouns like “参政権” (a right to vote) or “積み上
げる” (to place on top of something) which are
analyzed to consist of two lexical units. Gram-
matically, they are not much different from single
unit words. This step ensures that sentences con-
taining both several-unit and single-unit words are
still going to be structurally similar.

A semantic similarity score should be higher if
the target word is used in the same or a close sense.
For computing semantic similarity from a context
we use prototype projections (Tsubaki et al., 2013)
on word2vec word representations (Mikolov et al.,
2013).

Prototype projections assume that for triples of
(A, relation, B) there exist prototypes in the form
of frequently occurring and semantically related
groups words at the end of each relation. For ex-
ample, it is possible to run company, business or
marathon. The computed representation makes it
possible to distinguish between the distant senses.
For a given triple (e.g run, object, marathon),
you compute frequently occurring words of run
and marathon over the same relation and compute
SVD in each group. The top n right singular vec-
tors in each end of the relation form a prototype
subspace, and the original vector is projected into
it.

For the actual feature we use a sum of prototype
projections over all possible arguments of a target
word. For instance, we use all present Japanese
case relations if the target word is a verb, case re-
lation and genitive case for nouns, and dependen-
cies for adverbs and adjectives. For the each end
of a relation use top 200 words to compute SVDs.

3.3 Quality Features

Quality features represent an intrinsic value of
individual sentences as examples of word usage.
Our quality feature is defined as a product of four
components: qi = qcse

i q
csy
i qd

i q
g
i .

Centrality
qcse
i and q

csy
i are semantic and syntactic central-

ity, respectively. We want example sentences to
be representative of usage patterns and meaning.
Centrality captures that idea. It is computed us-
ing a respective similarity feature component (ssynt

i

and ssema
i ) as a cosine similarity to a nearest cen-

troid of a K-means++ clustering. We take k = 30
for semantic and k = 10 for syntactic centralities.

Relative difficulty
The next quality feature is relative difficulty. It
is estimated from the difficulty of content words.
Sentence difficulty ds is computed from the word
difficulty dwi using the formula

ds =

(∑
wi∈s

d4
wi

) 1
4

.

We used the fourth power to give the sum a light
softmax effect: smaller values should have less
effect on the final result, but the sentence length
should still be a certain factor in the difficulty
score. Word difficulties are estimated using web
corpus word frequencies and Japanese Language
Proficiency Test (JLPT) word lists.

Frequency component of word difficulty is
computed as d

freq
w = blog2(1 + wf/500)c. Words

which should be known for JLPT N5 were given
the difficulty dJLPT

w = 1, words for N1 were as-
signed dJLPT

w = 5 respectively with other values in
between. The final word difficulty score is com-
puted as dw = min(dfreq

w , dJLPT
w ).

Sentence difficulty is then converted into the
quality feature component using a piecewise lin-
ear function qd

i = T (ds + biasd), which is de-
fined as T = [0, 0.6, 1, 0.9, 0.7, 0.6, 0.2, 0] at
[−∞,−1, 0, 3, 5, 6, 8,∞]. The function is rather
adhoc. It has a maximum of 1 at 0 and decreases
to the left and right. We wanted to have positive
and negative parts to decrease with the different
rate. A bias value biasd can shift the area of ac-
ceptable difficulties for a learner. For example, a
bias value of biasd = −3 would make the qual-
ity to be near 1 for the sentences which have the
words with the difficulty at most for JLPT N3.

Goodness
The last part is goodness feature q

g
i which is 1 by

default and assigns a low score to garbage sen-
tences which are present in the web corpus. It also
assigns low score to sentence fragments (some
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sentences from raw corpus start with case parti-
cles which in Japanese always comes after a noun)
or clearly sentences which are useless for example
sentences, for instance ones that contain random
digits or alphabet.

4 Related Work

There exist human-curated databases of example
sentences. Dictionaries contain example sentences
which explain word usage, but usually those are
fragments and not full sentences. Also, dictionary
content usually has copyright restrictions. The
Tatoeba Project2 is a wiki-style database of exam-
ple sentences maintained by human volunteers un-
der open license. However, most of the sentences
focus on relatively easy words and many of the
sentences are very similar to each other.

Automated extraction of example sentences
from a corpora has also been proposed. GDEX
(Kilgarriff et al., 2008) describes semi-automated
example extraction. The objective is to select ex-
ample sentences for English learners and define a
suitable example sentence as: (a) typical, show-
ing frequent and dispersed patterns of usage, (b)
informative, helping to educate the definition, (c)
readable, meaning intelligible to learners, avoid-
ing difficult words, anaphora and other structures
that makes it difficult to understand a sentence
without access to wider context. Sentence length,
word frequency, information about the presence
of pronouns and some other heuristics were used
to judge the quality of sentences. Subsequently,
the final example sentences for the dictionary were
manually selected by editors.

There are numerous works which approach the
problem of selecting example sentences mostly
as a word sense disambiguation (WSD) problem
(de Melo and Weikum, 2009; Shinnou and Sasaki,
2008; Kathuria and Shirai, 2012). Specifically,
de Melo and Weikum (2009) proposed the use
of parallel corpora to extract disambiguated sen-
tences from an aligned subtitle database. One
more important feature of that work is a concern
about diversity of example sentences. They gen-
erate a set of 1,2,3-grams for each example sen-
tence and use them for scoring example sentences,
setting to zero scores for n-gram for the selected
sentences. This approach used aligned corpora for
WSD, which usually are small or belong to a spe-
cific domain, whereas example sentences should

2http://tatoeba.org/eng/

be from different domains and cover rare words.
Also, the work does not consider sentence diffi-
culty. In the evaluation by language learners we
found out that sentence difficulty is a major factor
for example sentence quality.

Kathuria and Shirai (2012) explore the use of
disambiguated example sentences in a reading as-
sistant system for Japanese learners. They cre-
ate a system that assists reading by showing dis-
ambiguated example sentences that have the same
sense as the word in the text.

Huang et al. (2016) have used neural network
models to show example sentences which would
help disambiguate close synonyms. However, this
work does not try to extract globally diverse ex-
ample sentences which cover the usage of a target
word.

The DPP itself (Kulesza and Taskar, 2012) was
used for document summarization by selecting
sentences from a text and showing a diverse im-
age search result tasks. We use several tricks from
the former application.

5 Evaluation

Evaluating the suitability of example sentences for
learning a foreign language is difficult. Firstly,
it is not possible to assess the diversity of a sen-
tence set when showing them to evaluators one
by one. Also, the automatic evaluation of exam-
ple sentences is possible if the problem is formu-
lated such that the only criterion is that example
sentences should be present for every sense of a
word. However, such evaluation does not deter-
mine whether the example sentences are actually
useful for learners.

5.1 Experiment Setup

We perform an evaluation experiment with
Japanese language learners and a native teacher
with two distinct main goals: to assess the per-
formance of the example extraction system and to
validate the assumptions on the meaning of the
“quality” of example sentences. We use a web
corpus with 0.8B sentences lexically analyzed by
JUMAN and parsed by KNP.

The first goal is achieved by having participants
vote on lists of example sentences and select their
preferred lists. We deliberately use lists for the
evaluation instead of showing single examples to
make the spectrum of possible example sentences
visible for each method. Showing sentences one
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by one would make it difficult to compare the di-
versity of different lists.

For the second goal, the evaluation was per-
formed in the form of an interview. Participants
were asked why they have or have not chosen spe-
cific lists of example sentences after the initial
preference selection.

Three methods were used in the evaluation: the
proposed one and two baselines. The proposed
method is labeled DPP in the evaluation results.
We have used a difficulty bias value biasd = −3
to make the sentence difficulty appropriate for the
learners around JLPT N3 level.

The first baseline was a method by de Melo
and Weikum (2009). However, because our set-
ting uses only monolingual corpora, only lexical
centrality and diversity parts were used from this
method. The method received the same set of ex-
ample sentences as the DPP, namely search results
biased towards syntactically rich sentences near a
target word. The method is referred as DeMelo.

The second baseline was a simple uniform ran-
dom sampling without replacement. The data,
again, was a list of example sentence candidates
from the search system, not raw examples. This
method is referred as Rand.

For the experiment we have used 14 Japanese
words. Each chosen word has more than one sense
and different usages. Words were also chosen to
be relatively easy, to be likely familiar to language
learners of lower intermediate level.

For each of the words, top 10k search results
from the search engine were extracted as example
sentence candidates. Each of the words had more
than 10k containing sentences. After that, 12 sen-
tences were extracted by each method from each
list. That yields a total of 14 × 12 × 3 sentences
which were presented to participants of the exper-
iment.

The first part of the evaluation experiment used
Japanese language learners as participants. For
each word, participants were presented three lists
of example sentences produced by three methods.
The lists were placed side by side in a random
order to force participants to read sentence lists
in a different order every time. Participants were
asked to select a list which was more useful from
their point for putting sentences on flashcards. Af-
ter a participant would select a personally prefer-
able list, anonymized names for methods were dis-
played and the participant was asked to explain the

# FC Level Rand DeMelo DPP

1 N1 7 4 3
2 N1 8 0 6
3 N1 4 7 3
4 * N1 2 3 9
5 * N1 3 2 9
6 * N2 5 3 6
7 N2 4 6 4
8 N2 5 2 7
9 * N2 3 4 7

10 * N3 0 1 13
11 * N4 3 1 10

Total 44 33 77
Percentage 29% 21% 50%

Table 1: Learners’ votes on the best example lists.
Bold numbers are the majority for a person. FC
means the experience of using flashcards. Level is
approximate JLPT-style Japanese language profi-
ciency from N5 (lowest) to N1 (highest).

reasons behind the selection.
The second part experiment was performed by

showing the same example sentence lists to a na-
tive Japanese language teacher. In addition to se-
lecting the best list, a teacher was asked to rank
from 1 to 5 how appropriate the list was for stu-
dents of approximately N3 and N2 JLPT levels.
N3 is similar to intermediate and N2 to upper-
intermediate levels in English. Similarly to the
learners’ case, no explicit criteria were given. Un-
fortunately, because of time limitations only one
teacher have participated in the second part of the
evaluation.

5.2 Results

The first part of the evaluation was performed with
11 learners. The evaluation took about 1.5 hours
per learner in average. Vote counts for users and
aggregated counts are shown in the Table 1. DPP
got about a half of all votes, which is a positive as-
pect of the proposed method. It also got a majority
for every participant who had the experience of us-
ing flashcards or spaced repetition systems. This
shows that these example sentences are going to
be useful inside the flashcards.

For the initial selection, the teacher commented
that the best list was selected as if examples were
for learners of N3 level. The votes on the initial
selection were 0, 4, 10 for Rand, DeMelo and DPP
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respectively. Average lists ranks were 3.36, 3.79,
4.64 for N3 and 3.86, 4.21 and 4.36 for N2 learner
levels.

Evaluation by the teacher assigns the DPP sys-
tem as the best for N3 learners both by votes and
by average rank. For N2 learners a score for DPP
was lower, at the same time the score for DeMelo
has raised. Score for Rand was the lowest.

The teacher explained the reason for selection
as the following. Non-target words in a sentence
should not be too difficult. A sentence should not
depend on outer context like as if it was inside
the conversation or about current affairs. The sen-
tences should be short and the usages of the tar-
get words should be common. This criteria are
strongly aligned with the objectives DPP uses for
sentence extraction, which seems to be the reason
for its high appraisal by the teacher.

If examples would be selected for N2-like learn-
ers, a sentence should include more diverse struc-
tures and usage. However, some high-level stu-
dents had a different point of view.

There were cases when learners discarded a list
because of a sentence they did not like or selected
a list because of a sentence they liked very much.
We tried to analyze the patterns of such sentences
with a possibility for the further improvement of
example sentence extraction.

6 Discussion

During the evaluation experiment, participants
were asked to explain their choices about lists and
criteria they were using.

Generally, list diversity was regarded as one
of the main criteria for the selection. Seman-
tic and lexical diversity was the mainly referred
part. However, grammatical diversity was named
as well. By grammatical diversity participants
meant, usually, usage of words in different gram-
matical forms. Other themes that frequently came
into criteria for the selection were sentence dif-
ficulty and how interesting were the sentences.
Each of the points is discussed in greater detail be-
low.

Diversity Diversity was the main idea behind
the work for the present study and it was validated
by answers of the participants. Most of them have
stated that non-similarity of a sentence list was one
of the main criteria for the selection.

All three used methods were specialized to pro-
duce non-similar sentences. DeMelo explicitly

tries to select sentences with frequent words and
penalize such words in next selections. Diversity
of sentences using random sampling depends on
the distribution in the candidate set.

For DPP, features were explicitly crafted to deal
with semantic and syntactic similarity in addition
to lexical similarity. Based on the results, there
were cases where DPP was better in terms of di-
versity and the cases when it was worse.

One example of good performance in this re-
gard was the word “卵” (an egg). In addition to the
usual meaning of an egg in a sentence like “それに
は多くの卵を割る必要があります” (You would
need to break a lot of eggs to make that), DPP also
displayed several sentences for the usage like “医
師の卵に期待が集まっている” (There are a lot of
expectations in the future doctors) with the mean-
ing of “future profession”. Other methods did not
produce example sentences with this sense.

A similar, but mixed result is sentences for the
word “頭” (a head). DPP selected 6 sentences that
have the regular meaning of the word as “head”
like “彼女は僕の頭に手をかける” (She puts a
hand on my head). However, the other 6 had the
meaning of beginning of a time period like in the
sentence “今年の頭に撮った写真です” ([This is]
a photo I’ve taken in the beginning of this year).

Difficulty Sentence difficulty was also one cri-
terion experiment participants used for selecting
lists. The initial assumption for the creation of the
system is that example sentences should be easy to
understand and as short as possible. We designed
an algorithm which selects example sentences for
flashcard questions and thought that it was good to
minimize question reading time.

The feedback of participants on this topic was
divided. Learners of lower proficiency levels have
agreed with our vision, while learners of higher
proficiency levels have shown preference for more
difficult example sentences. For the last user
group, there were several opinions that example
sentences selected by DPP were plain as if they
come from a textbook. In comparison to that such
learners preferred, more difficult, natural (in con-
trast to artificially created examples), and interest-
ing example sentences.

We believe that this effect can be explained with
learners’ familiarity with the target word of ex-
ample sentence. If a learner is not familiar with
the target word, then the other words are expected
to serve mostly as explanation for the target’s
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meaning and the sentence itself should be easier.
If a learner is generally familiar with the word,
that context given by an example sentence helps
learner to learn and remember usage situations of
the target. Sentences in this period of the familiar-
ity could be harder.

It seems that we should talk not about good ex-
ample sentences in general, but about good ex-
ample sentences for a learner at some point in a
learning process. Static example lists are not go-
ing to solve this problem efficiently, but an educa-
tional tool like an SRS can. It has access not only
to learner’s general knowledge level, but for the
learning process data for individual words as well.
Using this information about learners, an example
extraction system can provide the best examples
learner needs at that point of time.

Interestingness Another criteria that was used
by learners for selecting sentences was if the sen-
tences were interesting. During the evaluation,
there were the cases when the choice between lists
was made on a single interesting sentence, disre-
garding the fact that the list have contained mostly
inferior and low-quality sentences like complete
fragments. There were 3 main types of such sen-
tences.

The first type had sentences, interesting or un-
usual for a certain participant. We could not gen-
eralize this category further.

The second type was sentences having a story.
For example, “画像が汚いのは、携帯カメラで
撮ったからです、今度綺麗な写真でも撮ってお

きましょう” (Image quality is bad because it was
taken by a mobile phone. Let’s take a good picture
next time.) vs “画像が汚かったりしたら買う気
しませんからね” (I don’t want to buy it since the
image quality is bad). These two sentences have
the same word usage of “dirty” (image is dirty =
image quality is bad). However the first one has a
cause-effect relation and was more liked because
of that.

The third type as sentences displaying a vivid
image. For instance, “旧ソ連の宇宙飛行士ガガー
リンの有人宇宙飛行「地球は青かった」”(A fa-
mous Soviet astronaut Gagarin have said: “The
Earth is blue”).

Interesting content usually occurs only in rela-
tively lengthy sentences containing many different
words. Because of the conservative difficulty set-
tings we used for the experiment, the DPP method
was heavily biased against such sentences. Inter-

estingness is difficult to define and measure, but
we believe that it is worth investigating in the fu-
ture.

7 Conclusion and Future Work

We have implemented an example extraction sys-
tem for usage in a flashcard system for Japanese
language learners. It uses Determinantal Point
Process — a method for modeling diverse datasets
as a framework which allows to select non-similar
and high quality sentences at the same time.

While the example extraction system is devel-
oped for Japanese, but the underlying methods
have little Japanese specific parts. The system it-
self is unsupervised and has only a tokenizer, mor-
phologic analyzer and dependency parser as soft-
ware dependencies. All other data can be created
from a raw corpus analyzed by these three tools.

Experiments have shown that the proposed
DPP-based method is useful for extracting exam-
ple sentences. However the content and difficulty
of example sentences are a non-trivial problem and
it would be promising to consider ways to further
improve the content and quality of example sen-
tences. We also want to perform evaluation exper-
iments using an actual SRS (Tolmachev and Kuro-
hashi, 2017).
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Abstract

This paper reports the first study on auto-
matic generation of distractors for fill-in-
the-blank items for learning Chinese vo-
cabulary. We investigate the quality of dis-
tractors generated by a number of criteria,
including part-of-speech, difficulty level,
spelling, word co-occurrence and seman-
tic similarity. Evaluations show that a se-
mantic similarity measure, based on the
word2vec model, yields distractors that
are significantly more plausible than those
generated by baseline methods.

1 Introduction

The fill-in-the-blank item is a common form of
exercise in computer-assisted language learning
(CALL) systems. Also known as a cloze or gap-
fill item, a fill-in-the-blank item is constructed on
the basis of a carrier sentence. One word in the
sentence — called the target word, or key — is
blanked out, and the learner attempts to fill it. The
top of Table 1 shows an example carrier sentence
whose target word is tiaojian ‘condition’.1
To enable automatic feedback, a fill-in-the-

blank item often specifies choices, including the
target word itself and several distractors, as shown
at the bottom of Table 1. Distractors need to be
carefully chosen: they must be sufficiently plau-
sible, but must not be acceptable answers. Litera-
ture in language pedagogy generally recommends
the following criteria to authors of fill-in-the-blank
items: a distractor should belong to the same word
class and same difficult level, and have approxi-
mately the same length, as the target word (Heaton,
1989); it should collocate strongly with a word in
the sentence (Hoshino, 2013); and it should be se-
mantically related with the target word, ideally a

1This example is taken from (Liu, 2004).

他因爲那裏的 ___不好，所以不去
那裏上大學。
He chose not to attend that university
because its ___ are not good.

1. 條件 tiaojian ‘condition’ ← Target word
↓ Distractors

2. 原因 yuanyin ‘reason’ Human
3. 頻道 pindao ‘channel’ Baseline
4. 條約 tiaoyue ‘agreement’ +Spell
5. 函數 hanshu ‘function’ +Co-occur
6. 因素 yinsu ‘factor’ +Similar

Table 1: An example fill-in-the-blank item, with a
carrier sentence with a blank (top); and six choices
for the blank (bottom), including the target word
(correct answer), and distractors generated by five
different methods (see Section 4).

“false synonym” (Goodrich, 1977). An empirical
study confirmed that distractors indeed tend to be
syntactically and semantically homogenous (Pho
et al., 2014).
To automate the time-consuming process of se-

lecting distractors, there has been much interest
in developing algorithms that, given a carrier sen-
tence and a target word, can find appropriate dis-
tractors. To-date, most research effort on distrac-
tor generation for language learning has focused
on English.
This paper presents the first attempt to automati-

cally generate distractors in fill-in-the-blank items
for learners of Chinese as a foreign language. In
Section 2, we review related research areas. In
Section 3, we present our datasets. In Section 4,
we outline our criteria for distractor generation. In
Section 5, we describe the evaluation procedure.
In Section 6, we report evaluation results, show-
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ing that a semantic similarity measure based on
the word2vecmodel yields distractors that are sig-
nificantly more plausible than those generated by
baseline methods.

2 Previous work

An algorithm for generating distractors must at-
tempt a trade-off between two objectives. One
objective is plausibility. Most approaches re-
quire the distractor and the target word to have
the same part-of-speech (POS) and similar level
of difficulty, often approximated by word fre-
quency (Coniam, 1997; Shei, 2001; Brown et al.,
2005). They must also be semantically close,
which can be quantified with semantic distance in
WordNet (Lin et al., 2007; Pino et al., 2008; Chen
et al., 2015; Susanti et al., 2015), thesauri (Sumita
et al., 2005; Smith et al., 2010), ontologies (Kara-
manis et al., 2006; Ding and Gu, 2010), or hand-
crafted rules (Chen et al., 2006). Another approach
generates distractors that are semantically simi-
lar to the target word in some sense, but not in
the particular sense in the carrier sentence (Zesch
and Melamud, 2014). Others directly extract fre-
quent mistakes in learner corpora to serve as dis-
tractors (Sakaguchi et al., 2013; Lee et al., 2016).
Error-annotated Chinese learner corpora are still
not large enough, however, to support broad-
coverage distractor generation.
A second, often competing objective is to en-

sure that the distractor, however plausible, is not
an acceptable answer. Most approaches require
that the distractor never, or only rarely, collocate
with other words in the carrier sentence. Some de-
fine collocation as n-grams in a context window
centered on the distractor (Liu et al., 2005). Oth-
ers also consider words elsewhere in the carrier
sentence, for example those present in the Word
Sketch of the distractor (Smith et al., 2010) or those
that are grammatically related to the distractor in
dependencies (Sakaguchi et al., 2013). Still oth-
ers restrict potential distractors to antonyms of the
target word, words with the same hypernym, and
synonym of synonyms in WordNet (Knoop and
Wilske, 2013).
To the best of our knowledge, there is not yet any

reported attempt to generate distractors for learn-
ing Chinese vocabulary. The only previous work
on Chinese distractor generation was designed for
testing knowledge in the aviation domain, and
leveraged a domain-specific ontology (Ding and

Gu, 2010).

3 Data

To facilitate our study, we compiled two datasets:

Textbook Corpus We collected 299 fill-in-the-
blank items, each with a target word and two
to three distractors, from three Chinese text-
books (Liu, 2004, 2010; Wang, 2007). An
analysis on this corpus confirms many of the
criteria proposed in the literature: in 63% of
the items, all distractors have the same POS
as the target word; and in 45% of the items,
at least one distractor shares a common char-
acter with the target word.

Wiki Corpus We extracted 14 million sentences
from Chinese Wikipedia for calculating
word frequency, similarity and co-occurrence
statistics in the Candidate Generation step.
We then performed word segmentation, POS
tagging and dependency analysis on a sub-
set of 5.5 million sentences with the Stanford
Chinese parser (Levy andManning, 2003) for
use in the Candidate Filtering step.

4 Approach

We follow a two-step process where the first step,
Candidate Generation, optimizes distractor plau-
sibility; and the second step, Candidate Filtering,
aims to filter out distractor candidates that are ac-
ceptable answers.

4.1 Candidate Generation
We implemented the following criteria for gener-
ating a ranked list of distractor candidates:

Baseline (Baseline) The baseline re-implements
the criteria proposed by Coniam (1997): the
distractor must have the same POS and the
similar difficulty level as the target word. We
extract all words in the Wiki corpus with the
same POS, and then rank them by the prox-
imity of their word frequency and that of the
target word. In Table 1, for example, pin-
dao ‘channel’ was chosen because, among all
nouns, its word frequency is closest to that of
the target word tiaojian.

Spelling similarity (+Spell) Many Chinese
words contain multiple characters; two
words that have one or more characters
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in common may be easily confusable for
learners. This method requires the candidate
to share at least one common character with
the target word. In our running example in
Table 1, tiaoyue ‘agreement’ was chosen
because, among all words that contain the
character tiao or jian (which combine to
form the target word tiaojian), it has the most
similar word frequency.

Word co-occurrence (+Co-occur) A distractor
that often co-occurs with the target word may
be easily confusable for learners. We ranked
the candidate distractors according to their
pointwise mutual information (PMI) score
with the target word, as estimated on theWiki
corpus. In our running example in Table 1,
hanshu ‘function’ was chosen because of its
frequent co-occurrence with tiaojian ‘condi-
tion’.

Word similarity (+Similar) Words that are se-
mantically close to the target word tend to
be plausible candidates. We ranked candi-
date distractors according to their similar-
ity score with the target word. We ob-
tained these scores by training a word2vec
model (Mikolov et al., 2013) on the Wiki
corpus.2 We opted for word2vec over the-
sauri or Chinese lexical databases such as
HowNet because of its broader coverage. In
the example in Table 1, the distractor yinsu
因素 ‘factor’ was chosen because it has the
highest similarity score with tiaojian in the
word2vec model.

4.2 Candidate Filtering
A distractor is called “reliable” if it yields an incor-
rect sentence. This step aims to remove those can-
didates that are also acceptable answers, leaving
only the reliable distractors. We do so by examin-
ing whether the distractor can collocate with words
in the rest of the carrier sentence. The system ex-
amines the candidates in the ranked list produced
by the Candidate Generation step (Section 4.1),
and removes candidates that are rejected by both
filters below:

Trigram Theword trigram, formed by the distrac-
tor, the previous word and the following word
in the carrier sentence, must not appear in the

2We trained a bag-of-words (CBOW) model of 400 di-
mensions and window size 5 with word2vec.

... 那裏 的 *因素 不 好 ...

... nali de *yinsu bu hao ...

... ‘there’ GEN ‘factor’ ‘not’ ‘good’ ...

nmod

case

nsubj

neg

Figure 1: In the Candidate Filtering step (Sec-
tion 4.2), candidate distractors whose dependency
relations are attested in the corpus are rejected.
To determine whether yinsu can serve as a dis-
tractor in the carrier sentence in Table 1, the sys-
tem determines whether the dependency relations
nmod(yinsu, nali) or nsubj(hao, yinsu) is attested
in a large corpus of Chinese texts.

Wiki corpus. In the example in Figure 1, the
trigram “de yinsu bu” must not be attested.

Dependency The Trigram filter alone might be
too strict, since words that are grammatically
related to the distractor may be further away.
Among dependency relations in the parse tree
of the carrier sentence, we extract all those
with the distractor as head or child, and re-
quire that these relation must not be attested
in the Wiki corpus. This filter is similar to
the approach by Smith et al. (2010), but in-
stead of the grammatical relations in Word
Sketches, we consider all dependency rela-
tions. In our running example in Table 1, the
candidate情况 qingkuang ‘situation’ was re-
jected because it is attested to serve as the
subject of hao ‘good’. The next distractor in
the ranked list, yinsu ‘factor’, was chosen in-
stead since it never served as the subject of
hao ‘good’, and was never modified by the
noun nali ‘there’.

5 Evaluation

5.1 Test data
According to Da (2007), basic ability in Chi-
nese news reading require a vocabulary of around
20,000words. Among the target words in the Text-
book Corpus, we selected 37 nouns and verbs such
that they were roughly equally spaced among the
20,000 most frequent words in the Wiki Corpus.
For each of these 37 words, we generated dis-

tractors using each of the four criteria in Sec-
tion 4 (Baseline, +Spell, +Co-occur, and
+Similar). In addition, we randomly picked one
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Method Reliability
Baseline 100%
+Co-occur 98.6%
+Spell 93.2%
+Similar 93.2%
Human 100%

Table 2: Reliability of the various distractor gen-
eration methods.

distractor from the corresponding fill-in-the-blank
item in the Textbook corpus (Human). We thus
have 37 items, each with six choices3: one cor-
rect answer, and five distractors. Table 1 shows an
example.

5.2 Human annotation
We asked two human judges, both native Chinese
speakers, to annotate these choices, without re-
vealing the target word. For each choice in the
item, the judges decided whether it was correct
or incorrect; they may identify zero, one or multi-
ple correct answers. For an incorrect answer, they
further assessed its plausibility as a distractor on
a three-point scale: “Plausible” (3), “Somewhat
plausible’ (2)’, or “Obviously wrong” (1).
The kappa for the human annotation is 0.529,

which is considered a “moderate” level of agree-
ment (Landis and Koch, 1977). As a annotation
quality check, we found that overall, in 6.8% of
the times, a judge labels the target word as a dis-
tractor.

6 Results

6.1 Reliability
As shown in Table 2, the Baseline and
+Co-occurmethods performed best in terms of re-
liability: 100% and 98.6% of their respective dis-
tractors can be used. The +Spell and +Similar
methods, at 93.2%, were more prone to generating
distractors that yield correct sentences. This is not
unexpected since the +Similar method explicitly
tries to find distractors that are semantically simi-
lar to the target word.
The reliability rate would have been lower if not

for the Candidate Filtering step. The Trigram and
Dependency filters rejected 16 of the 37 top candi-
dates returned by the +Similar method. A post-

3Except that in 5 items, the +Co-occur and +Similar
methods generated the same distractor; in another item,
Baseline and +Co-occur generated the same distractor.

Method Average Plausible or
score somewhat plausible

Baseline 1.06 5.2%
+Co-occur 1.27 8.6%
+Spell 1.66 39.7%
+Similar 1.76 46.6%
Human 1.68 53.4%

Table 3: Average scores, out of a 3-point scale
(see Section 5.2), of distractors generated by the
various methods in the human evaluation.

hoc analysis found that 11 of the 16 rejected candi-
dates would indeed have been acceptable answers.
The filters thus boosted the reliability rate by 30%,
at the cost of falsely rejecting 5 top-ranked candi-
dates.

6.2 Plausibility
Table 3 shows the results on plausibility. Both the
+Similar method4 and the +Spell method5 out-
performed the baseline, both in terms of the aver-
age score and the proportion of distractors consid-
ered at least somewhat plausible.
Distractors of the +Similar method have very

competitive quality, scoring on average 1.76,
slightly higher than the average score of the Human
method (1.68). A qualitative review found that
while the +Similar method can sometimes yield
distractors that are even more plausible than those
given by humans6, they are alsomore likely overall
to be rated “Obviously Wrong”, especially when
the model fails to take into account word sense
ambiguity: 53.4% of the Human distractors are
rated Plausible or Somewhat Plausible, versus only
46.6% for the +Similar method.

7 Conclusions

We presented the first study on automatic gener-
ation of distractors for fill-in-the-blank items for
learning Chinese. Evaluations showed that a se-
mantic similarity measure, based on the word2vec
model, offers a significant improvement over a
baseline that considers only part-of-speech and
word frequency, and achieves competitive plausi-
bility in comparison to human-crafted items.

4p < 0.001, by McNemar’s test.
5p < 0.021 by McNemar’s test.
6Since we randomly selected one distractor out of three

in the Textbook Corpus, the Human score reflects the average
plausibility of the human-authored distractors, rather than the
best one.
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Abstract

We propose a novel word embedding pre-
training approach that exploits writing er-
rors in learners’ scripts. We compare
our method to previous models that tune
the embeddings based on script scores
and the discrimination between correct
and corrupt word contexts in addition to
the generic commonly-used embeddings
pre-trained on large corpora. The com-
parison is achieved by using the afore-
mentioned models to bootstrap a neural
network that learns to predict a holistic
score for scripts. Furthermore, we in-
vestigate augmenting our model with er-
ror corrections and monitor the impact on
performance. Our results show that our
error-oriented approach outperforms other
comparable ones which is further demon-
strated when training on more data. Addi-
tionally, extending the model with correc-
tions provides further performance gains
when data sparsity is an issue.

1 Introduction

Assessing students’ writing plays an inherent ped-
agogical role in the overall evaluation of learning
outcomes. Traditionally, human graders are re-
quired to mark essays, which is cost- and time-
inefficient, especially with the growing numbers
of students. Moreover, the evaluation process is
subjective, which leads to possible variations in
the awarded scores when more than one human
assessor is employed. To remedy this, the auto-
mated assessment (AA) of writing has been mo-
tivated in order to automatically evaluate writ-
ing competence and hence not only reduce grader
workload, but also bypass grader inconsistencies
as only one system would be responsible for the

assessment. Numerous AA systems have been
developed for research purposes or deployed for
commercial use, including Project Essay Grade
(PEG) (Page, 2003), e-Rater (Attali and Burstein,
2006), Intelligent Essay Assessor (IEA) (Landauer
et al., 2003) and Bayesian Essay Test Scoring sYs-
tem (BETSY) (Rudner and Liang, 2002) among
others. They employ statistical approaches that ex-
ploit a wide range of textual features.

A recent direction of research has focused on
applying deep learning to the AA task in order
to circumvent the heavy feature engineering in-
volved in traditional systems. Several neural ar-
chitectures have been employed including variants
of Long Short-Term Memory (LSTM) (Alikani-
otis et al., 2016; Taghipour and Ng, 2016) and
Convolutional Neural Networks (CNN) (Dong and
Zhang, 2016). They were all applied to the Auto-
mated Student Assessment Prize (ASAP) dataset,
released in a Kaggle contest1, which contains es-
says written by middle-school English speaking
students. On this dataset, neural models that
only operate on word embeddings outperformed
state-of-the-art statistical methods that rely on rich
linguistic features (Yannakoudakis et al., 2011;
Phandi et al., 2015).

The results obtained by neural networks on the
ASAP dataset demonstrate their ability to capture
properties of writing quality without recourse to
handcrafted features. However, other AA datasets
pose a challenge to neural models and they still
fail to beat state-of-the-art methods when evalu-
ated on these sets. An example of such datasets is
the First Certificate in English (FCE) set where ap-
plying a rank preference Support Vector Machine
(SVM) trained on various lexical and grammatical
features achieved the best results (Yannakoudakis
et al., 2011). This motivates further investigation

1https://www.kaggle.com/c/asap-aes/
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into neural networks to determine what minimum
useful information they can utilize to enhance their
predictive power.

Initializing neural models with contextually rich
word embeddings pre-trained on large corpora
(Mikolov et al., 2013; Pennington et al., 2014;
Turian et al., 2010) has been used to feed the net-
works with meaningful embeddings rather than
random initialization. Those embeddings are
generic and widely employed in Natural Language
Processing (NLP) tasks, yet few attempts have
been made to learn more task-specific embed-
dings. For instance, Alikaniotis et al. (2016) de-
veloped score-specific word embeddings (SSWE)
to address the AA task on the ASAP dataset. Their
embeddings are constructed by ranking correct
ngrams against their “noisy” counterparts, in addi-
tion to capturing words’ informativeness measured
by their contribution to the overall score of the es-
say.

We propose a task-specific approach to pre-train
word embeddings, utilized by neural AA models,
in an error-oriented fashion. Writing errors are
strong indicators of the quality of writing com-
petence and good predictors for the overall script
score, especially in scripts written by language
learners, which is the case for the FCE dataset. For
example, the Spearman’s rank correlation coeffi-
cient between the FCE script scores and the ratio
of errors is −0.63 which is indicative of the im-
portance of errors in writing evaluation:

ratio of errors =
number of erroneous script words

script length

This correlation could even be higher if error
severity is accounted for as some errors could be
more serious than others. Therefore, it seems
plausible to exploit writing errors and integrate
them into AA systems, as was successfully done
by Yannakoudakis et al. (2011) and Rei and Yan-
nakoudakis (2016), but not by capturing this in-
formation directly in word embeddings in a neural
AA model.

Our pre-training model learns to predict a score
for each ngram based on the errors it contains and
modifies the word vectors accordingly. The idea
is to arrange the embedding space in a way that
discriminates between “good” and “bad” ngrams
based on their contribution to writing errors. Boot-
strapping the assessment neural model with those
learned embeddings could help detect wrong pat-

terns in writing which should improve its accuracy
of predicting the script’s holistic score.

We implement a CNN as the AA model and
compare its performance when initialized with our
embeddings, tuned based on natural writing errors,
to the one obtained when bootstrapped with the
SSWE, proposed by Alikaniotis et al. (2016), that
relies on random noisy contexts and script scores.
Furthermore, we implement another version of
our model that augments ngram errors with their
corrections and investigate the effect on perfor-
mance. Additionally, we compare the aforemen-
tioned pre-training approaches to the commonly
used embeddings trained on large corpora (Google
or Wikipedea). The results show that our approach
outperforms other initialization methods and aug-
menting the model with error corrections helps al-
leviate the effects of data sparsity. Finally, we
further analyse the pre-trained representations and
demonstrate that our embeddings are better at de-
tecting errors which is inherent for AA.

2 Related Work

There have been various attempts to employ neu-
ral networks to assess the essays in the ASAP
dataset. Taghipour and Ng (2016) compared the
performance of a few neural network variants
and obtained the best results with an LSTM fol-
lowed by a mean over time layer that averages
the output of the LSTM layer. Alikaniotis et al.
(2016) assessed the same dataset by building a
bidirectional double-layer LSTM which outper-
formed Distributed Memory Model of Paragraph
Vectors (PV-DM) (Le and Mikolov, 2014) and
Support Vector Machines (SVM) baselines. Dong
and Zhang (2016) implemented a CNN where the
first layer convolves a filter of weights over the
words in each sentence followed by an aggrega-
tive pooling function to construct sentence repre-
sentations. Subsequently, a second filter is applied
over sentence representations followed by a pool-
ing operation then a fully-connected layer to pre-
dict the final score. Their CNN was applied to the
ASAP dataset and its efficacy in in-domain and
domain-adaptation essay evaluation was demon-
strated in comparison to traditional state-of-the-art
baselines.

Several AA approaches in the literature have ex-
ploited the “quality” or “correctness” of ngrams as
a feature to discriminate between good and poor
essays. Phandi et al. (2015) defined good essays

150



Figure 1: Error-specific Word Embeddings (ESWE).

as the ones with grades above or equal to the av-
erage score and the rest as poor ones. They cal-
culated the Fisher scores (Fisher, 1922) of ngrams
and selected 201 with the highest scores as “useful
ngrams”. Similarly, they generated correct POS
ngrams from grammatically correct texts, classi-
fied the rest as “bad POS ngrams” and used them
along with the useful ngrams and other shallow
lexical features as bag-of-words features. They
applied Bayesian linear ridge regression (BLRR)
and SVM regression for domain-adaptation es-
say scoring using the ASAP dataset. Alikaniotis
et al. (2016) applied a similar idea; in their SSWE
model, they trained word embeddings to distin-
guish between correct and noisy contexts in addi-
tion to focusing more on each word’s contribution
to the overall text score. Bootsrapping their LSTM
model with those embeddings offered further per-
formance gains.

Other models have directly leveraged error in-
formation exhibited in text. For example, Yan-
nakoudakis et al. (2011) demonstrated that adding
an “error-rate” feature to their SVM ranking
model that uses a wide range of lexical and gram-
matical writing competence features further im-
proves the AA performance. They calculated the
error-rate using the error annotations in the Cam-
bridge Learner Corpus (CLC) in addition to clas-
sifying a trigram as erroneous if it does not oc-
cur in the large ukWaC corpus (Ferraresi et al.,
2008) or highly scoring CLC scripts. Rei and Yan-
nakoudakis (2016) proposed a bidirectional LSTM
for error detection in learner data, where the model
predicts the probability of a word being correct for
each word in text. As an extension to their ex-
periment, they incorporated the average predicted
probability of word correctness as an additional
feature to the self-assessment and tutoring system

(SAT) (Andersen et al., 2013) that applied a su-
pervised ranking perceptron to rich linguistic fea-
tures. Adding their correctness probability feature
successfully enhanced the predictive power of the
SAT.

3 Approach

3.1 Word Embedding Pre-training

In this section, we describe three different neu-
ral networks to pre-train word representations: the
model implemented by Alikaniotis et al. (2016)
and the two error-oriented models we propose in
this work. The models’ output embeddings – re-
ferred to as AA-specific embeddings – are used
later to bootstrap the AA system.

Score-specific Word Embeddings (SSWE). We
compare our pre-training models to the SSWE de-
veloped by Alikaniotis et al. (2016). Their method
is inspired by the work of Collobert and Weston
(2008) which learns word representations by dis-
tinguishing between a target word’s context (win-
dow of surrounding words) and its noisy counter-
parts. These counterparts are generated by replac-
ing the target word with a randomly selected word
from the vocabulary. The network is trained to
rank the positive correct contexts higher than the
negative corrupt ones. Additionally, the model is
augmented with score specific information to fo-
cus on the informative words that contribute to
the overall score of essays rather than the fre-
quent words that occur equally in good and bad
essays. They optimize the overall loss function as
a weighted sum of the ranking loss between cor-
rect and noisy ngrams and the score specific loss:
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Figure 2: A CNN for AA where the final score is predicted by applying a convolutional operation fol-
lowed by a pooling function.

Loss(SSWE) = α · loss(ranking)

+ (1− α) · loss(score)

(1)

where α is a hyperparameter. In their experiment,
they set α to 0.1 giving most of the weight to
score-related information.

Error-specific Word Embeddings (ESWE). We
propose a model that fine-tunes the embedding
space using a supervised method that leverages the
errors appearing in the training data. It modifies
the embedding space to discriminate between er-
roneous ngrams and correct ones. The core differ-
ence between this approach and SSWE is that it
relies on the writing errors occurring naturally in
the training data instead of randomly generating
incorrect ngrams or capturing words’ informative-
ness. The motivation for adopting this approach
is twofold. First, we believe that the model could
learn more useful AA features from actual errors
rather than introducing random contexts that are
unlikely to happen. Second, SSWE ignores the
frequent words as they have less predictive power
(they are used equally in highly and lowly scored
texts). However, despite the fact that frequent
words (e.g. function words) carry less topical in-
formation than content ones, the errors associated
with them constitute a substantial portion of the
errors committed by non-native English speakers.
For instance, determiner errors account for more
than 9% of the total errors in public FCE train-
ing data. Therefore, learning representations from

both function and content word errors in their con-
texts could be advantageous.

The ESWE model predicts error scores for word
ngrams. First, we demonstrate how the true er-
ror scores for ngrams are calculated and second,
we describe the approach applied to estimate these
scores. Each word wi in a training document is
given an error indicating score ei ∈ {1, 0} based
on whether it is part of an error or not, respectively.
Subsequently, an ngram gold score (n score) is
calculated based on the sum of the errors it con-
tains as follows:

n score =
1

1 +
∑n

i ei
(2)

where n is the ngram length. For the model to es-
timate the ngram scores, a convolutional operation
is applied as depicted in Figure 1. First, each word
is mapped to a unique vector vwrd

i ∈ Rdwrd
re-

trieved from an embedding space E ∈ R|V |×dwrd
,

where |V | is the vocabulary size. Consequently,
an ngram is represented as a concatenation of its
word vectors vng = [vwrd

i ; ...; vwrd
i+n−1]. Scoring

the ngrams is accomplished by sliding a convolu-
tional linear filterW e ∈ Rn×dwrd

– hereafter error
filter2 – over all the ngrams in the script, followed
by a sigmoid non-linearity to map the predicted
score to a [0, 1] probability space:

ˆn score = σ(W e · vng) (3)

2We also refer to the window size used in SSWE as error
filter for simplicity.
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where σ is the sigmoid function.3 The error filter
should work as an error detector that evaluates the
correctness of words given their contexts and ar-
ranges them in the embedding space accordingly.
For optimization, the sum of squared errors loss is
minimized between the gold ngram scores and the
estimated ones and the error gradients are back-
propagated to the embedding matrix E building
the ESWE space:

Loss =
∑

k

(n scorek − ˆn scorek)2 (4)

where k is the ngram index.

Error-correction-specific Word Embeddings
(ECSWE). As an extension to ESWE, we propose
augmenting it with the errors’ corrections as fol-
lows. We build a corrected version of each script
by replacing all its errors with their suggested cor-
rections and train the ESWE model using the cor-
rected scripts together with the original ones. In
the corrected version, all the ngrams are given
ei = 0 and consequently, n score = 1 according
to Equation 2. All the above ESWE equations are
applied and the loss for each script is calculated as
the sum of both the loss of the original script and
its corrected version (Equation 4 applied to obtain
both). The motivation for this model is twofold.
First, it could enrich the embedding space by al-
lowing the model to learn from faulty ngrams and
their correct counterparts (both occur naturally in
text) and construct ECSWE which is a modified
version of ESWE that is more capable of distin-
guishing between good and bad contexts. Second,
it could alleviate the effects of data sparsity, when
training on small datasets, by learning from more
representations.4

3.2 AA Model

The previous section discusses pre-training ap-
proaches for word embeddings that are later used
to initialize the AA model. For this model, we
use a second CNN to predict a holistic score for
the script (Figure 2) as follows. Each word in an
input script is initialized with its vector vwrd′

i ∈
Rdwrd

from a pre-trained embedding matrix, re-
sulting in a script embedding [vwrd′

1 ; ....; vwrd′
l ],

where l is the length of the script. A convolu-
tional filter W s ∈ Rm×dwrd×h is slid over all the

3Biases are removed from equations for simplicity.
4We refer to ESWE and ECSWE as error-oriented mod-

els.

Model Dataset Error Script
Google Word2Vec

& GloVe
FCE

- 3
FCEext

SSWE, ESWE &
ECSWE

FCE 3 3
FCEext 9 9

Table 1: Error and script refer to their filter sizes.
For each of the 5 pre-training models on the two
datasets, the error filter size is displayed (if ap-
plicable) along with the script filter size used in
the AA network initialized with the embeddings
on the left. FCE refers to the public FCE.

script’s subsequences to generate the feature maps
M ∈ Rh×(l−m+1), where m is the filter height
(window size) and h is the number of the out-
put feature maps. We refer to this filter as the
script filter. Previously, for the error filter used
in the ESWE and ECSWE approaches, h was set
to 1 which represents the predicted ngram score
( ˆn score), whereas here, the system extracts vari-
ous contextual features from each ngram as a pre-
step towards predicting the script’s score, hence
setting h to a large value. The convolutional oper-
ation is followed by a ReLU non-linearity to cap-
ture more complex linguistic phenomena:5

Mi = ReLU(W s · vwrd′
i:i+m−1) (5)

M = [M1,M2, ...Ml−m+1] (6)

Subsequently, an average pooling function is ap-
plied to the output feature maps in order to select
the useful features and unify the scripts’ represen-
tations to a vector S ∈ Rh of fixed length. Finally,
the last layer of the network is a fully connected
one by applying linear regression to the script rep-
resentation in order to predict the final score:

ˆs score = W reg · S (7)

where W reg ∈ Rh is a learned parameter matrix.
The network optimizes the sum of squared errors
loss between the scripts’ predicted scores and the
gold ones.

4 Experimental Setup

Baselines. We compare our error-oriented ap-
proaches to the SSWE model as well as generic
pre-trained models commonly used to initialize

5Initial experimentation showed that ReLU performs bet-
ter than tanh in the AA model.
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Bootstrapping Model Pearson (r) Spearman (ρ) RMSE
Google Word2Vec 300d 0.488 0.446 5.339

GloVe 50d 0.475 0.427 5.308
SSWE 0.494 0.445 5.182
ESWE 0.521 0.481 5.194

ECSWE 0.538 0.499 5.033

Table 2: AA results when bootstrapped from different word embeddings and trained on public FCE. The
bold values indicate the best results.

neural networks for different NLP tasks. The
generic models are trained on large corpora to cap-
ture general semantic and syntactic regularities,
hence creating richer, more meaningful word vec-
tors, as opposed to random vectors. In particular,
Google News Word2Vec (dwrd = 300) (Mikolov
et al., 2013) and GloVe (dwrd = 50) (Pennington
et al., 2014) pre-trained models are used. Google
Word2Vec6 is a Skip-gram model that learns to
predict the context of a given word. It is trained on
Google News articles which contain around 100
billion words with 3 million unique words. On the
other hand, GloVe7 vectors are learned by leverag-
ing word-word cooccurrence statistics in a corpus.
We use the GloVe embeddings trained on a 2014
Wikipedia dump in addition to Gigaword 5 with a
total of 6 billion words.

Evaluation. We replicate the SSWE model, im-
plement our ESWE and ECSWE models, use
Google and GloVe embeddings and conduct a
comparison between the 5 initilization approaches
by feeding their output embeddings to the AA sys-
tem from Section 3.2. All the models are im-
plemented using the open-source Python library
Theano (Al-Rfou et al., 2016). For evaluation, we
calculate Spearman’s rank correlation coefficient
(ρ), Pearson’s product-moment correlation coef-
ficient (r) and root mean square error (RMSE)
between the final predicted script scores and the
ground-truth values (Yannakoudakis and Cum-
mins, 2015).

Dataset. For our experiments, we use the FCE
dataset (Yannakoudakis et al., 2011) which con-
sists of exam scripts written by English learners
of upper-intermediate proficiency and graded with
scores ranging from 1 to 40.8 Each script con-
tains two answers corresponding to two different

6https://code.google.com/archive/p/word2vec/
7https://nlp.stanford.edu/projects/glove/
8We only evaluate on FCE and not the ASAP dataset be-

cause the latter does not contain error annotations.

prompts asking the learner to write either an arti-
cle, a letter, a report, a composition or a short story.
We apply script-level evaluation by concatenating
the two answers and using a special answer end
token to separate the answers in the same script.

The writing errors committed in the scripts are
manually annotated using a taxonomy of 80 er-
ror types (Nicholls, 2003) together with suggested
corrections. An example of error annotations is:

The problems started <e type=“RT”>
<i>in</i><c>at</c></e> the box
office.

where<i></i> is the error,<c></c> is the sug-
gested correction and the error type “RT” refers to
“replace preposition”. For error-oriented models,
a word is considered an error if it occurs inside an
error tag and the correction is retrieved according
to the correction tag.

We train the models on the released public FCE
dataset which contains 1, 141 scripts for training
and 97 scripts for testing. In order to examine the
effects of training with extra data, we conduct ex-
periments where we augment the public set with
additional FCE scripts and refer to this extended
version as FCEext, which contains 9, 822 scripts.
We report the results of both datasets on the re-
leased test set. The public FCE dataset is divided
into 1, 061 scripts for training and 80 for devel-
opment while for FCEext, 8, 842 scripts are used
for training and 980 are held out for development.
The only data preprocessing employed is word to-
kenization which is achieved using the Robust Ac-
curate Statistical Parsing (RASP) system (Briscoe
et al., 2006).

Training. Hyperparameter tuning is done for each
model separately. The SSWE, ESWE and ECSWE
models are initialized with GloVe (dwrd = 50)
vectors, trained for 20 epochs and the learning
rate is set to 0.01. For SSWE, α is set to 0.1,
batch size to 128, the number of randomly gen-
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Bootstrapping Model Pearson (r) Spearman (ρ) RMSE
Google Word2Vec 300d 0.626 0.567 4.930

GloVe 50d 0.568 0.518 5.200
SSWE 0.624 0.583 4.872
ESWE 0.667 0.637 4.536

ECSWE 0.674 0.642 4.692

Table 3: AA results when bootstrapped from different word embeddings and trained on the extended
FCE version (FCEext). The bold values indicate the best results.

erated counterparts per ngram to 20 and the size
of hidden layer to 100.9 For the AA network, ini-
tialized with any of the 5 models, h is set to 100,
and learning rate to 0.001 when training on pub-
lic FCE and 0.0001 on FCEext. The sizes used for
error and script filters are shown in Table 1.10 All
the networks are optimized using Stochastic Gra-
dient Descent (SGD). The AA system is regular-
ized with L2 regularization with rate = 0.0001 and
trained for 50 epochs during which performance is
monitored on the dev sets. Finally, the AA model
with the best mean square error over the dev sets
is selected.

5 Results and Discussion

The public FCE results shown in Table 2 reveal
that AA-specific embedding pre-training offers
further gains in performance over the traditional
embeddings trained on large corpora (Google and
GloVe embeddings), which suggests that they are
more suited for the AA task. The table also
demonstrates that the ESWE model outperforms
the SSWE one on correlation metrics, with a slight
difference in the RMSE value. While the vari-
ance in the correlations between the two models
is noticeable and suggests that the ESWE model
is a more powerful one, the RMSE values weaken
this assumption. This result could be attributed to
the fact that public FCE is a small dataset with
sparse error representations and SSWE is trained
on 20 times more data as each ngram is paired
with 20 randomly generated counterparts. There-
fore, a more relevant comparison is needed and
could be achieved by either training on more data,
as will be discussed later, or further enriching
the embedding space with corrections (ECSWE).
Table 2 demonstrates that learning from the er-

9Using the same parameters as Alikaniotis et al. (2016).
10Tuning the filter sizes was done for each model sepa-

rately; for the Glove and Word2Vec models, a filter of size 3
performed better than 9, on both datasets.

rors and their corrections enhances the error pre-
training performance on public FCE which indi-
cates the usefulness of the approach and its ability
to mitigate the effects of data sparsity. Accord-
ing to the results, training the model based on nat-
urally occurring errors and their correct counter-
parts is better suited to the AA task rather than in-
troducing artificial noisy contexts and tuning the
embeddings according to scripts’ scores or relying
on word distributions learned from large corpora.

For a more robust analysis, we examine the
performance when training on additional data
(FCEext) as shown in Table 3. Comparing the re-
sults in Tables 2 and 3 proves that training with
more data boosts the predictive power of all the
models. It is also clear from Table 3 that with
more data, the discrepancy in the performance be-
tween SSWE and ESWE models becomes more
prominent and ESWE provides a superior perfor-
mance on all evaluation metrics which suggests
that, qualitatively, learning from learners’ errors
is a more efficient bootstrapping method. How-
ever, with FCEext, the ECSWE approach outper-
forms ESWE on correlation metrics while giving
a worse RMSE value. This change in the results
when training on a bigger dataset indicates that the
effect of incorporating the corrections in training
becomes less obvious with enough data as the dis-
tribution of correct and incorrect ngrams is enough
to learn from.

6 Analysis

We conduct further analysis to the scores predicted
by AA-specific embeddings by investigating the
ability of the ESWE and SSWE models to de-
tect errors in text. We run each model for 20
epochs on the public FCE (ngram size = 3) and
FCEext (ngram size = 9) training sets, then test
the models on the respective dev sets and exam-
ine the output predictions. For simplicity, we as-
sign a binary true score for each ngram with a
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Model Public FCE FCEext

Random Baseline 0.258 0.494
SSWE 0.251 0.480
ESWE 0.472 0.539

Table 4: AP results of the random baseline and
SSWE and EWE models when trained on public
and extended FCE sets and tested on the respective
dev sets. The AP is calculated with respect to the
error class.

zero value if it contains any errors and one oth-
erwise. ESWE predicts a score ∈ [0, 1] for each
ngram indicating its correctness and hence could
be used directly in the evaluation. On the other
hand, SSWE predicts two scores for each ngram:
correct score that it maximizes in comparison to
the noisy ngrams and script score that should be
high for good ngrams that occur in highly-graded
scripts. The two scores are hence expected to be
high for high-quality ngrams and low otherwise,
which suggests that they can be used as proxies
for error detection. We calculate the ngram pre-
dicted score of the SSWE model as a weighted
sum of the correct and script scores, similar to its
loss function (Equation 1 with α = 0.1), and map
the output to a [0, 1] probability based on the min-
imum and maximum generated scores.11 We cal-
culate the average precision (AP) between the true
scores and predicted ones with respect to the error
representing class (true score = 0) and compare
it to a random baseline, where random probability
scores are generated. The results are displayed in
Table 4 which shows that ESWE achieves a higher
AP score on all evaluation sets, particularly with
public FCE, and SSWE’s performance is similar
to the random baseline. This result is expected
since the ESWE model is trained to predict ac-
tual errors, yet an empirical verification was re-
quired. We conclude from this analysis that tuning
the embeddings based on training writing errors
increases their sensitivity to unseen errors which
is key for learners’ data assessment and yields bet-
ter performance than comparable pre-training ap-
proaches.

7 Conclusion and Future Work

In this work, we have presented two error-oriented
approaches to train the word embeddings used by

11Different score combinations were implemented includ-
ing using only one score, but they all led to similar results.

writing assessment neural networks. The first ap-
proach learns to discriminate between good and
bad ngrams by leveraging writing errors occur-
ring in learner data. The second extends the first
by combining the error representations with their
suggested corrections and tuning the embedding
space accordingly. Our motivation for applying
these models is to provide neural assessment sys-
tems with the minimum features useful for the task
in an attempt to boost their performance on chal-
lenging datasets while still avoiding heavy fea-
ture engineering. The presented results demon-
strate that our error-oriented embeddings are better
suited for learners’ script assessment than generic
embeddings trained on large corpora when both
are used to bootstrap a neural assessment model.
Additionally, our embeddings have yielded supe-
rior performance to those that rely on ranking cor-
rect and noisy contexts as well as words’ contri-
butions to the script’s overall score. Furthermore,
extending our error embeddings with error correc-
tions has enhanced the performance when trained
on small data, while having a less obvious effect
when trained on greater amounts of data which
shows their efficacy to enrich the embedding space
and mitigate data sparsity issues. We further anal-
ysed our embeddings and the score-specific ones
and showed empirically that error-oriented repre-
sentations are better at error detection which expli-
cates their superior performance in learners’ data
evaluation.

Our best performing model still underperforms
the state-of-the-art system by Yannakoudakis et al.
(2011) that utilises a wide variety of features, even
when they exclude error related features. How-
ever, the improvement obtained by error-oriented
models over employing generic embeddings or
score-specifc ones suggests that our pre-training
approach is a promising avenue of research as it
provides neural network assessment with useful
information and motivates learning relevant prop-
erties associated with language proficiency.

For future work, it will be interesting to jointly
train the score-specific model with the error-
oriented one and test if this could further improve
the performance. We also suggest fully automat-
ing the assessment process by using the outputs
of automated error detection and correction sys-
tems to build the embeddings rather than relying
on handcrafted error annotations. Finally, we en-
courage further examination for other types of fea-
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tures that could be useful for assessment models
and incorporating them in the pre-training stage.
This way the performance could be further en-
hanced with less information than what heavily
engineered systems require.
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Abstract

Neural approaches to automated essay
scoring have recently shown state-of-the-
art performance. The automated essay
scoring task typically involves a broad no-
tion of writing quality that encompasses
content, grammar, organization, and con-
ventions. This differs from the short an-
swer content scoring task, which focuses
on content accuracy. The inputs to neu-
ral essay scoring models – ngrams and
embeddings – are arguably well-suited to
evaluate content in short answer scoring
tasks. We investigate how several basic
neural approaches similar to those used for
automated essay scoring perform on short
answer scoring. We show that neural ar-
chitectures can outperform a strong non-
neural baseline, but performance and op-
timal parameter settings vary across the
more diverse types of prompts typical of
short answer scoring.

1 Introduction

Deep neural network approaches have recently
been successfully developed for several educa-
tional applications, including automated essay as-
sessment. In several cases, neural network ap-
proaches exceeded the previous state of the art on
essay scoring (Taghipour and Ng, 2016).

The task of automated essay scoring (AES)
is generally different from the task of auto-
mated short answer scoring (SAS). Essay scor-
ing generally focuses on writing quality, a
multidimensional construct that includes ideas
and elaboration, organization, style, and writ-
ing conventions such as grammar and spelling
(Burstein et al., 2013). Short answer scoring, by
contrast, typically focuses only on the accuracy

of the content of responses (Burrows et al., 2015).
Analyzing the rubrics of prompts from the Auto-
mated Student Assessment Prize shared tasks on
AES and SAS, while there is some overlap across
essay scoring and short answer scoring, there are
three main dimensions of differences:

1. Response length. Responses in SAS tasks
are typically shorter. For example, while
the ASAP-AES data contains essays that
average between about 100 and 600 to-
kens (Shermis, 2014), short answer scoring
datasets may have average answer lengths of
just several words (Basu et al., 2013) to al-
most 60 words (Shermis, 2015).

2. Rubrics focus on content only in SAS vs.
broader writing quality in AES.

3. Purpose and genre. AES tasks cover persua-
sive, narrative, and source-dependent reading
comprehension and English Language Arts
(ELA), while SAS tasks tend to be from sci-
ence, math, and ELA reading comprehen-
sion.

Given these differences, the feature sets for
AES and SAS systems are often different, with
AES incorporating a larger set of features to cap-
ture writing quality (Shermis and Hamner, 2013).
Nevertheless, deep learning approaches to
AES have thus far demonstrated strong per-
formance with minimal inputs consisting of
unigrams and word embeddings. For exam-
ple, Taghipour and Ng (2016) explore simple
LSTM and CNN-based architectures with re-
gression and evaluate on the ASAP-AES data.
Alikaniotis et al. (2016) train score-specific
word embeddings with several LSTM archi-
tectures. Dong and Zhang (2016) demonstrate
that a hierarchical CNN architecture produces
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strong results on the ASAP-AES data. Recently,
Zhao et al. (2017) show state-of-the-art perfor-
mance on the ASAP-AES dataset with a memory
network architecture.

In this work, we investigate whether deep neural
network approaches with similarly minimal fea-
ture sets can produce good performance on the
SAS task, including whether they can exceed a
strong non-neural baseline. Unigram embedding-
based neural network approaches to essay scor-
ing capture content signals from their input fea-
tures, but the extent to which they capture other as-
pects of writing quality rubrics has not been estab-
lished. These approaches as implemented would
seem to lend themselves even better to the purely
content-focused rubrics in SAS, where content
signals should dominate in achieving good human-
machine agreement. On the other hand, recurrent
neural networks may derive some of their predic-
tive power in AES from more redundant signals in
longer input sequences (as sketched by Taghipour
and Ng (2016)). As a result, the shorter responses
in SAS may hinder the ability of recurrent net-
works to achieve state-of-the-art results.

To explore the effectiveness of neural network
architectures on SAS, we use the basic architec-
ture and parameters of Taghipour and Ng (2016)
on three publicly available short answer
datasets: ASAP-SAS (Shermis, 2015), Pow-
ergrading (Basu et al., 2013), and SRA
(Dzikovska et al., 2016, 2013). While these
datasets differ with respect to the length and
complexity of student responses, all prompts
in the datasets focus on content accuracy. We
explore how well the optimal parameters for
AES from Taghipour and Ng (2016) fare on these
datasets, and whether different architectures and
parameters perform better on the SAS task.

2 Datasets

The three datasets we use cover different kinds of
prompts and vary considerably in the length of the
answers as well as their well-formedness. Table 1
shows basic statistics for each dataset. Figures 1,
2 and 3 show examples for each of the datasets.

2.1 ASAP-SAS

The Automated Student Assessment Prize Short
Answer Scoring (ASAP-SAS) dataset1 contains
10 individual prompts, covering science, biology,

1https://www.kaggle.com/c/asap-sas

and ELA. The prompts were administered to U.S.
high school students in several state-level assess-
ments. Each prompt has an average of 2,200 indi-
vidual responses, typically consisting of one or a
few sentences. Responses are scored by two hu-
man annotators on a scale from 0 to 2 or 0 to 3
depending on the prompt (Shermis, 2015). Fol-
lowing the guidelines from the Kaggle competi-
tion, we always use the score assigned by the first
annotator.

2.2 Powergrading

The Powergrading dataset (Basu et al., 2013) con-
tains 10 individual prompts from U.S. immigra-
tion exams with about 700 responses each. Each
prompt is accompanied by one or more reference
responses. As responses are very short (typically a
few words – see Figure 2) and because the percent-
age of correct responses is very high, responses in
the Powergrading dataset are to some extent repet-
itive. The Powergrading dataset tests models’ abil-
ity to perform well on extremely short responses.

The Powergrading dataset was originally
used for the task of (unsupervised) clustering
(Basu et al., 2013), so that there are no state-of-
the-art scoring results available for this dataset.
For simplicity, we use the first out of three binary
human-annotated correctness scores.

2.3 SRA

The SRA dataset (Dzikovska et al., 2012) became
widely known as the dataset used in SemEval-
2013 Shared Task 7 “The Joint Student Response
Analysis and 8th Recognizing Textual Entailment
Challenge” (Dzikovska et al., 2013). It consists
of two subsets: Beetle, with student responses
from interacting with a tutorial dialogue system,
and SciEntsBank (SEB) with science assessment
questions. We use two label sets from the shared
task: the 2-way labels classify responses as cor-
rect or incorrect, while the 5-way labels provide
a more fine-grained classification of responses
into the categories non domain, correct, par-
tially correct incomplete, contradictory and irrel-
evant. In contrast with most SAS datasets, the
SRA dataset contains a large number of prompts
and with relatively few responses per prompt (see
Table 1). Following the procedure from the shared
task, we train models for each SRA dataset (Bee-
tle, SEB) across all responses to all prompts.
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ASAP - Prompt 1
QUESTION: After reading the groups procedure, describe what additional information you would need in order to replicate the
experiment. Make sure to include at least three pieces of information.

SCORING RUBRIC FOR A 3 POINT RESPONSE: The response is an excellent answer to the question. It is correct, complete,
and appropriate and contains elaboration, extension, and/or evidence of higher-order thinking and relevant prior knowledge.
There is no evidence of misconceptions. Minor errors will not necessarily lower the score.
STUDENT RESPONSES:
• 3 points: Some additional information you will need are the material. You also need to know the size of the contaneir to

measure how the acid rain effected it. You need to know how much vineager is used for each sample. Another thing that
would help is to know how big the sample stones are by measureing the best possible way.

• 1 point: After reading the expirement, I realized that the additional information you need to replicate the expireiment
is one, the amant of vinegar you poured in each container, two, label the containers before you start yar expirement and
three, write a conclusion to make sure yar results are accurate.

• 0 points: The student should list what rock is better and what rock is the worse in the procedure.

Figure 1: ASAP-SAS example: Question, partial scoring rubric, and example student responses for
Prompt 1. (Spelling errors in the student responses are in the original. Source text used in the prompt is
omitted here for space reasons.)

PG - PROMPT 1
QUESTION: What is one right or freedom from the First Amendment of the U.S. Constitution?

REFERENCE RESPONSES: STUDENT RESPONSES:
• speech

• religion

• assembly

• press

• petition the government

• correct: freedom of speech

• correct: free speech

• correct: freedom to talk freely

• correct: freedome of religeon

• incorrect: the right to bear arms

• incorrect: life

Figure 2: Powergrading example: Question, reference responses, and example student responses for
Prompt 1.

SRA - BEETLE dataset
QUESTION: What are the conditions that are required to make a bulb light up

REFERENCE RESPONSES: the bulb and the battery are in a closed path
STUDENT RESPONSES:
• correct: a complete circuit of electricty

• incorrect: connection to a battery

Figure 3: SRA example: Question, reference response, and example student responses from Beetle
subset.
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Dataset # prompts Scores /
Labels

# train
responses (mean)

# dev
responses (mean)

# test
responses (mean)

Mean length
(train)

ASAP-SAS 10 0/1/2(/3) 1363 341 522 48.4
PG 10 0/1 418 140 140 3.9
SRA Beetle 47 2 or 5-way 3153 (67.1) 788 (16.8) 449 (9.4) 9.8
SRA SEB 135 2 or 5-way 2968 (29.4) 1001 (7.4) 540 (4.0) 12.5

Table 1: Overview of the datasets used in this work. Since we train prompt-specific models for ASAP-
SAS and PG, we report the mean number of responses per set per prompt. For SRA, we train one model
per label set across prompts and report the overall number of prompts per set as well as the mean number
of responses per prompt per set (in parentheses).

3 Experiments

3.1 Method
We carried out a series of experiments across
datasets to discern the effect of specific parame-
ters in the SAS setting. We took the best parame-
ter set from Taghipour and Ng (2016) as our refer-
ence since it performed best on the AES data. We
looked at the effect of varying several important
parameters to discern the effectiveness of each for
SAS:

• the role of the mean-over-time layer,
which was crucial for good performance in
Taghipour and Ng (2016)

• the utility of pretrained embeddings

• the contribution of features derived from a
convolutional layer

• the needs for network representational capac-
ity via recurrent hidden layer size

• the role of bidirectional architectures for
short response lengths

• regression versus classification

• the effect of attention

To explore the effect of specific parameters, we
trained models on the training set and evaluated
on the development set only. Following these ex-
periments, we trained a model on the training and
development sets and evaluated on the test set. We
report prompt-level results for this model in Sec-
tion 3.6.

For evaluation, we use quadratic weighted
kappa (QWK) for the ASAP-SAS and Powergrad-
ing datasets. Because the class labels in the SRA
dataset are unordered, we report the weighted F1
score, which was the preferred metric in the Se-
meval shared task (Dzikovska et al., 2016).

3.2 Baseline

As a baseline system, we use a supervised learner
based on a hand-crafted feature set. This baseline
is based on DkPro TC (Daxenberger et al., 2014)
and relies on support vector classification using
Weka (Hall et al., 2009). We preprocess the data
using the ClearNlp Segmenter 2 via DKPro Core
(Eckart de Castilho and Gurevych, 2014). The
features used in the baseline system comprise a
commonly used and effective feature set for the
SAS task. We use both binary word and character
uni- to trigram occurrence features, using the top
10,000 most frequent ngrams in the training data,
as well as answer length, measured by the number
of tokens in a response.

3.3 Neural networks

We work with the basic neural network architec-
ture explored by Taghipour and Ng (2016) (Figure
4).3 First, the word tokens of each response are
converted to embeddings. Optionally, features are
extracted from the embeddings by a convolutional
network layer. This output forms the input to an
LSTM layer. The hidden states of the LSTM are
aggregated in either a “mean-over-time” (MoT)
layer or attention layer. The MoT layer simply
averages the hidden states of the LSTM across
the input. We use the same attention mechanism
employed in Taghipour and Ng (2016), which in-
volves taking the dot product of each LSTM hid-
den state and a vector that is trained with the net-
work. The aggregation layer output is a single vec-
tor, which is input to a fully connected layer. This
layer computes a scalar (regression) or class label
(classification).

2https://github.com/clir/clearnlp
3The networks are implemented in Keras and use the

Theano backend.
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Figure 4: The basic neural architecture explored
in this work for short answer scoring.

3.4 Setup, training, and evaluation

The text is lightly preprocessed as input to the neu-
ral networks following Taghipour and Ng (2016).
The text is tokenized with the standard NLTK tok-
enizer and lowercased. All numbers are mapped
to a single <num> symbol.4 Each response is
padded with a dummy token to uniform length, but
these dummy tokens are masked out during model
training.

For the ASAP-SAS and Powergrading datasets,
prior to training, we scale all scores of responses
to [0, 1] and use these scaled scores as input to
the networks. For evaluation, the scaled scores are
converted back to their original range. The SRA
class labels are used as is.

We fix a number of neural network parame-

4It may be the case that relevant content information is
thus ignored. However, since many numbers occur with units
of measurement, e.g. 1g, we do not have word embeddings
for them either and so the embeddings would simply be ran-
dom initializations. We leave a full exploration of this issue
to future work.

ters for our experiments. For pretrained embed-
dings, in preliminary experiments the GloVe 100
dimension vectors (Pennington et al., 2014) per-
formed slightly better than a selection of other off-
the-shelf embeddings, and hence we use these for
all conditions that involve pretrained embeddings.
Embeddings for word tokens that are not found
in the embeddings are randomly initialized from a
uniform distribution. The convolutional layer uses
a window length of 3 or 5 and 50 filters. We use a
mean squared error loss for regression models and
a cross-entropy loss for classification models. To
train the network, we use RMSProp with ρ set to
0.9 and learning rate of 0.001. We clip the norm
of the gradient to 10. The fully connected layer’s
bias is initialized to the mean score for the training
data, and the layer is regularized with dropout of
0.5. We use a batch size of 32, which provided a
good compromise between performance and run-
time in preliminary experiments.

To obtain more consistent results and improve
predictive performance, we evaluate the models
by keeping an exponential moving average of the
model’s weights during training. The moving av-
erage weights wEMA are updated after each batch
by

wEMA −= (1.0− d) ∗ (wEMA − wcurrent).

d is a decay rate that is updated dynamically at
each batch by taking into account the number of
batches so far:

min(decay, (1 + #batches)/(10 + #batches))

where decay is a maximum decay rate, which we
set to 0.999. This decay rate updating procedure
allows the weights to be updated quickly at first
while stabilizing across time.

All models are trained for 50 epochs for pa-
rameter exploration on the development set (Sec-
tion 3.5) and 50 epochs for the final mod-
els on the test set (Section 3.6). Following
Taghipour and Ng (2016), for our parameter ex-
ploration experiments on the development set, we
report the best performance across epochs. When
we train final models on the combined training and
development set and evaluate on the test set, we
report the results from the last epoch.

During development, we observed that even af-
ter employing best practices for ensuring repro-

163



ducibility of results5, there was still some small
variation between runs of the same parameter set-
tings. The reasons for this variability were not
clear.

3.5 Parameter exploration results

Our focus in this section is comparing different
architecture and parameter choices for the neural
networks with the best parameters from Taghipour
and Ng (2016). Table 2 shows the results of our
experiments on the development set for ASAP-
SAS and Powergrading, and Table 3 shows the
corresponding results for SRA.

Does the mean-over-time layer improve per-
formance? Taghipour and Ng (2016) demonstrate
a large performance gain with the mean-over-
time layer that averages the LSTM hidden states
across the response tokens. Comparing “T&N
best” with “no MoT” across the datasets, we see
mixed results. The mean-over-time layer per-
forms relatively well across datasets, but achieves
the best results only on the SRA-SEB dataset.
We hypothesized that the mean-over-time layer
is helpful when the input consists of longer re-
sponses (as was the case for the essay data
in Taghipour and Ng (2016)). We computed the
Pearson’s correlation on the ASAP-SAS data be-
tween the difference on each prompt of the two
conditions and the mean response length in the de-
velopment set. However, the correlation was mod-
est at 0.437.

Do pretrained embeddings with tuning outper-
form fixed or randomly initialized embeddings?
On all datasets, the pretrained embeddings with
tuning (among the “T&N best” parameters) per-
formed better than fixed pretrained or learned em-
beddings.6 Tuned embeddings were especially
important for the ASAP-SAS and Powergrading
datasets.

Does a convolutional layer produce useful fea-
tures for the SAS task? The results for convo-
lutional features are mixed: convolutional fea-
tures contribute small performance improvements
on Powergrading and one of the SRA label sets
(SRA SEB 2-way).

Can smaller hidden layers be used for the SAS
task? Although LSTMs with smaller hidden states

5The Numpy random seed was set. Since we used
Theano, in run scripts, we used PYTHONHASHSEED=0.

6We also did experiments with a much larger number of
epochs for the “learned” condition, but performance did not
approach that of the tuned embeddings.

often outperformed the 300-dimensional LSTM
in the T&N best parameter set (compare ‘T&N
best’ performance with performance for ‘LSTM
dims’ conditions), the improvements were all
quite small.

Do bidirectional LSTMs improve performance?
Bidirectional LSTM architectures produced solid
gains over the T&N best parameters on ASAP-
SAS, Powergrading, and two of the four SRA label
sets.

Can classification improve performance? The
T&N model used regression. While the labels in
SRA allow only for classification, ASAP-SAS and
PG work with both regression and classification.
However, we found consistently better results us-
ing regression.

Can attention improve performance? The at-
tention mechanism we considered in this paper
yielded strong performance improvements over
the mean-over-time layer on all datasets except
SRA-SEB 5-way. The largest improvements were
on Powergrading and SRA-Beetle 5-way, where
increases were almost 3 points weighted F1.

We also report the results of the combinations
of individual parameters that performed well on
the development data at the bottom of Table 2
and Table 3. While these combinations performed
better than any individual parameter variation on
ASAP-SAS and Powergrading, the combination
performed worse on three of the four label sets in
the SRA data. These results underscore that these
parameters do not always produce additive effects
in practice.

We examined the predictions from the baseline
system and the T&N system for the ASAP-SAS
development set and conducted a brief error analy-
sis. In general, across the 10 prompts, it can be ob-
served that when the baseline system is incorrect
it tends to under-predict the scores, whereas the
T&N system tends to slightly over-predict scores
when it is incorrect. These effects are typically
small, but consistent.

3.6 Test performance

We selected the top parameter settings on the de-
velopment set and trained models on the full train-
ing set (i.e. training and development sets) for
each dataset:

• ASAP-SAS: 250-dimensional bidirectional
LSTM, attention mechanism
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ASAP-SAS Powergrading

Experiment Condition Emb CNN Dim Dir MoT Att Mean QWK Mean QWK

Benchmark Baseline 0.6529 0.9049
T&N best tun no 300 uni yes no 0.7381 0.8724

MoT no MoT tun no 300 uni no no 0.7197 0.8753

Embeddings fixed fix no 300 uni yes no 0.7126 0.8376
learned lea no 300 uni yes no 0.6687 0.8482

CNN win len 5 tun len 5 300 uni yes no 0.7224 0.8748

Directionality bi tun no 300 bi yes no 0.7396 0.8798

LSTM dims 50 tun no 50 uni yes no 0.7169 0.8514
100 tun no 100 uni yes no 0.7341 0.8567
150 tun no 150 uni yes no 0.7377 0.8797
200 tun no 200 uni yes no 0.7343 0.8669
250 tun no 250 uni yes no 0.7429 0.8547

Classification tun no 300 uni yes no 0.7164 0.8299

Attention T&N-sum tun no 300 uni no yes 0.7436 0.9005

Best combination ASAP-SAS tun no 250 bi no yes 0.7439
Best combination PG tun len 5 150 bi no yes 0.9036

Table 2: Parameter experiment results on ASAP-SAS and Powergrading on the development set.
“Baseline” is the baseline non-neural system. “T&N best” is the best-performing parameter set in
Taghipour and Ng (2016): tuned embeddings (here, GLOVE 100 dimensions), 300-dimensional LSTM,
unidirectional, mean-over-time layer. Scores are bolded if they outperform the score for the “T&N best”
parameter setting.

• Powergrading: CNN features with win-
dow length 5, 150-dimensional bidirectional
LSTM, attention mechanism

• SRA: Because of the decreased performance
of the combined best individual parameters
on the development data, we use a 300-
dimensional unidirectional LSTM with atten-
tion mechanism.

These models are “T&N tuned” in Table 4,
which appear along with the non-neural baseline
system. On ASAP-SAS, the “T&N tuned” pa-
rameter configuration outperformed the baseline
system and the “T&N best” parameters. The
tuned system does not reach the state-of-the-art
Fisher-transformed mean score on the ASAP-
SAS dataset (Ramachandran et al., 2015)7, which,
like the winner of the ASAP-SAS competition
(Tandalla, 2012), employed prompt-specific reg-
ular expressions. Other top performing sys-
tems used prompt-specific preprocessing and
ensemble-based approaches over rich feature
spaces (Higgins et al., 2014).

7Ramachandran et al. (2015) state that their mean QWK
is 0.0053 higher than the Tandalla result, so in Table 4 we
report that score truncated to 3 decimal places rather than the
rounded result reported in Ramachandran et al. (2015).

On the Powergrading dataset, the “T&N tuned”
system did not match the performance of the base-
line system, consistent with the results on the
development set (Table 2). It appears that on
the very short and redundant data in this dataset,
the character- and n-gram based system can learn
somewhat more efficiently than the neural sys-
tems.

On the SRA datasets, the “T&N tuned” model
outperformed the baseline and the “T&N best”
settings on average across prompts, by a larger
margin than the other datasets. On the SRA
data, as on the ASAP-SAS data, a gap re-
mains between the tuned model’s performance
and the state of the art. On SRA, this may
be partly due to the use of “question indi-
cator” features by the top performing systems
(Heilman and Madnani, 2013; Ott et al., 2013).

The performance improvement over the base-
line system was larger on the development sets
than on the test sets. Part of the reason for this
is that the test set evaluation procedure likely did
not choose the best-performing epoch for the neu-
ral models.
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SRA
Beetle

SRA
SEB

2-way 5-way 2-way 5-way

Experiment Condition Emb CNN Dim Dir MoT Att Mean
wF1

Mean
wF1

Mean
wF1

Mean
wF1

Benchmark Baseline 0.7438 0.5815 0.7011 0.5415
T&N best tun no 300 uni yes no 0.7805 0.6184 0.7386 0.6175

MoT no MoT tun no 300 uni no no 0.7803 0.6163 0.7384 0.6159

Embeddings fixed fix no 300 uni yes no 0.7803 0.6119 0.7112 0.5730
learned lea no 300 uni yes no 0.7396 0.5929 0.7285 0.5855

CNN win len 3 tun no 300 uni yes no 0.7786 0.6048 0.7431 0.5874

Directionality bi tun no 300 bi yes no 0.7699 0.6461 0.7511 0.6171

LSTM dims 50 tun no 50 uni yes no 0.7603 0.5954 0.7395 0.5992
100 tun no 100 uni yes no 0.7679 0.6192 0.7341 0.5925
150 tun no 150 uni yes no 0.7816 0.6168 0.7389 0.6039
200 tun no 200 uni yes no 0.7768 0.6186 0.7336 0.6080
250 tun no 250 uni yes no 0.7663 0.6106 0.7334 0.6160

Attention T&N-sum tun no 300 uni no yes 0.7915 0.6469 0.7454 0.5941

Combination tun no yes 0.7691 0.6246 0.7308 0.6109

Table 3: Parameter experiment results on SRA datasets on the development set. “wF1” is the weighted
F1 score. “Baseline” is the baseline non-neural system. “T&N best” is the best-performing parameter set
in Taghipour & Ng (2016): tuned embeddings (here, GLOVE 100 dimensions), 300-dimensional LSTM,
unidirectional, mean-over-time layer. Scores are bolded if they outperform the score for the “T&N best”
parameter setting.

4 Discussion

Our results establish that the basic neural architec-
ture of pretrained embeddings with tuning across
model training and LSTMs is a reasonably effec-
tive architecture for the short answer content scor-
ing task. The architecture performs well enough to
exceed a non-neural content scoring baseline sys-
tem in most cases.

Given the diversity of prompts in SAS, there
was a good deal of variation in the effectiveness
of parameter choices in this neural architecture.
Still, some basic trends emerged. First, pretrained
embeddings tuned across model training were cru-
cial for competitive performance on most datasets.
Second, neural models for SAS generally bene-
fit from similar size hidden dimensions as mod-
els for AES. Only the Powergrading dataset, with
very short answers and a small vocabulary for each
prompt, benefitted from a significantly smaller
LSTM dimensionality. The relationship between
task, rubrics, vocabulary size, and the represen-
tational capacity of neural models for SAS need
further exploration.

Third, a mean-over-time aggregation mecha-
nism on top of the LSTM generally performed

well, but notably this mechanism was not nearly
as important as in the AES task. Mean-over-time
produced competitive results on many prompts,
but contrary to Taghipour and Ng (2016), bidi-
rectional LSTMS and attention produced some of
the best results, which is consistent with results
for neural models on other text classification tasks
(e.g., Longpre et al. (2016)).

Research is needed to explain these emerging
differences in effective neural architectures for
AES vs. SAS, including model-specific factors
such as the interaction of an LSTM’s integration of
features over time and the redundancy of predic-
tive signals in essays vs. short answers, along with
data-specific factors such as the consistency of
human scoring, the demands of different rubrics,
and the homogeneity or diversity of prompts in
each setting. At the same time, different from the
AES task, the family of neural architectures ex-
plored here needs further augmenting to achieve
state-of-the-art results on the SAS task. More-
over, more experiments are needed to document
how well neural systems perform relative to highly
optimized non-neural systems. While further pa-
rameter optimizations and different architectures
may yield better results, it may be the case that the
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Dataset Prompt Baseline T&N best T&N tuned State of
the art

ASAP-SAS

1 0.719 0.784 0.795
2 0.719 0.742 0.718
3 0.592 0.702 0.684
4 0.688 0.697 0.700
5 0.752 0.821 0.830
6 0.775 0.774 0.790
7 0.606 0.638 0.648
8 0.571 0.566 0.554
9 0.760 0.791 0.777

10 0.691 0.681 0.735

Mean 0.687 0.720 0.723
MeanFisher 0.693 0.728 0.732 0.776

PG

1 1.000 1.000 1.000 -
2 0.866 0.897 0.844 -
3 0.743 0.597 0.614 -
4 0.926 0.903 0.887 -
5 0.930 0.759 0.759 -
6 0.930 0.880 0.906 -
7 0.831 0.831 0.881 -
8 0.985 0.970 1.000 -

13 0.576 0.553 0.554 -
20 0.949 0.949 0.949 -

Mean 0.873 0.834 0.839 -

SRA

Beetle 2-way 0.742 0.776 0.790 0.845
Beetle 5-way 0.583 0.630 0.633 0.715
SEB 2-way 0.661 0.670 0.712 0.773
SEB 5-way 0.503 0.521 0.533 0.643

Mean 0.622 0.649 0.667 0.744

Table 4: Test set results for all datasets across prompts. Scores for ASAP-SAS and PG are QWK.
MeanFisher is the Fisher-transformed mean QWK used in the ASAP-SAS competition. Scores for SRA
are weighted F1 scores.

SAS task of content scoring with relatively short
response sequences requires neural approaches to
employ a larger set of features (Pado, 2016) or a
greater level of prompt-specific tuning, or pairing
with methods from active learning (Horbach and
Palmer, 2016).

Acknowledgements

We thank Nitin Madnani, Swapna Somasundaran,
Beata Beigman Klebanov and the anonymous re-
viewers for their detailed comments. Part of this
work was funded by the German Federal Ministry
of Education and Research under grant no. FKZ
01PL16075.

References

Dimitrios Alikaniotis, Helen Yannakoudakis, and
Marek Rei. 2016. Automatic text scoring using neu-
ral networks. In Proceedings of the 54th Annual

Meeting of the Association of Computational Lin-
guistics.

Sumit Basu, Chuck Jacobs, and Lucy Vanderwende.
2013. Powergrading: a Clustering Approach to
Amplify Human Effort for Short Answer Grading.
Transactions of the Association for Computational
Linguistics (TACL) 1:391–402.

Steven Burrows, Iryna Gurevych, and Benno Stein.
2015. The eras and trends of automatic short an-
swer grading. International Journal of Artificial In-
telligence in Education 25(1):60–117.

Jill Burstein, Joel Tetreault, and Nitin Madnani. 2013.
The e-rater automated essay scoring system. Hand-
book of automated essay evaluation: Current appli-
cations and new directions pages 55–67.

Johannes Daxenberger, Oliver Ferschke, Iryna
Gurevych, and Torsten Zesch. 2014. Dkpro TC:
A java-based framework for supervised learning
experiments on textual data. In Proceedings of
the 52nd Annual Meeting of the Association for
Computational Linguistics.

167



Fei Dong and Yue Zhang. 2016. Automatic features
for essay scoring - an empirical study. In Proceed-
ings of the 2016 Conference on Empirical Methods
in Natural Language Processing.

Myroslava O. Dzikovska, Rodney Nielsen, Chris Brew,
Claudia Leacock, Danilo Giampiccolo, Luisa Ben-
tivogli, Peter Clark, Ido Dagan, and Hoa Trang
Dang. 2013. SemEval-2013 Task 7: The Joint Stu-
dent Response Analysis and 8th Recognizing Tex-
tual Entailment Challenge. *SEM 2013: The First
Joint Conference on Lexical and Computational Se-
mantics .

Myroslava O Dzikovska, Rodney D Nielsen, and Chris
Brew. 2012. Towards effective tutorial feedback for
explanation questions: A dataset and baselines. In
Proceedings of the 2012 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies.

Myroslava O Dzikovska, Rodney D Nielsen, and Clau-
dia Leacock. 2016. The joint student response anal-
ysis and recognizing textual entailment challenge:
making sense of student responses in educational
applications. Language Resources and Evaluation
50(1):67–93.

Richard Eckart de Castilho and Iryna Gurevych. 2014.
A broad-coverage collection of portable nlp compo-
nents for building shareable analysis pipelines. In
Proceedings of the Workshop on Open Infrastruc-
tures and Analysis Frameworks for HLT . Associa-
tion for Computational Linguistics and Dublin City
University, Dublin, Ireland, pages 1–11.

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard
Pfahringer, Peter Reutemann, and Ian H. Witten.
2009. The weka data mining software: An update.
SIGKDD Explorer Newsletter 11(1):10–18.

Michael Heilman and Nitin Madnani. 2013. ETS: Do-
main adaptation and stacking for short answer scor-
ing. In Second Joint Conference on Lexical and
Computational Semantics (*SEM), Volume 2: Pro-
ceedings of the Seventh International Workshop on
Semantic Evaluation (SemEval). pages 275–279.

Derrick Higgins, Chris Brew, Michael Heilman, Ra-
mon Ziai, Lei Chen, Aoife Cahill, Michael Flor,
Nitin Madnani, Joel R Tetreault, Daniel Blan-
chard, Diane Napolitano, Chong Min Lee, and
John Blackmore. 2014. Is getting the right answer
just about choosing the right words? The role of
syntactically-informed features in short answer scor-
ing http://arxiv.org/abs/1403.0801.

Andrea Horbach and Alexis Palmer. 2016. Investigat-
ing active learning for short-answer scoring. In Pro-
ceedings of the 11th Workshop on Innovative Use of
NLP for Building Educational Applications.

Shayne Longpre, Sabeek Pradhan, Caiming Xiong, and
Richard Socher. 2016. A way out of the odyssey:
Analyzing and combining recent insights for lstms.
arXiv preprint arXiv:1611.05104 .

Niels Ott, Ramon Ziai, Michael Hahn, and Walt Det-
mar Meurers. 2013. CoMeT: Integrating different
levels of linguistic modeling for meaning assess-
ment. In Second Joint Conference on Lexical and
Computational Semantics (*SEM), Volume 2: Pro-
ceedings of the Seventh InternationalWorkshop on
Semantic Evaluation (SemEval 2013). pages 608–
616.

Ulrike Pado. 2016. Get semantic with me! the useful-
ness of different feature types for short-answer grad-
ing. In Proceedings of the 25th International Con-
ference on Computational Linguistics (COLING).

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing.

Lakshmi Ramachandran, Jian Cheng, and Peter W
Foltz. 2015. Identifying patterns for short an-
swer scoring using graph-based lexico-semantic text
matching. In Proceedings of the 10th Workshop on
Innovative Use of NLP for Building Educational Ap-
plications.

Mark D Shermis. 2014. State-of-the-art automated es-
say scoring: Competition, results, and future direc-
tions from a united states demonstration. Assessing
Writing 20:53–76.

Mark D Shermis. 2015. Contrasting state-of-the-art in
the machine scoring of short-form constructed re-
sponses. Educational Assessment 20(1):46–65.

Mark D. Shermis and Ben Hamner. 2013. Contrast-
ing state-of-the-art automated scoring of essays. In
Handbook of Automated Essay Evaluation, Taylor
and Francis, New York.

Kaveh Taghipour and Hwee Tou Ng. 2016. A neural
approach to automated essay scoring. In Proceed-
ings of the 2016 Conference on Empirical Methods
in Natural Language Processing.

Luis Tandalla. 2012. Scoring short answer essays.

Siyuan Zhao, Yaqiong Zhang, Xiaolu Xiong, Anthony
Botelho, and Neil Heffernan. 2017. A memory-
augmented neural model for automated grading.
In Proceedings of the Fourth ACM Conference on
Learning @ Scale.

168



Proceedings of the 12th Workshop on Innovative Use of NLP for Building Educational Applications, pages 169–179
Copenhagen, Denmark, September 8, 2017. c©2017 Association for Computational Linguistics

Human and Automated CEFR-based Grading of Short Answers

Anaı̈s Tack1,2,4a Thomas François1,4b Sophie Roekhaut3 Cédrick Fairon1

1 CENTAL, UCL, Place Blaise Pascal 1, B-1348 Louvain-la-Neuve, Belgium
2 ITEC, imec, KU Leuven Kulak, Etienne Sabbelaan 51, B-8500 Kortrijk, Belgium

3 ALTISSIA International, Place de l’Université 16, B-1348 Louvain-la-Neuve, Belgium
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Abstract

This paper is concerned with the task of
automatically assessing the written profi-
ciency level of non-native (L2) learners of
English. Drawing on previous research on
automated L2 writing assessment follow-
ing the Common European Framework of
Reference for Languages (CEFR), we in-
vestigate the possibilities and difficulties
of deriving the CEFR level from short an-
swers to open-ended questions, which has
not yet been subjected to numerous studies
up to date.

The object of our study is twofold: to ex-
amine the intricacy involved with both hu-
man and automated CEFR-based grading
of short answers. On the one hand, we
describe the compilation of a learner cor-
pus of short answers graded with CEFR
levels by three certified Cambridge exam-
iners. We mainly observe that, although
the shortness of the answers is reported
as undermining a clear-cut evaluation, the
length of the answer does not necessar-
ily correlate with inter-examiner disagree-
ment. On the other hand, we explore
the development of a soft-voting system
for the automated CEFR-based grading of
short answers and draw tentative conclu-
sions about its use in a computer-assisted
testing (CAT) setting.

1 Introduction

The recent years have seen a growth of interest in
Automated Writing Evaluation (AWE) for level-
ling non-native (L2) writing proficiency. Among

the variety of assessment scales used, a number of
studies have focused on levelling the writing pro-
ficiency following the Common European Frame-
work of Reference (CEFR) (Council of Europe,
2001) through a combination of machine learning
techniques and linguistic complexity features (Va-
jjala and Lõo, 2014; Volodina et al., 2016a; Pilán
et al., 2016). One of the often cited benefits for
using such assistive systems is that they could in-
crease the effectiveness of large-scale testing pro-
cedures where a large panel of examiners are grad-
ing a mass of responses in a short period of time.

One application that comes to mind is the valid-
ation of the required writing skills of a large group
of university students. In this scenario, imple-
menting an expert-only testing procedure is costly
for two reasons. On the one hand, a sufficiently
large panel of experts evaluating the same text is
needed to guarantee the validity of the evaluation.
On the other hand, the large number of students
who are participating in the programme makes the
procedure even more time-consuming. Integrating
an automated evaluator in the panel of examiners
could therefore contribute to an increase in effect-
iveness of the evaluation procedure.

The present study takes part in a broader pro-
ject which very aim is to research the possibility
of using a computer-assisted setting for evaluat-
ing the level of written proficiency in English of
non-native university students. The main idea of
the project is to validate whether the students have
the writing skills matching the CEFR descriptors
of the proficiency level in which they have been
placed. As a follow-up to a more general place-
ment test, the students are queried to write an
original short answer (ranging from 30 to 200
words) to an open-ended question, on the basis of
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which a panel of examiners validate or adapt the
CEFR level resulting from the global evaluation.
In this context, we investigated the possibilities of
partially automatising the short answer evaluation
procedure, which is the general subject of the cur-
rent paper.

The paper is structured as follows. After a brief
review of the previous work on automated grad-
ing and the CEFR (Section 2), we will introduce
our work on (i) the collection of a CEFR-graded
learner corpus of short answers (Section 3) and
(ii) the development of an automated grading sys-
tem through ensemble learning (Section 4). In
Section 5, we will compare the human and auto-
mated grading of short answers.

2 Background

2.1 Learner Writing Proficiency

The Common European Framework of Reference
for Languages (CEFR) (Council of Europe, 2001)
is one of the most commonly used scale for meas-
uring the proficiency of L2 users, dividing them
into three groups: the basic (levels A1 and A2), in-
dependent (levels B1 and B2) and proficient users
(levels C1 and C2). For various dimensions of pro-
ficiency (i.e. speaking, writing, etc.), it lists ‘can-
do’ descriptors that can be used to assign a level to
a learner. Although these criteria have been widely
used in L2 teaching and research, studies have
also stressed the need for more empirical research
on how the different levels are linked with par-
ticular aspects of L2 proficiency (Hulstijn, 2007)
(f.i. writing proficiency). Indeed, it is important to
evaluate the learners’ writing proficiency regard-
less of their overall L2 proficiency, since there is
no proof that the overall CEFR level is necessarily
transferred to the various dimensions composing
L2 proficiency.

Over more than the past two decades, the most
indispensable resource for gaining empirical in-
sight into learner writing proficiency has been
the learner corpus (Granger, 2009), as shown by
the continuous emergence of written and spoken
corpora available for numerous target languages
and discourse types. For English in particu-
lar, the International Corpus of Learner English
(ICLE) (Granger et al., 2009) and the Cambridge
Learner Corpus (CLC) have been the go-to stand-
ard. Moreover, the recent years have also seen an
increasing availability of learner corpora aligned
with the CEFR (Boyd et al., 2014; Vajjala and

Lõo, 2014; Volodina et al., 2016b), including the
subsets of the CLC used by the English Profile
(Salamoura and Saville, 2010).

Drawing on these developments, many studies
have aimed at identifying the linguistic variables
that are indicative (or criterial) of a particular L2
proficiency level (Dı́az-Negrillo et al., 2013) and
in particular those that are predictive of qualitative
L2 writing (Crossley and McNamara, 2011; Va-
jjala, 2017). As a result, we know lexical com-
plexity features, such as lexical diversity, word fa-
miliarity, meaningfulness and imageability, to be
good predictors of L2 writing. As for the criterial
features that apply specifically to the CEFR, im-
portant advances have been made in the context of
the English Profile with the creation of a valuable
inventory of structural patterns and learner errors
(Hawkins and Buttery, 2010).

2.2 Automated Learner Writing Assessment

The advances made towards developing error-
annotated and human-graded learner corpora
(such as the CLC), as well as understanding
the features underlying L2 proficiency, have sub-
sequently furthered the development of systems
for automated learner writing assessment, which
include intelligent writing assistants (e.g. Ander-
sen et al., 2013) and automated scoring systems
(e.g. Yannakoudakis et al., 2011). In the case of
automated scoring, two kinds of systems are gen-
erally distinguished, viz. automated essay grad-
ing (AEG) and automated short answer grading
(ASAG)1, depending on the length and type of
texts as well as the kind of scoring method used.
However, Burrows et al. (2015, p. 66) observe
that ‘[t]he difference between these types can be
fuzzy’.

Essay grading, on the one hand, is concerned
with the evaluation of the quality or proficiency
– often by means of a standard scale – of writ-
ings spanning several paragraphs or pages. In
the context of L2 essay grading, a number of
recently developed systems have achieved prom-
ising results with a wide range of complexity fea-
tures and machine learning techniques for English,
using the Cambridge English Scale (Yannakouda-
kis et al., 2011)2 or the TOEFL scale (Vajjala,

1For a more extensive overview of the fields, see Shermis
and Burstein (2013) and Burrows et al. (2015).

2The scores of the scale are aligned with the CEFR. The
Cambridge English First (FCE) corpus used by Yannakouda-
kis et al. (2011) is known to correlate with a B1/B2 level.
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2017). Other CEFR-based grading systems have
been developed for German (Hancke and Meur-
ers, 2013), Estonian (Vajjala and Lõo, 2014) and
Swedish (Pilán et al., 2016).

The specificity of short answer grading, on the
other hand, is the fact that it deals with ‘objective
questions’ and length-restricted answers ranging
‘between one phrase and one paragraph’ (Burrows
et al., 2015, p. 61). Its goal is to evaluate the
learner responses as regards their correctness with
respect to the initial question. The adequacy of the
answer is thus compared to a model answer and
graded either on a pass/fail basis or along a scale
of correctness, using a range of concept and pat-
tern matching techniques, alignment-based evalu-
ation metrics (e.g. BLEU) or machine learning al-
gorithms. In the context of L2 short answer grad-
ing, we mainly find systems developed for eval-
uating responses to reading comprehension ques-
tions, such as the CoMiC systems developed for
English and German (Meurers et al., 2011).

The writing task underlying the current study
can be situated between the extreme ends of essay
and short answer grading presented above, aim-
ing at assessing the CEFR level associated with
short texts. On the one hand, the task is based on
a series of questions (e.g.“What is the best book
you ever read?”) which are more open-ended than
the objective questions generally used in ASAG.
On the other hand, contrary to essay writing, the
task aims to assess writing proficiency based on a
shorter display of writing, by adding more restric-
tions on the length of the answers (approximately
one paragraph, or between 30 and 200 words).

3 A Corpus of Short Answers Graded
per CEFR Level

In the context of the writing proficiency test we in-
troduced in Section 1, we conducted a pilot study
for collecting a CEFR-graded learner corpus that
was representative of the task at hand.

3.1 Design

CEFR levels We defined a pool of questions
(Table 1) that were used for querying the students’
based on the result of the placement test. We will
refer to the CEFR level defined by the placement
test as the initial proficiency level. Note that al-
though we defined the same set of questions for
both the advanced C1 and C2 levels, hence group-
ing them in a common C level, we decided to

level min. words topics

A1 30
(A) family
(B) daily habits
(C) hobbies

A2 60
(A) holiday memories
(B) birthday invitation
(C) lifetime goals

B1 80
(A) book reading
(B) spending 1 million euros
(C) blog writing

B2 100
(A) improve the environment
(B) enjoy work or earn money
(C) study abroad

C 150
(A) social networks
(B) leading a healthy life
(C) living in the public eye

Table 1: Question types per initial CEFR level

keep the original six-level distinction in the graded
learner corpus in order to ensure the reusability of
the collected data.

Question types The questions were all open-
ended questions intended to trigger as wide a
range of answers as possible. In order to vary
the range of topics targeted by each question, we
defined a pool of three different topics per ini-
tial level, which were construed bearing the CEFR
guidelines in mind.

Length During the corpus collection procedure,
each question trigger was followed by an indica-
tion of the minimal word limit required for submit-
ting an answer. We mainly targeted answers ran-
ging from 30 words at the A1 levels to 150 words
at the C levels.

3.2 Collection

To collect a corpus of short answers, we conducted
an on-line survey where each participant answered
a question based on the CEFR level of the course
in which they were enrolled. Each question was
chosen in a circular fashion from the pool of ques-
tions previously defined. The minimal word limit
of each answer was controlled so as to only allow a
submission when the minimal word limit had been
reached. After having submitted a valid answer,
the students also responded to a short sociological
questionnaire and were given the opportunity to
enter in a raffle as a reward for participating.

We targeted learners coming from two differ-
ent learning environments. On the one hand, we
contacted participants who were enrolled in an e-
learning platform. Their initial level was defined
based on the CEFR level of the course they were

171



A1 A2 B1 B2 C1 C2
level

10

20

30

40

50

60

70

80

90
ag

e
age

A1 A2 B1 B2 C1 C2
level

0

20

40

60

80

100

120

140

co
un

t

gender

female
male

A1 A2 B1 B2 C1 C2
level

0

20

40

60

80

100

120

140

160

co
un

t

most recent diploma

primary or without diploma
lower secondary education
upper secondary education
master s degree
bachelor s degree
doctorate

Figure 1: Sociological variables of the participants.

(a) original

question
initial level A B C all

A1 14 8 17 39
A2 65 50 60 175
B1 75 88 60 223
B2 42 66 54 162
C1 40 27 22 89
C2 11 8 5 24
all 247 247 218 712

(b) resampled

question
initial level A B C all

A1 14 7 17 38
A2 35 19 18 72
B1 19 19 18 56
B2 18 19 19 56
C1 20 17 16 53
C2 11 8 5 24
all 117 89 93 299

Table 2: The number of answers collected per ini-
tial level and per question type

following after having completed a general profi-
ciency placement test with vocabulary, grammar,
reading and listening exercises. On the other hand,
we also contacted a group of participants enrolled
in university-level English language classrooms
targeting a particular CEFR level.

In all, we collected a total of 712 responses
(Table 2). Based on the responses given in the
questionnaire (Figure 1), we can observe that the
majority of the participants were French-speaking
learners of English studying at the bachelor’s and
master’s level (all disciplines included).

3.3 Grading

The data used in this study contains a sample of
the learner responses graded (i) according to their
initial level and (ii) according to their assessed
proficiency level as evaluated by majority voting3

of a panel of three certified CEFR-expert Cam-
bridge examiners. We will referred to them as ex-
aminers X , Y and Z respectively.

Before assessing the written proficiency level of
the learner responses, we decided to keep the data-
set as balanced as possible. Indeed, as we observe
from the number of responses per initial CEFR
level (Table 2b), there is an important difference
between the number of texts collected for the be-
ginner (A1) and advanced levels (C1 and C2) and
the number of texts collected for the intermediate
levels (A2, B1 and B2). We therefore performed
a stratified random sampling of the data to bal-
ance the number of texts per initial level and ques-
tion type, (i) by randomly selecting an equivalent
number of texts per individual level (± 25 texts)
and (ii) by randomly supplying additional texts per
grouped levels A, B, and C (60, 62, and 28 texts
respectively) with the aim of having as similar a
distribution per group as possible. As a result, a
sample of 299 texts was used for the remainder of
the study.

The panel of examiners used an on-line evalu-
ation interface for grading. The examiners were
prompted with the initial question and submitted

3In cases without agreement, the assessed level was de-
rived by taking the nearest integer of the mean of the votes.
These cases were then manually verified taking the hesita-
tions observed in the examiners’ comments into account.
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Figure 2: A comparison of the distribution
between the initial and assessed CEFR levels.

answer, but did not receive any indication of the
initial question level. They were then asked to
evaluate the proficiency level of the answer based
on the CEFR scale (ranging from A1 to C2), which
they could turn back to and review as much as
possible. The examiners could also flag the text
as “Impossible to evaluate” in case they were, for
whatever reason, unable to derive its proficiency
level. Finally, they were also given the option of
adding a comment to provide further details and
justifications of their choice.

Figure 2 shows the number of texts distributed
per initial and assessed levels. We observe that
particularly the initial B1 answers were assessed
as being indicative of a B1 written proficiency
level (70%), whereas the initial C1 and C2 levels
seem to have been relatively overestimated with
only 28% and 17% of them assessed as having the
C1 and C2 levels respectively.

4 A Soft-Voting CEFR-based Grader

In this section, we describe the general architec-
ture of the system developed for the automated
grading of the collected learner texts on a 5-point
scale (A1, A2, B1, B2 and C). We decided to col-
lapse the C1 and C2 levels into one C label for two
reasons. First, although the small number of ob-
servatons that received an assessed C2 level (N=5)
was considered insufficient, we did not want them
to be discarded. Second, the original test setup on
which this study was based did not aim to make a
distinction between these assessed levels.

Features As preprocessing step to feature ex-
traction, we used the Stanford CoreNLP suite
(Manning et al., 2014) for performing tokenisa-
tion, lemmatisation, part-of-speech tagging, con-
stituency and dependency parsing as well as core-
ferential resolution.

We defined a feature set of 18 different fam-
ilies, counting 695 individual feature configura-
tions. We included a number of traditional read-
ability features (François and Fairon, 2012; Va-
jjala and Lõo, 2014), including lexical features
(word length, number of syllables, lexical fre-
quency from SUBTLEX (Brysbaert and New,
2009), lexical likelihood based on Simple-Good
Turing Smoothing (Gale and Sampson, 1995), lex-
ical variation, lexical sophistication and part-of-
speech tag ratios), syntactic features (sentence
length and constituency tree structural patterns),
WordNet-based (Fellbaum, 1998) and discursive
features (synonyms, number of referential expres-
sions and degree of content overlap), as well as a
number of psycholinguistic norms (age of acquisi-
tion, imageability, familiarity, etc.) extracted from
the MRC database (Wilson, 1988). We also in-
cluded additional features for L2 complexity such
as the types of (shallow) spelling and grammar
errors as well as corpus-driven criterial features
based on the English Profile (Hawkins and But-
tery, 2010).

We should note that, contrary to previous work
on Swedish L2 essay grading where the learner
texts were normalised for error correction (Pilán
et al., 2016), we only included error-based fea-
tures without performing any error normalisation
– apart from sentence segmentation errors and run-
on sentences in particular – as preprocessing step
to feature extraction. The error-based features
were computed based on a noisy channel spelling
correction (Kernighan et al., 1990) and hand-
crafted orthographic and syntactic (constituency-
and dependency-based) patterns.

By means of a Spearman rank correlation test
and a randomised logistic regression stability se-
lection procedure on the entire sample, we found
a set of 29 features to be of significant import-
ance for the task at hand (Table 3 on the next
page). This procedure was then reapplied on each
of the model training folds before model fitting
during nested cross-validation (cf. infra). Not sur-
prisingly, we find that the most informative pre-
dictors of writing proficiency are the lexical ones
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family feature µA1 µA2 µB1 µB2 µC ρ

AoA
Bristol lem −0.8 −0.8 −0.1 0.7 0.6 0.57∗∗∗

Kup lem −1.1 −0.7 −0.2 0.7 0.8 0.62∗∗∗

CEFR B1 −0.7 −0.6 −0.2 0.7 0.7 0.53∗∗∗

Disc
global content overlap −1.0 −0.8 −0.2 0.7 0.9 0.73∗∗∗

global noun overlap −0.9 −0.5 −0.2 0.6 0.7 0.56∗∗∗

GrCorr missing subject −0.8 −0.7 −0.2 0.7 0.8 0.63∗∗∗

LexFreq
all mean −0.6 −0.4 0.3 0.0 −0.1 0.13∗

all mean L −0.8 −0.4 0.3 0.0 −0.1 0.18∗∗

grammatical 75P L −0.6 −0.6 0.3 0.2 0.0 0.22∗∗∗

LexLike all L 0.0 0.2 0.3 −0.3 −0.6 −0.29∗∗∗

LexVar

adjective UberIndex L −1.5 −0.9 −0.1 0.8 1.0 0.75∗∗∗

all UberIndex −1.9 −0.9 0.0 0.8 1.0 0.78∗∗∗

modifier LogTTR −2.2 −0.7 0.0 0.7 0.8 0.74∗∗∗

modifier SquaredTTR −1.1 −0.8 −0.2 0.7 1.1 0.72∗∗∗

modifier UberIndex −1.7 −0.9 −0.1 0.8 1.0 0.78∗∗∗

verb1 LogTTR −2.1 −0.7 0.1 0.6 0.8 0.71∗∗∗

verb1 SquaredTTR −1.4 −0.8 −0.1 0.6 1.2 0.71∗∗∗

verb1 UberIndex −1.9 −0.9 0.0 0.7 1.0 0.77∗∗∗

verb2 UberIndex −1.9 −0.9 0.0 0.7 1.0 0.78∗∗∗

POSTag

noun : grammatical 1.3 0.2 −0.3 0.1 −0.1 −0.12∗

noun : preposition 1.8 0.3 −0.2 −0.2 −0.3 −0.26∗∗∗

determiner : noun −0.8 −0.3 0.3 0.0 −0.1 0.14∗

grammatical : noun −1.0 −0.1 0.3 −0.2 −0.1 0.12∗

lexical : grammatical 0.4 −0.1 −0.4 0.3 0.3 0.19∗∗∗

nominal : preposition 1.8 0.3 −0.2 −0.2 −0.3 −0.33∗∗∗

past part. : wh pron. −0.4 −0.4 −0.2 0.2 0.9 0.43∗∗∗

SentLen median −0.8 −0.5 −0.1 0.4 0.9 0.52∗∗∗

WordLen
mean −0.8 −0.6 −0.3 0.7 0.7 0.54∗∗∗

proportion 5 letters −0.3 −0.4 −0.3 0.5 0.6 0.40∗∗∗
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 3: Features selected through a Spearman
rank correlation test and a stability selection pro-
cedure. All features are standardised to a Gaussian
scale and their average is reported per assessed
level. Lemma-based indices are marked with L.

and in particular lexical diversity features, which
is in line with previous studies (Crossley and Mc-
Namara, 2011; Hancke and Meurers, 2013; Vajjala
and Lõo, 2014; Pilán et al., 2016). Furthermore,
we find that the sentence length and word length,
as well as the average age of acquisition of the
words used by the learners display a strong posit-
ive correlation with the assessed CEFR level. We
also observe that the frequent use of B1 criterial
feature patterns are indicative of the learner writ-
ings from the B2 levels onwards. One surprising
observation, however, can be drawn from the ap-
parent positive correlation of lexical frequencies.
This could be explained by the fact that beginners
(A1 and A2) quite commonly display a use of L1
interference in their texts – as can be seen in the
use of the French caractères (“characters”) in Fig-
ure 3 – which are subsequently tagged as foreign
(infrequent) words.

Model Figure 3 illustrates the model architec-
ture used for the automated CEFR-based grading
of a short answer (initial A1 level and assessed
A2 level). Our system used the Scikit-learn lib-
rary (Pedregosa et al., 2011) for training an en-
semble learning approach via a soft-voting classi-
fier integrating a panel of five traditional models: a

Describe your hobbies. (at least 30 words)

My hobbies are: cooking, gardening, sewing, learning chinese (Mandarin),
play with my grandchildren. I also like to improve my English language for
example “Memrise” Chinese - English. With “Skritter” reproduce caractères in
Chinese.

initial level: A1

A2

Decision Tree Naive Bayes kNN Logistic Regression SVM

Voting Classifier

A2

A2 A1 A2 A1 A2

soft voting

Figure 3: Example of the ensemble learning ap-
proach to the automated scoring of short answers.

Gaussian Naive Bayes classifier, a CART Decision
Tree, a kNN classifier, a one-vs.-rest (OvR) Lo-
gistic Regressor and a OvR polynomial LibSVM
Support Vector Machine. The system was de-
veloped via a nested cross-validation procedure
and its hyperparameters were optimised via a two-
stage model selection procedure on the training
fold, performing a 10-fold grid search on the in-
dividual models first and then on the ensemble
method.

5 Results

5.1 Expert Grading

Reliability To measure the inter-rater reliability
of the assessed proficiency levels, we use Krip-
pendorff’s α with interval metric.4 Krippendorff’s
statistic suggests a strong agreement (α = .81;
.80 < α < .90) between our examiners, which en-
sures the reliability of the CEFR-labelled corpus.
The strong agreement is also reflected by the fact
that all three examiners gave the same proficiency
level (i.e. perfect agreement) to 44% of the texts
and that for 50% of the texts at least one pair of
examiners gave the same proficiency level (Table 4
on the following page). Only for 6% of the texts
do they seem to not agree at all. Furthermore, the
high agreement score for the interval metric indic-
ates that, in the cases where our examiners did not
perfectly agree on the target proficiency level, the
distance between the given levels was not large.

4Although we could have used Fleiss’ κ for comparing
the CEFR categories, we decided to use the former because it
enables us not only to compare the assessed levels on a scale,
but also to properly deal with missing values (cf. supra, “Im-
possible to evaluate”) instead of discarding them as would
Fleiss’ κ. We should also note that only two missing values
were observed for one examiner.
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initial level
agreement % A1 A2 B1 B2 C1 C2 all

perfect 43.8 19 29 28 25 22 8 131
partial 50.2 17 41 27 27 26 12 150

no 6.0 2 2 1 4 5 4 18
38 72 56 56 53 24 299

Table 4: Inter-examiner agreement scores.

Put differently, the examiners tended to disagree
more on adjacent proficiency levels (such as B1
and B2) than between levels at the extreme ends
of the scale (such as A1 and C2).

Grading difficulty and disagreement Al-
though we observe a strong human-human
agreement (HHA) between the three examiners,
we also noted their comments with respect to
the difficulty of the task of assigning a CEFR
level to a very short text. Indeed, for the A1 and
A2 levels (counting minimally 30 and 60 words
respectively) they frequently reported needing
more context to correctly assess the proficiency
level, in particular for those texts that displayed
“no errors” and were written in “mainly accurate
English”. This is illustrated in the few texts
where the initial A2 level seemed to have been
underestimated in favour of a B2 or C1 level.
We were therefore interested in examining what
characteristics define the texts that were difficult
to grade.

We measured the difficulty of grading a text on
the basis of the per-item observed disagreement
Dα
oi

on the label x given by coder c on item i
(5.1.1). We derived this measure by decomposing
Krippendorff’s formula for the observed disagree-
ment Dα

o (Artstein and Poesio, 2008, pp. 564-7) ,
which amounts to two times the per-item empirical
variance s2i .

Dα
oi

=
1

c(c− 1)

c∑
m=1

c∑
n=1

δinterval(xicm , xicn)

= 2s2i (5.1.1)

Interestingly, we find that, although the exam-
iners reported having difficulties evaluating the
CEFR level of the shortest answers, the length of
the answer was not significantly correlated with
the amount of per-item disagreement (Pearson’s
r = .04; p = .455) In fact, Pearson’s r as well as the
number of agreeing or disagreeing cases per initial
level (Table 4) show that the annotators tended to

acc. adj. acc. F1 macro RMSE α

Soft Voting .530± .115 .978± .040 .495± .142 .721± .124 .757
Decision Tree .504± .103 .946± .053 .438± .126 .802± .125 .713
kNN .500± .084 .972± .047 .403± .107 .758± .104 .690
Logistic Regression .462± .138 .958± .044 .422± .142 .807± .120 .717
Naive Bayes .486± .117 .952± .047 .487± .132 .802± .173 .742
SVM .496± .129 .977± .041 .451± .135 .750± .164 .737
baseline (prior) .378± .013 .824± .017 .110± .003 1.072± 0.031 −.010
baseline (stratified) .282± .041 .606± .024 .201± .046 1.524± 0.057 −.161
baseline (random) .191± .015 .484± .027 .163± .020 1.930± 0.058 −.131

Table 5: Performance of the system compared to a
set of baselines on 10-fold cross-validation.

disagree more on the longer ones, as most of the
texts where no agreement was observed were con-
cerned with the initial level ranging from the C1 to
C2 levels (min. 150 words).

Multiple semipartial Spearman correlation tests
were then carried out as a way of investigating
which complexity features might be characteristic
of the per-item grading difficulty D (as previously
defined by Dα

oi
), while controlling for text length

L (in number of words). We observed a num-
ber of significant effects with a small set of lex-
ical features, such as the overall lexical diversity
(rD(X.L) = .142; p < .05), the variation in use of
modifiers (rD(X.L) = .183; p < .01) and adjectives
(rD(X.L) = .182; p < .01), as well as the average
lexical likelihood (rD(X.L) = -.151; p < .01).

5.2 Automated Scoring
Performance The voting classifier described in
Section 4 achieves a good human-system agree-
ment5 (HSA) (α = .76, .67 < α < .80) with
respect to the answers’ assessed CEFR level ob-
tained by majority voting (Table 5). Although our
system did not surpass the strong HHA ceiling we
observed earlier (which amounts to α = .82 when
using a 5-point scale), the HSA of our ensemble
method still outperformed the HSA of its indi-
vidual classifiers. What is more, in cases where
there is a human-system disagreement, we find
that the output mainly differs by an adjacent level,
leading to an adjacent accuracy of 98% and an
RMSE of .7 on a scale of five (A1, A2, B1, B2
and C).

A Friedman test with a post-hoc Holm correc-
tion was then carried out as a means of com-
paring the performance of our voting classifier
with respect to the models it is composed of as
well as to the most performant baseline. Our
system achieved a significant gain in perform-

5The α values were computed by aggregating the predic-
tions on all 10 test folds and by comparing them to the true
labels obtained after majority voting.
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ance (RMSE) with respect to a prior baseline6

(FF = 4.865, p < .01, k = 6, α = .05). Although
the test did not reveal any other significant gain
beyond the one observed over the baseline, we
find that the system’s performance is comparable
to previous work for Swedish CEFR-based essay
grading where an F1 of .438 is attained on original
(not error-normalised) learner texts (Pilán et al.,
2016).

Nevertheless, we do observe a difficulty of at-
taining a perfect HSA with the system’s accuracy
peaking at 53%. Even though this result may seem
inferior to previous CEFR-based essay grading
systems (Vajjala and Lõo, 2014; Volodina et al.,
2016a), we should note that the data sets used in
these studies were slightly different from our data
set and mainly included longer texts graded on
either a 4-point scale (A2, B1, B2 and C1) (Vaj-
jala and Lõo, 2014; Pilán et al., 2016) or a 5-point
scale (A1, A2, B1, B2 and C1) (Volodina et al.,
2016a). Furthermore, we should also note the par-
allel between the difficulty of deriving the exact
CEFR level from the answers and the difficulty ex-
perienced by our human raters of achieving a per-
fect agreement (43.8%) (see Table 4 on the previ-
ous page).

However, linking the length of the answers with
the per-item human-system disagreement (cf. for-
mula 5.1.1 on the preceding page), we observe yet
again a non-significant correlation between both
(Pearson’s r = .07; p = .22). Thus, it seems that,
similarly to the expert graders, our system did not
particularly have a difficulty grading the shortest
answers. In addition, the system did not have any
particular difficulties in correctly predicting the
lowest CEFR levels either (Figure 4).

For enhancing our automated CEFR-based
scoring of short answers, the two following op-
tions could be explored. First, we could explore
the possibility of pinpointing and resolving the dif-
ficulties involved with attaining a high HHA and
HSA using more high-level learner features indic-
ative of the advanced CEFR levels. Second, simil-
arly to Pilán et al. (2016), we could examine the
effect of applying (automatic) learner error nor-
malisation on the system’s performance, provided
that the applied normalisation technique is accur-

6The prior baseline predicts the class with the maximum
prior probability, which is the B1 level (113 out of 299 obser-
vations; Figure 2 on page 5). The stratified baseline gives ran-
dom predictions based on the class distribution as observed
on the training set.

Figure 4: Receiver operating characteristic for the
voting classifier.

ate enough for correctly dealing with learner lan-
guage. However, we should note that the absence
of error normalisation did not seem to have im-
pacted the grading accuracy of the A1 and A2
levels (see Figure 4) where the presence of er-
rors is known to be particularly prevalent (Hul-
stijn, 2007).

Computer-assisted testing simulation To ex-
plore the possibility of using the system in a
computer-assisted setting, we simulated the reli-
ability of replacing one of the three examiners by
our system. Table 6 on the next page shows the
performance scores and reliability coefficients of
all possible configurations using a panel of three
examiners where we replaced one examiner with
a soft-voting short answer grader which was re-
trained on the examiner’s evaluations.

The good agreement scores for Krippendorff’s
α7 enable us to draw tentative conclusions as to
the possibility of using the system in a panel of
examiners. Replacing one examiner by our system
could therefore be possible, but the simulation did
not reveal any configurations (α = .75 on average)
that topped the strong agreement of having three
human examiners (α = .82 when using a 5-point
scale).

Interestingly, we also observed that the best res-
ults were achieved when training the system on ex-
aminerZ , who could be typed as being neither too
“demanding” nor too “lenient” compared to the
other examiners (Table 7 on the following page).
To perform this comparison, we ranked the exam-

7As before, the α values were computed by aggregating
the predictions on all 10 test folds, but now comparing them
to the individual labels given by the two other examiners.
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trained on X Y Z avg.
acc. .51 .37 .56 .48

adj. acc. .97 .84 .99 .93
F1 .48 .33 .52 .44

RMSE .77 1.05 .67 .83

agreeing with (%)
( Y
Z
) ( X

Z
) ( X

Y
)

perfect 33.78 31.42 34.11 33.10
partial 60.54 61.49 60.87 60.97
HHA 47.51 53.85 42.86 48.07
HSA 52.49 46.15 57.14 51.93

no 5.69 7.09 5.02 5.93
Krippendorff’s α .76 .74 .75 .75

Table 6: Reliability of replacing one exam-
iner with the system. The partial agreement
scores are further broken down into percentages
per human-human agreement (HHA) and human-
system agreement (HSA).

examiner average rank
X 1.81
Z 1.96
Y 2.23

rank 1: gave the lowest level (“demanding”)
rank 2: gave neither one, or all scores tied
rank 3: gave the highest level (“lenient”)

Table 7: Comparative ranking of the examiners ac-
cording to their evaluations.

iners according to their evaluation for each text
and used ‘average’ ranking for tied labels (i.e. for
perfect or pairwise agreement).

Moreover, it appears that training the system on
examiner Z even bettered the performance of the
voting classifier trained on the data labelled by the
entire panel of examiners (see Table 5 on page 7).
However, for future endeavours, we argue that we
should not solely rely on such idiosyncratic eval-
uations merely because they enhance a system’s
performance – however appealing that may be –
and that we should therefore continue to use the
labelled data obtained via majority voting.

6 Conclusion

In this paper, we compared human and auto-
mated scoring of short answers using the Common
European Framework of Reference (CEFR). For
this purpose, we compiled a learner corpus of short
answers, written by non-native learners of English
and evaluated by a panel of three certified Cam-
bridge examiners, and which will be made avail-
able for non-commercial use. Furthermore, we de-

veloped a soft-voting CEFR-based classifier based
on a set of traditional linguistic complexity fea-
tures as well as some more specific L2 complexity
features.

We obtained positive results, although more
work is needed to further examine the difficulties
involved with predicting the CEFR written profi-
ciency level from short texts. Indeed, our find-
ings showed that the shortness of the answer is not
necessarily correlated with the amount of human-
human or human-system disagreement. Yet, our
results were inconclusive as to what indicators
could explain the difficulty of grading a short an-
swer according to the CEFR scale.

We therefore propose to continue investigating
the influence of more advanced L2 complexity fea-
tures on explaining the intricacy involved with the
current task. As regards our system, we propose
to examine the impact of error normalisation on
its performance. Finally, other aspects associated
with the task still remain to be considered as well,
such as the replication of the results to other tar-
get L2 languages as well as to groups with more
diverse L1 backgrounds.
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Abstract

The field of grammatical error correction
(GEC) has made tremendous bounds in the
last ten years, but new questions and obsta-
cles are revealing themselves. In this posi-
tion paper, we discuss the issues that need
to be addressed and provide recommen-
dations for the field to continue to make
progress, and propose a new shared task.
We invite suggestions and critiques from
the audience to make the new shared task
a community-driven venture.

1 Introduction

In the field of grammatical error correction (GEC),
the Helping Our Own shared tasks in 2011 (Dale
and Kilgarriff, 2011) and 2012 (Dale et al., 2012),
and then the CoNLL shared tasks of 2013 (Ng
et al., 2013) and 2014 (Ng et al., 2014) marked
a sea change. For the first time there were public
datasets, most notably the NUS Corpus of Learner
English (NUCLE; Dahlmeier et al., 2013), and
evaluation metrics, of which the most commonly
used to date is M2 (Dahlmeier and Ng, 2012). This
has allowed researchers from other fields, such
as machine translation, to enter GEC more eas-
ily. It has also enabled new developments, with
many papers published on metrics, new algorithms
(most recently neural methods), and occasionally
new datasets.

Even with the accelerated progress in GEC,
problems yet remain in the field. The use of spe-
cific datasets may be GEC’s worst enemy, as sys-
tem and even evaluation metric development rely
too heavily on the NUCLE test set. While prob-
ably one of the most important contributions to
the field’s development to date, the lack of pub-
licly available alternatives has caused some over-
optimization. Other issues have also gone undis-

cussed. For example, nearly all work that has been
published in the NLP community has focused on
standalone systems, and very few investigate their
impact on downstream users, except, e.g., Nagata
and Nakatani (2010); Chodorow et al. (2010).

In this short paper, we take stock of the current
state of GEC (§2) and its limitations (§3), and out-
line where we believe the field should be five years
from now (§4). We finish with a recommendation
for a new community-driven shared task that will
help the field progress even further (§5). We look
forward to discussing this proposal with the com-
munity and to refine a shared task for 2018.

2 GEC: A Quick Retrospective

A complete retrospective is outside the scope of
this paper and thus we focus on two key aspects of
the field: For a more detailed review of the field,
we refer the reader to Leacock et al. (2014).

2.1 Datasets
There are several error-annotated corpora, and for
the purposes of this paper, we only focus on the
most recent public datasets. The size and char-
acteristics of each corpus is summarized in Ta-
ble 1. The most frequently used corpus for GEC
is NUCLE, which was the official dataset of the
2013 and 2014 shared tasks. It is a collection of
essays written by students at the National Univer-
sity of Singapore (Dahlmeier et al., 2013). The
test set and system results from the most recent
shared task were released to the community (Ng
et al., 2014), and have been the focus of recent
work on automatic metrics (see §2.2). Addition-
ally, this test set has been augmented with eight
additional annotations from Bryant and Ng (2015)
and eight from Sakaguchi et al. (2016).

The Cambridge Learner Corpus (CLC) contains
a broader representation of native languages than
the NUCLE, however only the First Certificate in
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Num. Num. Sents. Err. type Fluency Err. span Diverse Diverse Diverse Native
Corpus refs. sent. changed labeled edits >1 sent. proficiency topic L1 speakers
NUCLE 59k 2 38% 3 (7) 3 7 7 7 7
FCE 34k 1 62% 3 7 3 3 3 3 7
Lang-8 2.5M ≥1 42% 7 3 3 3 3 3 7
AESW 1.2M 1 39% 7 7 3 7 7 3 3 + 7
JFLEG 1.5k 4 86% 7 3 7 3 3 3 7

Table 1: GEC corpora available for free (for research purposes) and desired properties, identified in §3.1. 3 and 7 indicate
whether the corpus exhibits each property. Fluency edits for the NUCLE test set were added by Sakaguchi et al. (2016).

English (FCE) portion is publicly available (Yan-
nakoudakis et al., 2011). The FCE is approxi-
mately the same size as NUCLE and was used for
the 2012 shared task. However it has not been
used to the same extent as NUCLE, presumably
because it lacks multiple annotations and the 2012
shared task system outputs were not released.

All of the corpora described above have been
annotated with spans of text containing an error
and assigned an error code. Unlike these, the
Lang-8 Learner Corpora Corpus of Learner En-
glish (Tajiri et al., 2012) is a parallel set of original
and corrected sentences from lang-8.com, an
online community of language learners who post
text that is corrected by other users. It is also
the largest public GEC corpora, with more than
2 million English sentences.1 Another large cor-
pus currently available was released for the first
Automatic Evaluation of Scientific Writing shared
task (AESW; Daudaravicius et al., 2016). Unlike
the other corpora, it contains scientific writing by
native and non-native English speakers, corrected
by professional editors. Because the writers are
highly proficient, there is a lower diversity of er-
rors than the other corpora. More than half of the
errors are related to punctuation (Flickinger et al.,
2016), which compose less than 7% of NUCLE
errors.

Finally, the JHU FLuency-Extended GUG cor-
pus (JFLEG) is a small dataset for tuning and eval-
uating GEC systems. 1.5k sentences are taken
from the GUG corpus (Heilman et al., 2014),
which labels sentences with an ordinal grammati-
cality score. In JFLEG, each sentence is corrected
four times for grammaticality and fluency (Sak-
aguchi et al., 2016).

2.2 Evaluation
Precision, recall, and F-score have been used to
evaluate GEC systems that correct targeted er-
ror types. Three additional evaluation metrics

1Because of noise and implementation differences in sen-
tence extraction, the size varies from 2–2.5 million sentences.

have been proposed for GEC: MaxMatch (M2;
Dahlmeier and Ng, 2012), I-measure (Felice and
Briscoe, 2015), and GLEU (Napoles et al., 2015).
The first two metrics compare the changes made
in the output to error-coded spans of the refer-
ence corrections. M2 was the metric used for
the 2013 and 2014 CoNLL GEC shared tasks (Ng
et al., 2013, 2014). It captures word- and phrase-
level edits by building an edit lattice and calcu-
lating an F-score over the lattice. I-measure (IM)
is based on token-level alignment-based accuracy
among the source, hypothesis, and gold-standard.
IM considers the distinction between “do-nothing
(already grammatical) baseline” and systems that
only propose wrong corrections (i.e., make the
source sentence worse). Unlike these two ap-
proaches, GLEU does not need error-coded refer-
ences (Napoles et al., 2015). Based on BLEU (Pa-
pineni et al., 2002), it computes n-gram precision
of the system output against reference sentences,
and additionally penalizes n-grams in the hypoth-
esis that should have been corrected but failed.

3 Limitations

3.1 Problems with Datasets

As we saw in the previous section, the major-
ity of the commonly used datasets are limited to
students, specifically college-level ESL writers.
To date, the overwhelmingly majority of publica-
tions benchmark on NUCLE, save for a few ex-
ceptions such as Cahill et al. (2013) and Rei and
Yannakoudakis (2016) which means that research
efforts are becoming over-optimized for one set.
This lack of diversity means that it is not clear how
systems perform on other genres under different
training conditions. We should look to the pars-
ing community as a warning sign. For well over a
decade, the field was heavily focused on improv-
ing parsing accuracy on the Penn Treebank (Mar-
cus et al., 1993), but robustness was greatly im-
proved with the advent of Ontonotes (Hovy et al.,
2006) and the Google Web Treebank (Petrov and
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GLEU IM [-100, M2 [0, 100]
System [0,100] 100] P R F0.5

“a” 0.2 0.0 28.4 31.3 28.9
“a a” 0.6 0.0 28.7 31.8 29.3
“a a a” 1.6 0.0 28.7 32.0 29.4
Source 57.4 0.0 100.0 0.0 0.0
CAMB14 64.3 -5.3 39.7 30.1 37.3
CUUI14 64.6 -2.2 41.8 24.9 36.8
AMU14 64.6 -2.5 41.6 21.4 35.0
Src>Game 3 7 3 7 7
Src<Sys 3 7 7 3 3

Table 2: Metric scores of three artificially contrived systems
(Game), input source sentences (Src), and top 3 system out-
puts (Sys) on CoNLL14 data. The bottom two rows show
whether each metric scores the systems better than Game or
worse than Source. Humans judge all systems be better than
over Source.

McDonald, 2012).
Another issue is training data size. The sis-

ter field of machine translation (MT) usually has
datasets in the orders of millions or even tens
of millions of sentence pairs. The largest GEC
datasets barely approach that figure, with 2.5 mil-
lion sentences at a maximum, a number which in-
cludes sentences that were not corrected.

Table 1 summarizes the strengths and weak-
nesses of the most commonly used GEC corpora
across different properties ranging from size to
diversity in native language (L1). The most no-
table weakness across corpora is the lack of mul-
tiple reference corrections. NUCLE contains two
corrections per sentence and JFLEG 4. M2 and
GLEU scores increase with more references but
at a diminishing rate (Bryant and Ng, 2015; Sak-
aguchi et al., 2016). Further investigation is war-
ranted to determine what an ideal number of refer-
ences is, given the trade off between cost and relia-
bility. Some corpora contain little diversity in pro-
ficiency, topic, and/or native language of the writ-
ers (namely NUCLE and AESW), however AESW
is the only corpus to contain sentences by native
English speakers.

3.2 Problems with Evaluation

The 2014 CoNLL shared task has enabled, for the
first time, the development of evaluation metrics.
These metrics are evaluated by comparing their
ranking of the shared task systems with the rank-
ing done by human annotators. Sakaguchi et al.
(2016) showed that GLEU could rank systems
closer to a human ranking than M2 and IM, and
a higher correlation could be found when com-
bining GLEU with a reference-less fluency met-

ric (Napoles et al., 2017). However, it is impor-
tant to take these results with a grain of salt—all
benchmarking of the metrics was done with the
CoNLL 2014 systems and data, and it remains to
be seen if this ranking would hold on other, larger
datasets.

Another issue with the metrics is the number
of references available for comparison. As in
machine translation, the more references (human-
generated gold-standard corrections) one has,
the better one can evaluate a system. The
CoNLL 2014 test set has 18 references annotated,
but one can find examples where a system pro-
duces a correction which is not reflected in the ref-
erences. This gets more complicated when human
raters feel it is necessary to rewrite a sentence.

A third issue is that no metric directly measures
meaning preservation. This means that a system
could produce a more fluent version of the original
but accidentally change one word, and that could
change the meaning of the whole sentence. For
example, if a system accidentally corrected doc-
umentary to document in “The documentary gave
a nice summary of global warming.” By current
metrics, that error would have the same penalty as
a minor spelling mistake.

Finally, the most commonly used GEC met-
ric, M2, has a serious weakness, which has been
noted in earlier papers (Felice and Briscoe, 2015;
Sakaguchi et al., 2016; Bryant et al., 2017). The
phrasal alignments under-penalize a sequence of
incorrect tokens, and to illustrate how troubling
this is, we tested a series of dummy systems,
where each system produces the same sentence re-
gardless of input (the sentences produced by each
system are a, a a, and a a a). Table 2 shows their
scores on the CoNLL 2014 test set evaluated on
the official NUCLE references (without alterna-
tives), compared to the top 3 systems in the shared
task, CAMB14 (Felice et al., 2014), CUUI14 (Ro-
zovskaya et al., 2014), and AMU14 (Junczys-
Dowmunt and Grundkiewicz, 2014). The reader
will notice that GLEU and IM score these sen-
tences at or near zero, however according to M2,
the dummy system that only returns the string “a
a” scores higher than 7/13 systems participating in
the 2014 Shared Task. The IM score is also prob-
lematic in that the gamed sentences have the same
score as the source.
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Metric score (rank)

GLEU IM M2

System Sentence [0,100] [-100,100] [0,100]

Source In both advertisements is said that these tooth pastes will make your
teeth briliant and brighter .

15.7 (4) 0.0 (4) 0.0 (5)

Reference
e

Both advertisements
e

say that the toothpaste will make your teeth
brilliant and brighter .

50.7 (1) 17.4 (3) 65.2 (3)

AMU16 &
NUS16

In both advertisements is said that these tooth pastes will make your
teeth briliant and brighter .

15.7 (4) 0.0 (4) 0.0 (5)

CAMB14 In both advertisements is said that these tooth pastes will make your
teeth brilliant and brighter .

35.5 (3) 100.0 (1) 83.3 (1)

CAMB16 In both advertisements it is said that these tooth problems will make
your teeth brilliant and brighter .

39.5 (2) 56.1 (2) 71.4 (2)

Dummy a a a . 2.9 (5) -47.7 (5) 52.6 (4)

Table 3: An original source sentence and candidate corrections, along with the score of each sentence from different metrics.
Changed or inserted spans are underlined and

e
indicates deletions.

4 Looking into the Future

In this section we outline our recommendations for
how the field should develop.

4.1 Data

As the world’s communication is not limited to
college-level essays, it is important that we have
datasets which better represent as much breadth
as possible. Ideally, datasets should span differ-
ent genres (such as emails, blog posts, and official
documents) and include content from both native
and non-native speakers, as well as from different
proficiency levels. All of these changes will en-
able the field to better assess how we are helping
more of the world’s writers under different condi-
tions, and also enable one to test adaptation be-
tween domains.

4.2 Evaluation

We envision evaluation metrics which check that
corrections are not only grammatically valid, but
also check that the corrections are native-sounding
and preserve the original meaning or intent of the
writer. Future metrics should be easy to compute
and be interpretable. For instance, a range be-
tween -1 and 1 may be preferred (like IM uses),
since it is possible a suggested set of corrections
could produce a sentence which is worse than the
original. If multiple references are used, metrics
should assign credit to corrections which match
different references in different places, assuming
the outcome is overall coherent. In addition, most
(if not all) evaluation schemes to date have focused
on the sentence as the minimal unit. It would be

good to take the entire document into account and
allow for more global rewrites, such as consistent
tense.

Ultimately, a metric should say whether or not
a system has attained the same level of perfor-
mance as a human judge. One way of doing this
is through a GEC Turing Test, where system out-
puts are blindly judged alongside human correc-
tions of the same sentences. If human adjudicators
think the system outputs are indistinguishable in
quality from the human corrections (for example,
given a set of criteria such as being good correc-
tions, meaning preserving and native-sounding)
then that is a very strong signal that GEC has at-
tained human-level performance.

To illustrate the shortcomings of current met-
rics, Table 3 contains a JFLEG sentence corrected
by current leading systems (AMU16 (Junczys-
Dowmunt and Grundkiewicz, 2016); NUS16
(Chollampatt et al., 2016); CAMB16 (Yuan and
Briscoe, 2016)) and the automatic metric scores.2

Notice that the CAMB16 sentence, which changes
tooth pastes→ tooth problems, is ranked the high-
est system output by GLEU and the second highest
by IM and M2. All metrics score it higher than the
unchanged Source sentence. Another issues evi-
denced in the table is that IM and M2 score the im-
perfect correction (CAMB14) as better than Refer-
ence; and according to M2, the Dummy output is
better than Source.

We believe that the GEC field should take

2All metrics run with default settings. Reference is evalu-
ated against the other 3 references; other sentences are evalu-
ated against all 4 references.
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notes from the Workshop on Machine Translation
(WMT) (Bojar et al., 2016). There the participants
in the evaluation shared tasks are also responsible
for contributing system ranking judgments. This
makes the whole effort more community-driven
and takes the pressure off one group from having
to supply all annotations.

4.3 Consensus on Goals and Applications
As a corollary to data and metrics, the end-goal
of GEC also needs to be refined within the com-
munity. Initial approaches to GEC seemed to fo-
cus on providing feedback to English language
learners where specific error types would be tar-
geted and feedback would be given in terms of
detection or possible corrections. The work was
also motivated by concurrent work in using NLP
for automatic essay scoring (for example, Attali
and Burstein (2006)). Chodorow et al. (2012)
noted several other applications for GEC: improv-
ing overall writing quality for both native and non-
native writers, assistive language learning, and
applications within NLP (such as post-editing in
MT). More recently the field has drifted to “whole
sentence GEC” using statistical or neural MT ap-
proaches. In this situation, the writer simply gets
a complete rewrite of their sentence, which may
be useful as an instructional tool in some circum-
stances, but not all.

There is no consensus on what the focus appli-
cation(s) should be. Which application determines
which methods and which evaluation metrics one
uses. For example, if one wants to provide feed-
back to language learners, then a high-precision,
interpretable method is preferred. Conversely, if
the application is simply to automatically clean up
one’s writing without any feedback, then a whole
sentence approach may be preferred. Very few pa-
pers delve into error detection and correction for
goals other than whole-sentence error correction
or targeted feedback for ESL writers. Datasets and
metrics should be created with a specific goal in
mind. Thus, the field should reassess what are the
goals and how we evaluate with respect to these
goals.

5 Proposal for a New Shared Task
We believe it is time for another shared task in the
field, this one designed with consideration the field
should be several years from now. The CoNLL
shared tasks were instrumental in unifying the
field with a common benchmark corpus and met-

ric, and the AESW shared task provided data from
a new domain to evaluate on. We recommend the
following:
• Data: A new corpus for training and eval-

uation that spans different genres. We have
already begun collecting conversational data
from native and non-native writers and from
genres other than essays, such as emails. Our
aim is to construct a corpus larger than the
NUCLE to support the development of data-
hungry methods such as neural MT.
• Annotation: The data is corrected for flu-

ency with crowdsourcing as in Sakaguchi
et al. (2016) which is a cheap and efficient
way of collecting annotations of reasonable
quality. Error types can be automatically
tagged using a method such as that described
in Bryant et al. (2017)
• Metric Evaluation: Borrowing from the

WMT community, the shared task should
also be a venue to improve automatic GEC
evaluation. Participants will provide judg-
ments on system rankings.

We invite discussion from the community
and seek others to help contribute data, an-
notations and other resources to make this a
community-driven event. Our goal is to host
a shared task in 2018. We believe that this
type of collaboration has made the WMT eval-
uations a success, and will similarly benefit
GEC. We have set up a public mailing list
where others can post their comments and sug-
gestions: https://groups.google.com/
forum/#!forum/gec-sharedtask.

6 Conclusions

The goal of this paper is to laud the progress that
the GEC field has made, but also highlight the lim-
itations that must be addressed for the field to grow
further. The reliance on a few narrow datasets is
problematic as it has a major impact on system
development and metric development, as well as
robustness when applying these approaches in the
real world. Our concern is that unless data and
metrics are improved, it will be hard to assess the
value of new algorithms optimized for a small set
of datasets and metrics. We list a recommendation
for a new shared task to fuel discussion offline as
well as at the BEA12 Workshop in Copenhagen.3

3https://www.cs.rochester.edu/
˜tetreaul/emnlp-bea12.html
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Abstract

Automated methods for essay scoring
have made great progress in recent years,
achieving accuracies very close to human
annotators. However, a known weakness
of such automated scorers is not taking
into account the semantic relevance of
the submitted text. While there is exist-
ing work on detecting answer relevance
given a textual prompt, very little previ-
ous research has been done to incorpo-
rate visual writing prompts. We propose a
neural architecture and several extensions
for detecting off-topic responses to visual
prompts and evaluate it on a dataset of
texts written by language learners.

1 Introduction

Evaluating the relevance of learner essays with re-
spect to the assigned prompt is an important part
of automated writing assessment (Higgins et al.,
2006; Briscoe et al., 2010). Existing systems are
able to assign high-quality assessments based on
grammaticality (Yannakoudakis et al., 2011; Ng
et al., 2014), but are known to be vulnerable to
memorised off-topic answers which can be a crit-
ical weakness in high-stakes testing. In addi-
tion, students who have limited relevant vocabu-
lary may try to shift the topic of their answer in
a more familiar direction, which most automated
assessment systems are not able to capture. So-
lutions for detecting topical relevance can help
prevent these weaknesses and provide informative
feedback to the students.

While there is previous work on assessing the
relevance of answers given a textual prompt (Pers-
ing and Ng, 2014; Cummins et al., 2015; Rei
and Cummins, 2016), very little research has been
done to incorporate visual writing prompts. In

this setting, students are asked to write a short de-
scription about an image in order to assess their
language skills, and we would like to automati-
cally evaluate the semantic relevance of their an-
swers. An intuitive method for comparing multi-
ple modalities is to map them into a shared dis-
tributed space – semantically similar entities will
get mapped to similar vector representations, re-
gardless of the information source. Frome et al.
(2013) used this principle to improve image recog-
nition, by first training separate visual and textual
components, and then mapping the images into
the same space as word embeddings. Ma et al.
(2015) performed information retrieval tasks with
a related model based on convolutional networks.
Klein et al. (2015) learned to associate word em-
beddings to images using Fisher vectors.

In this paper, we start with a similar architec-
ture, based on the approach used by Kiros et al.
(2014) for image caption generation, and propose
modifications that make the model more suitable
for discriminating between relevant and irrelevant
answers. The framework uses an LSTM for text
composition and a pre-trained image recognition
model for extracting visual features. Both rep-
resentations are mapped to the same space and
a prediction is made about the relevance of the
text given the image. We propose a novel gat-
ing component that decides which parts of the im-
age should be considered for the current similarity
calculation, based on first reading the input sen-
tence. Application of dropout to word embed-
dings and visual features helps increase robust-
ness on an otherwise noisy dataset and assisted
in regularising the model. Finally, the standard
loss function is replaced with a version of cross-
entropy, encouraging the model to jointly optimise
over batches. We evaluate on a dataset of short an-
swers by language learners, written in response to
visual prompts and our experiments show perfor-
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mance improvements for each of the model modi-
fications.

2 Relevance Detection Model

Automated methods for scoring essays and short
answers have made great progress in recent years
(Yannakoudakis et al., 2011; Sakaguchi et al.,
2015; Alikaniotis et al., 2016; Hussein et al.,
2017), achieving accuracies very close to human
annotators. However, a known weakness of such
automated scorers is not taking into account the
topical relevance of the submitted text. Students
with limited language skills may attempt to shift
the topic of the response in a more familiar di-
rection, which automated systems would not be
able to detect. In a high-stakes examination frame-
work, this weakness could be further exploited by
memorising a grammatically correct answer and
presenting it in response to any prompt. Being
able to detect topical relevance can help prevent
such weaknesses, provide useful feedback to the
students, and is also a step towards evaluating
more creative aspects of learner writing. While
there is existing work on detecting answer rele-
vance given a textual prompt (Persing and Ng,
2014; Cummins et al., 2015; Rei and Cummins,
2016), only limited previous research has been
done to extend this to visual prompts. Some re-
cent work has investigated answer relevance to vi-
sual prompts as part of automated scoring systems
(Somasundaran et al., 2015; King and Dickinson,
2016), but they reduced the problem to a textual
similarity task by relying on hand-written refer-
ence descriptions for each image without directly
incorporating visual information.

Our proposed relevance detection model takes
an image and a sentence as input, and assigns a
score indicating how relevant the image is to the
text. Formulating this as a scoring problem instead
of binary classification allows us to treat the model
output as a confidence score, and the classification
threshold can be selected at a later stage based on
the specific application.

Kiros et al. (2014) describe a supervised method
for mapping an image and a sentence into the same
space, which allows them to generate similar vec-
tor representations for images that have semanti-
cally similar descriptions. We base our approach
for multimodal relevance scoring on this architec-
ture, and introduce several modifications in order
to adapt it to the task of discriminating between

relevant and irrelevant textual answers.
The outline of our framework can be seen in

Figure 1. The input sentence is first passed
through a Long Short-Term Memory (LSTM,
Hochreiter and Schmidhuber (1997)) component,
mapping it to a vector representation u. The vi-
sual features for the input image are extracted us-
ing a model trained for image recognition. The vi-
sual representation is then conditioned on the input
sentence and mapped to a vector representation v.
Both u and v are given as input to a function that
predicts a confidence score for the answer being
relevant to the image. In the next sections we will
describe each of these components in more detail.

2.1 Text Composition

The input to the text composition component is
a tokenised sentence. We first map these tokens
to an embedding space, resulting in a sequence of
vector representations:

[w1, w2, ..., wN ] (1)

Next, we apply dropout (Srivastava et al., 2014)
to each of the word embeddings in the sentence.
Dropout is a method of regularising neural net-
works, shown to provide performance imrove-
ments. Neuron activations in a layer are set to zero
with probability p, preventing the model from ex-
cessively relying on the presence of specific fea-
tures. The process can also be thought of as train-
ing a randomly constructed smaller network at
each training iteration, resulting in a full combina-
tion model. At test time, all the values are retained,
but scaled with (1 − p) to compensate for the
difference. While dropout is commonly applied
to weights inside the network (Tai et al., 2015;
Zhang et al., 2015; Kalchbrenner et al., 2015;
Kim et al., 2016), there is also some recent work
that deploy dropout directly on the word embed-
dings (Rocktäschel et al., 2016; Chen et al., 2016).
The relevance scoring model needs to handle texts
from different domains, including error-prone sen-
tences from language learners, and dropout on the
embeddings allows us to introduce robustness into
the training process.

We use an LSTM component for processing the
word embeddings, building up a sentence repre-
sentation. It is similar to a traditional recurrent
neural network, with specialised gating functions
that allow it to dynamically decide which informa-
tion to carry forward or forget. The LSTM calcu-
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Figure 1: The outline of the relevance detection model. The input sentence and image are mapped
to vector representations u and v using modality-specific functions. These vectors are then given to a
relevance function which assigns a real-valued score based on their similarity.

lates a hidden representation at word n based on
the current word embedding and the previous hid-
den representation at time step n− 1:

hn = LSTM(wn, hn−1) (2)

The last hidden representation hN is calculated
based on all the words in the sequence, thereby al-
lowing the model to iteratively construct a seman-
tic representation of the whole sentence. We use
this vector u = hN to represent a given input sen-
tence in the relevance scoring model. Since word-
level processing is not ideal for handling spelling
errors in learner texts, future work could also in-
vestigate character-based extensions for text com-
position, such as those described by Rei et al.
(2016) and Wieting et al. (2016).

2.2 Image Processing
In order to map images to feature vectors, a pre-
trained image recognition model is combined with
a supervised transformation component. We make
use of the BVLC GoogLeNet image recognition
model, which is based on an architecture described
by Szegedy et al. (2015) and provided by the Caffe
toolkit (Jia et al., 2014). The GoogLeNet is a 22-
layer deep convolutional network, trained on Ima-
geNet (Deng et al., 2009) data to detect 1,000 dif-
ferent image classes.

An input image is passed through the network
and a probability distribution over the possible
classes is produced. Instead of using the out-
put layer, we extract the neuron activations at the
second-to-last layer in the network – this takes ad-
vantage of all the visual feature processing on var-
ious levels of the network, but retains a more gen-
eral distributed representation of the image com-
pared to using the output layer. Similarly to the
word embeddings in textual composition, we ap-
ply dropout with probability p directly to the im-
age vectors – this introduces variance to the other-

wise limited training data, and prevents the model
from overfitting on specific features.

The previous process maps the image to a 1024-
dimensional vector x, which contains useful visual
information but is not optimised for the relevance
scoring task. We introduce a gating component
which modulates the image vector, based on the
textual vector representation from the input sen-
tence. A vector of gating weights is calculated as a
nonlinear weighted transformation of the sentence
vector u:

z = σ(uWz + bz) (3)

where Wz is a weight matrix, bz is a bias vector,
and σ() is the logistic activation function with val-
ues between 0 and 1. A new image representation
x′ is then calculated by applying these element-
wise weights to the visual vector x:

x′ = z ∗ x (4)

where ∗ indicates an element-wise multiplication.
This architecture allows the model to first read the
input sentence, determine what to look for in the
corresponding image, and block out irrelevant in-
formation in the image vector. We also disconnect
the backpropagation between vector u and the gat-
ing weights z – this forces the model to optimise
u only for score prediction, leaving Wz and bz to
specialise on handling the gating.

Finally, we pass the image representation
through a fully connected non-linear layer – this
allows the model to transform the pre-trained
GoogLeNet space to a representation that is spe-
cialised for relevance scoring:

v = tanh(x′Wx) (5)

whereWx is a weight matrix that is optimised dur-
ing training, and v is the final image vector that is
used as input to the relevance scoring component.
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2.3 Scoring and optimisation
Based on vector representations for the input sen-
tence (u) and image (v) we now want to assign a
score which indicates how related they are. Kiros
et al. (2014) used the cosine measure as the sim-
ilarity function – it measures the angle between
two vectors, returning a value in the range [−1, 1],
and is commonly used for similarity calculations
in language processing:

scorecos(u, v) = cos(u, v) =
uv

|u||v| (6)

The model can then be optimised to predict a
high score for image-sentence pairs where the im-
age and sentence and related, and a low score for
randomly constructed pairs. The loss function is
a hinge loss with a margin m; if the score differ-
ence between the positive and negative example is
greater than m, then no training is required, other-
wise the error is backpropagated and weights are
updated accordingly:

Losshinge =
∑
i∈I

∑
j∈J(i)

max(−scorecos(ui, vi)

+scorecos(uj , vi) +m, 0)
(7)

where I is the set of related image-text pairs for
training, and J(i) is a set of randomly constructed
pairs for entry i. When generating the negative ex-
amples, we make sure the resulting set J(i) does
not contain any examples with the same image as
i – otherwise the model would accidentally opti-
mise related examples towards a low score.

In this work we propose using an alternative
scoring function, in order to help discriminate be-
tween the answers. We first replace the cosine sim-
ilarity with a dot-product:

scoredot(u, v) = uv (8)

Next, we create a scoring function by calculat-
ing a probability distribution over the current mini-
batch of examples:

scoreexp(ui, vi) =
exp(scoredot(ui, vi))

Z
(9)

Z = exp(scoredot(ui, vi))

+
∑

j∈J(i)

exp(scoredot(uj , vi)) (10)

images sentences

TRAIN 29,000 145,000
DEV 1,014 5,070
TEST 1,000 5,000

Table 1: Number of images and descriptions in the
Flickr30k dataset.

The model is then optimised for cross-entropy,
which is equivalent to optimising the negative log-
likelihood:

Lossce = −
∑
i∈I

log(scoreexp(ui, vi)) (11)

The transition from cosine to dot-product is re-
quired in order to facilitate the new scoring func-
tion. In this setting, scoreexp(ui, vi) acts as a soft-
max layer, requiring the input values to be un-
bounded for functioning correctly, whereas cosine
would restrict values to a range between -1 and 1.

The new scoring function based on softmax en-
courages the model to further distinguish between
relevant and irrelevant images. While the hinge
loss function is also optimised in minibatches,
it independently optimises the relevance score of
each training pair, whereas softmax connects the
scores for all the pairs into a probability distri-
bution. When this distribution is optimised using
cross-entropy, it specifically focuses more on in-
stances that incorrectly have relatively high scores
compared to other pairs in the dataset. In ad-
dition, optimising towards a larger score for the
known correct example also reduces the scores for
all other pairs in the batch.

3 Evaluation Setup

Given an image and a text written in response
to this image, the goal of the system is to as-
sign a score and return a decision about the rel-
evance of this text. We evaluate the framework
on an experimental dataset collected by the En-
glish Profile1, containing 543 answers written by
language learners in response to visual prompts in
the form of photographs. As part of the instruc-
tions, the students were able to select the image
that they wanted to write about, and were then free
to choose what to write. The length of the col-
lected answers ranges from 1 to 44 sentences.

1http://www.englishprofile.org/
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This dataset contains real-world examples for
the task of visual relevance detection, and there-
fore also proposes a range of challenges. The an-
swers are provided by students in various stages
of learning English, which means the texts con-
tain numerous writing errors. Spelling mistakes
prevent the model from making full use of word
embeddings, and previously unseen grammatical
mistakes will cause trouble for the LSTM compo-
sition function. The students have also interpreted
the open writing task in various different ways
– while some have answered by describing the
content of the image, others have instead talked
about personal memories triggered by the image,
or even created a short fictional story inspired by
the photo. This has led to answers that vary quite
a bit in writing style, vocabulary size and sentence
length.

Ideally, we would like to train the model on ex-
amples where pairs of images and sentences are
specifically annotated for their semantic relevance.
However, since the collected dataset is not large
enough for training neural networks, we make
use of the Flickr30k (Young et al., 2014) dataset
which contains implicitly relevant pairs of images
and their corresponding descriptions. Flickr30k
is an image captioning dataset, containing 31,014
images and 5 hand-written sentences describing
each image. We use the same splits as Karpathy
and Li (2015) for training and development; the
dataset sizes are shown in Table 1. During train-
ing, the model is presented with 32 sentences and
their corresponding images in each batch, mak-
ing sure all the images within a batch are unique.
The loss function from Section 2.3 is then min-
imised to maximise the predicted scores for the
32 relevant pairs, and minimise the scores for the
32 ∗ 32− 32 = 992 random combinations.

Theano (Bergstra et al., 2010) was used to im-
plement the neural network model. The texts were
tokenised and lowercased, and sentences were
padded with special markers for start and end po-
sitions. The vocabulary includes all words that ap-
peared in the training set at least twice, plus an ex-
tra token for any unseen words. Words were repre-
sented with 300-dimensional embeddings and ini-
tialised with the publicly available vectors trained
with CBOW (Mikolov et al., 2013). All other pa-
rameters were initialised with random values from
a normal distribution with mean 0 and standard de-
viation 0.1.

ACC AP P@50

Random 50.0 50.0 50.0

LSTM-COS 68.2 71.6 81.0
+ gating 69.6 74.6 84.4
+ cross-ent 71.1 79.0 92.2
+ dropout 75.4 81.9 89.8

Table 3: Results on the dataset of short answers
written by language learners in response to visual
prompts. Reporting accuracy, average precision,
and precision at rank 50.

We trained for 300 epochs, measuring perfor-
mance on the development set after every full pass
over the data, and used the best model for evaluat-
ing on the test set. The parameters were optimised
using gradient descent with the initial learning rate
at 0.001 and the ADAM algorithm (Kingma and Ba,
2015) for dynamically adapting the learning rate
during training. Dropout was applied to both word
embeddings and image vectors with p = 0.5. In
order to avoid any outlier results due to random-
ness in the model, which affects both the random
initialisation and the sampling of negative image
examples, we trained each configuration with 10
different random seeds and present here the aver-
aged results.

4 Experiments

We evaluate the visual relevance detection model
by training on Flickr30k and testing on the dataset
of learner responses to visual prompts. In order to
handle multiple sentences in the written responses,
every sentence is first scored individually and the
scores are then averaged over all the sentences.
For every textual answer in the dataset, we create a
negative datapoint by pairing it with a random im-
age. The task is then to accurately detect whether
the pair is truly relevant or randomly created, by
assigning it high or low relevance scores. In or-
der to convert the model output to a binary classi-
fication, we employ leave-one-out optimisation –
one example at a time is used for testing, while the
others are used to calculate the optimal threshold
for accuracy. We also report average precision and
precision at detecting irrelevant answers in the top
50 returned instances, which measure the quality
of the ranking and do not require a fixed thresh-
old.

Results for the different system architectures
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0.65 In this picture there are lot of people and each one has a different
attitude.

0.81 In the foreground, people are waiting for the green light in order to
cross the street.

-2.75 While a child is talking with an adult about something that is on the
other side of the road, instead a women, with lots of bag in her left
hand, is chatting with her mobile telephone.

0.63 Generally speaking, the picture is full of bright colours and it con-
veys the idea of crowded city.

-2.38 Looking at this pictures reminds me of the time I went scuba diving
in the sea.

-2.16 It’s fascinating, because you are surrounded by water and fishes and
everything seems so coulorful and adventurous.

-1.40 Another good part of diving is coming up.

-1.70 You swim to the surface and you see the sunlight coming nearer and
nearer until you get out and can breathe ”real” air again.

Table 2: Predicted scores from the best relevance scoring model, given example sentences from the
learner dataset and the included photo as a prompt. The first 4 sentences were written in response to this
image, whereas the last 4 were written about a different photo.

can be seen in Table 3. The baseline LSTM-
COS system is based on the framework by Kiros
et al. (2014) – it uses an LSTM for composing
a sentence into a vector, calculates the relevance
score by finding the cosine similarity between the
sentence vector and the image vector, and opti-
mises the model using the hinge loss function.
This model already performs relatively well and is
able to distinguish between relevant and random
image-text pairs with 68.2% accuracy.

On top of this model we incrementally add 3
modifications and measure their impact on the per-
formance. First, we augment the model with the
gating architecture described in Section 2.2. The
vector representation of the text is used to calcu-
late a dynamic mask, which is then applied to the
image vector. This allows the model to first read
the sentence, and then decide which parts of the
image are more important for the similarity cal-
culation. The inclusion of the gating component
improves accuracy by 1.4% and average precision
by 3%.

Next, we change the scoring and optimisation
functions as described in Section 2.3. Cosine simi-
larity measure is substituted with a dot product be-
tween the vectors, removing useful bounds on the
score, but allowing more flexibility in the model.
In addition, the hinge loss function is exchanged
for calculating the negative cross-entropy over a
softmax. While the hinge loss performs only pair-
wise comparisons and applies a sharp cut-off, soft-
max ties all the examples into a probability dis-
tribution and provides a more gradual prioritisa-

DEV TEST

ACC POS NEG ACC

Random 16.7 0.5 0.5 16.7

LSTM-COS 70.8 0.7 0.0 72.6
+ gating 75.6 0.5 -0.6 76.5
+ cross-ent 82.8 5.8 -5.2 83.8
+ dropout 87.0 5.6 -3.7 87.4

Table 4: Results for different system configura-
tions on the Flickr30k development and test sets.
We report accuracy and the average predicted
scores for positive and negative examples.

tion for the parameter optimisation. By introduc-
ing these changes, the accuracy is again increased
by 1.5% and average precision by 4.4%.

Finally, we apply dropout with probability 0.5
to both the 300-dimensional word embeddings
in the input sentence and the 1024-dimensional
image representation produced by the BVLC
GoogLeNet. By randomly setting half of the val-
ues to 0 during training, additional variance is in-
troduced to the available data and the model is
becomes more robust for handling noisy learner-
generated text. Integrating dropout improves the
performance further by 4.3% and average preci-
sion by 2.9%.

Table 2 contains examples of the predicted
scores from the final model, given example sen-
tences written by language learners. For most
sentences, the model successfully distinguishes
between relevant and irrelevant topics, assigning
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9.866.954.281.50-3.63

Input: A girl in an orange tank top is walking her bike through the forrest.

Input: Two white dogs are laying in the doorway of a wooden floored apartment.

8.587.732.800.66-3.42

Figure 2: Relevance scores for two example sentences, using the best model from Section 4. Higher
values indicate higher confidence in the text being relevant to the image.

lower scores to the last 4 sentences that describe a
different image. However, the model also makes
a mistake and incorrectly assigns a low score to
the third sentence – this likely happens due to the
sentence being much longer and more convoluted
than most examples in the training data, leading
the LSTM to lose some important information in
the sentence representation.

For comparison, we also evaluate the system ar-
chitectures on the Flickr30k dataset in Table 4. In
this setting, we present the model with a sentence
and 6 images from the Flickr30k test set, one of
which is known to be relevant while the others
are selected randomly. Accuracy is then measured
as the proportion of test cases where the model
chooses the correct image as the most relevant one.
A random baseline has a 1 in 6 chance of finding
the correct image for an input sentence, as there
are 5 negative examples for every positive exam-
ple. We also report the average scores assigned by
the models to positive (relevant) and negative (not
relevant) pairs of images and sentences. As can be
seen by the averaged predicted scores in Table 4,
the final system is free to push positive and nega-
tive examples apart by a larger margin, increasing
the average score difference by an order of magni-
tude.

5 Analysis

Figure 2 contains predicted scores for different im-
ages, given example sentences as input. As can be
seen, the system returns high scores when the sen-
tences are paired with very relevant images, and
also offers an intuitive grading of relevance. For
the first sentence describing an orange shirt and

a bicycle, the model has assigned reasonably high
scores to other images containing bikes and orange
objects. Similarly, for the second sentence the sys-
tem has found alternative images containing dogs
and wooden floors.

In order to analyse the possible weaknesses of
the model, we manually examined cases that are
difficult for the system. Figure 3 contains 4 ex-
amples from the Flickr30k development set where
a valid image-description pair received a negative
score from the relevance model. While a negative
score does not necessarily mean an error, as that
depends on the chosen threshold, it indicates that
the model has low confidence in this being a cor-
rect pairing. The use of rare terms is a source of
confusion for the model – if a word was not used
in the training data sufficiently, it will make the
relevance calculation more difficult. For example,
”unicycle” and ”fire lit batons” are relatively rare
terms that can cause confusion in example A. In
addition, the description mentions only the man,
while most of the photo depicts a crowd and a
building.

An alternative source of confusion comes from
the visual component, with GoogLeNet having
more trouble with certain images. Out of 5,070
image-sentence pairs in the development data, the
best model assigned negative scores to 222. Out of
those, only 140 had a unique image, indicating that
the visual component has more trouble detecting
the content of certain unusual images, such as ex-
amples C and D, regardless of the textual compo-
sition. Both of these issues represent cases where
the model is faced with input that is substantially
different from the training examples, and therefore
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Figure 3: Example valid pairs of images and sentences from the Flickr30k development set where the
system incorrectly predicts a low relevance score.

Figure 4: Visualisation of the 1,024 visual gating weights for two example sentences. Lighter areas
indicate features where the model chooses to discard the visual information.

fails to perform as well as possible. This can be
remedied by either creating models that are able
to generalise better to unseen examples, or by ex-
panding the sources of available training data.

We also analysed the gating component, which
is conditioned on the text vector and applied to
the image vector. The calculation of the gating
weights includes a bias term and a logistic func-
tion, which means it could easily adapt to always
predicting a vector of 1-s, effectively leaving the
image vector unmodified. Instead, we found that
the model actively makes use of this additional ar-
chitecture, choosing to switch off many features in
the image vector. Figure 4 shows a visualisation of
the 1024 gating weights for the two example sen-
tences used in Figure 2. Values close to 0 are rep-
resented by white, and values close to 1 are shown
in blue. As can be seen, quite a few features re-
ceive weights close to zero, therefore effectively
being turned off. In addition, the two sentences
have fairly different gating signatures, demonstrat-
ing that weights are being calculated dynamically
based on the input sentence.

6 Conclusion

We presented a system for mapping images and
sentences into a shared distributed vector space
and evaluating their semantic similarity. The task
is motivated by applications in automated lan-
guage assessment, where scoring systems focus-
ing on grammaticality are otherwise vulnerable to

memorised off-topic answers.
The model starts by learning embeddings for

words in the input sentence, then composing them
to a vector representation using an LSTM. In par-
allel, the image is first passed through a pre-trained
image detection model to extract visual features,
and then a further supervised layer to transform
the representation to a suitable space. We found
that applying dropout on both word embeddings
and visual features allowed the model to gener-
alise better, providing consistent improvements in
accuracy.

Next, we introduced a novel gating compo-
nent which first reads the input sentence and then
decides which visual features from the image
pipeline are important for that specific sentence.
We found that the model actively makes use of
this component, predicting different gating pat-
terns depending on the input sentence, and sub-
stantially improves the overall performance in the
evaluations. Finally, we moved from a pairwise
hinge loss to optimising a probability distribution
over the possible candidates, and found that this
further improved relevance accuracy.

The experiments were performed on two differ-
ent datasets – a collection of short answers writ-
ten by language learners in response to visual
prompts, and an image captioning dataset which
pairs single sentences to photos. The relevance as-
sessment model was able to distinguish unsuitable
image-sentence pairs on both datasets, and the
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model modifications showed consistent improve-
ments on both tasks. We conclude that automated
relevance detection of short textual answers to vi-
sual prompts can be performed by mapping im-
ages and sentences into the same distributed vec-
tor space, and it is a potentially useful addition for
preventing off-topic responses in automated as-
sessment systems.
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Abstract

We summarize the involvement of
our CEMI team in the “NLI Shared
Task 2017”, which deals with both textual
and speech input data. We submitted the
results achieved by using three differ-
ent system architectures; each of them
combines multiple supervised learning
models trained on various feature sets. As
expected, better results are achieved with
the systems that use both the textual data
and the spoken responses. Combining
the input data of two different modalities
led to a rather dramatic improvement
in classification performance. Our best
performing method is based on a set
of feed-forward neural networks whose
hidden-layer outputs are combined to-
gether using a softmax layer. We achieved
a macro-averaged F1 score of 0.9257 on
the evaluation (unseen) test set and our
team placed first in the main task together
with other three teams.

1 Native Language Identification

We think of learning a second language L2 by peo-
ple with their native language L1. The Native Lan-
guage Identification (NLI) task is to recognize the
L1 of an L2 author’s text or speech. Most work in
the NLI field has focused on identifying the native
language of students learning English as a second
language, which is also reflected in the very first
experiments with written responses and spoken re-
sponses, see (Koppel et al., 2005) and (Schuller
et al., 2016), respectively.

With respect to the form of analyzed responses,
written ones and spoken ones, we distinguish be-
tween text-based NLI and speech-based NLI, re-
spectively. In text-based NLI, all experiments per-

formed so far are based on searching patterns in
texts that are common to groups of speakers of the
same L1. This idea naturally arises from general
awareness that L1 speakers use typical grammat-
ical constructions or make typical mistakes when
using L2.

Speech-based NLI is naturally being ap-
proached differently, mainly by analyzing the
acoustic properties of a speech utterance by the
acoustic signal processing methods. Very re-
cently (Schuller et al., 2016) organized the Native
Language Sub-Challenge with spoken responses.

While most NLI research has focused on En-
glish as L2, there is also a growing trend to apply
the techniques to other L2 languages, e.g. Norwe-
gian (Malmasi et al., 2015a), Chinese (Malmasi
and Dras, 2014a), Finnish (Malmasi and Dras,
2014b).

NLI has a wide variety of potential applica-
tions and both its techniques and findings can be
used in areas such as Second-Language Acquisi-
tion (Ortega, 2009), author profiling (Rangel et al.,
2013), and authorship contribution (Halvani et al.,
2016). Typically, NLI is employed as a starting
point for investigations into crosslinguistic influ-
ence, see e.g. (Jarvis and Paquot, 2012).

In this paper, we summarize the involvement
of the CEMI team in the NLI Shared Task 2017
co-located with the 12th Workshop on Innovative
Use of NLP for Building Educational Applications
held in September 2017 in Copenhagen, Denmark.
The NLI task is typically framed as a classification
problem where the set of L1s is known a priori.
The NLI Shared Task 2017 deals with 11 output
classes C = {ARA, CHI, FRE, GER, HIN, ITA,
JPN, KOR, SPA, TEL, TUR},1 and defines three
sub-tasks that differ in data sources available:

1The classes correspond to 11 different L1 languages,
namely Arabic, Chinese, French, German, Hindi, Italian,
Japanese, Korean, Spanish, Telugu, and Turkish, respectively.
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ICLEv2 Lang-8 TOEFL11
Granger et al. (2009) Mizumoto et al. (2011) Blanchard et al. (2013)

number of documents 6,085 154,702 12,100
average document length 617 150 348
number of L1s 16 65 11
number of topics variation variation 8
proficiency level inter, high variation low, inter, high

Table 1: Some of the NLI English textual datasets.

• ESSAY Task – the L1 identification is based
solely on the written essays

• SPEECH Task – the L1 identification is
based on the speech utterances (their tran-
scripts and/or extracted i-vectors captur-
ing the acoustic properties of the recorded
speech)

• (Main) FUSION Task – the NLI system is al-
lowed to use both sources listed above

We participated in each track and used only the
available labelled data. The data collection con-
sists of 13,200 English essays (written texts) and
spoken responses (written transcriptions and pre-
processed i-vectors) and its pairwise disjoint sub-
sets of 11,000 training examples, 1,100 devel-
opment test examples, and 1,100 evaluation test
examples. Both training and development test
sets were provided to the shared task participants,
while the evaluation test set was the unseen data
portion kept only for the final evaluation per-
formed by the organizers. The i-vectors are com-
puted from 45-second audio files corresponding to
orthographic transcriptions. The results of the NLI
Shared Task 2017 are reported in Malmasi et al.
(2017).

In the rest of this paper, we first review related
works in Section 2. Other works on feature en-
gineering inspired us to choose features for our
experiments. More details about the features we
used are provided in Section 3. Our approach
focuses mainly on different machine learning al-
gorithms explained in Section 4. We design a
two-step procedure consisting of training stand-
alone classifiers (see Section 4.1), and training
additional parameters of fused models (see Sec-
tion 4.2). In total, we submitted three different
system architectures described in Section 4.3. In
Section 5 we present and discuss our results, and
in the last Section 6 we make some final com-
ments.

2 Related work

Text-based NLI has been addressed since 2005
and speech-based NLI since 2016. We give a pic-
ture of which results have been produced since the
very beginning to date. Given the scope of the NLI
Shared Task 2017, we focus on studies having En-
glish as a second language.

2.1 Text-based NLI

An exhaustive overview of NLI until 2014 has
been provided by Massung and Zhai (2016). In
Table 1 we show the basic characteristics of the
datasets widely used so far. Now we mention only
some works with respect to three milestones.

The very beginning Koppel et al. (2005) im-
plemented a fully automated method to address
text-based NLI for the first time ever. They ex-
perimented with the sub-part of the ICLEv2 cor-
pus containing only five L1s.2 Their feature set
included relative frequencies of function words,
character n-grams, error types and rare POS bi-
grams so that each document was represented as
a vector of 1,035 features. Their SVM-based
method achieved just above 80% accuracy.

Seven years later There were three papers alone
on text-based NLI at the COLING 2012 confer-
ence: Brooke and Hirst (2012) developed a ro-
bust model that works with 79.3% accuracy when
used across the ICLEv2 and Lang-8 corpora. They
extracted a set of 800,000 features,3 which was
extremely large in comparison to the set used
by Koppel et al. (2005). They also discuss the
inadequacy of ICLEv2 as a training corpus and
recommended to pay more attention to the over-
all validity of NLI experiments, rather than to

2Bulgarian, Czech, French, Russian, Spanish
3Function words, character {1-3}-grams, word {1-2}-

grams, POS {1-3}-grams, context-free grammar production
rules, dependencies, proper nouns.
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specific technical approaches. Bykh and Meur-
ers (2012) experimented with ICLEv2 as well
but their seven target classes were different from
those used in (Brooke and Hirst, 2012). They
explored recurring word and POS n-grams and
they achieved 89.71% accuracy that was later sur-
passed by Tetreault et al. (2012) who used (Kop-
pel et al., 2005)’s feature set enriched with the
Tree Substitution Grammar features (Swanson and
Charniak, 2012), the Stanford dependency fea-
tures (de Marneffe et al., 2006) and language
model perplexity scores to achieve an accuracy of
90.1%.

The TOEFL11 corpus available The First
Native Language Identification Shared Task in
2013 (Tetreault et al., 2013) marks an important
stage in the text-based NLI research mainly be-
cause of making available the TOEFL11 corpus.
This corpus consists of essays on eight different
topics written by non-native speakers of three pro-
ficiency levels (low/medium/high); the essays’ au-
thors have 11 different native languages listed in
Section 1. The corpus contains 1,100 essays per
language with an average of 348 word tokens per
essay. A corpus description and the motivation
to build such corpus can be found in (Blanchard
et al., 2013). The report by Tetreault et al. (2013)
summarizes the techniques used and the results
achieved by the competing teams in the shared
task.

TOEFL11 has become a common evaluation re-
source for the text-based NLI task. Nicolai et al.
(2013) used a subset of the corpus with only five
L1s to train probabilistic graphical models.4 Bykh
and Meurers (2014) systematically explored non-
lexicalized and lexicalized context-free grammar
production rules. They combined them with word-
based and POS-based n-grams and they achieved
accuracy of 84.8%, the best result reported by that
time. Later on, Ionescu et al. (2014) obtained a
new state-of-the-art result, 85.3% accuracy, so that
they combined several string kernels using multi-
ple kernel learning to do feature selection. Their
method is completely language independent, and
texts are treated as a sequence of characters.

Krı́ž et al. (2015) measure similarity between
general English and English used by L1 speak-
ers using cross-entropy scores, which then serve as
features for an SVM classifier. It requires 12 lan-
guage models of English – one model of general

4Chinese, French, German, Japanese, and Turkish.

System # features Acc.

1 (Malmasi and Dras, 2017) ? 85.3
2 (Bykh and Meurers, 2016) ? 85.4?

3 (Gebre et al., 2013) 73,626 84.6
4 (Jarvis et al., 2013) 400K 84.5
5 (Ionescu et al., 2014) ? 84.1

. . . . . . . . .
(Krı́ž et al., 2015) 55 82.4

Table 2: Top 5 written NLI systems on TOEFL11,
and for comparison the system with the lowest
number of (entropy-based) features. A 10-fold
cross-validation accuracy is provided (Acc. in %).
?The authors report the 85.4% accuracy on the
evaluation test set.

English based on Wikipedia data and eleven spe-
cial models, each based on a particular L1 group.
The best classification accuracy of 82.4% has been
achieved by a combination of language models
built upon four different n-gram types -– tokens,
characters, suffixes, and POS tags. These 44 (=
4x11) cross-entropy scores completed with other
nine numerical and two categorical features result
in the final set of 55 features. In fact, this compact
feature set comprises a big amount of statistical in-
formation about a huge number of n-grams hidden
in the language models consisting of smoothed lin-
ear n-grams combinations.

In contrast, (Malmasi and Cahill, 2015) ex-
tracted a much bigger feature set and they focused
on measuring association between two feature sets
through classification errors.

The very last work on text-based NLI focuses
on systematic examination of ensemble methods
for addressing NLI with three L2s, namely En-
glish, Norwegian, and Jinan Chinese (Malmasi
and Dras, 2017).

Table 2 presents the top 5 text-based NLI sys-
tems on TOEFL11. We also provide the same fig-
ures for the system (Krı́ž et al., 2015) with an ex-
tremely low number of features. Here is a brief de-
scription of the algorithms and the features used:

• (Malmasi and Dras, 2017) – ensemble clas-
sifier, bagging, linear discriminant analysis;
n-grams of lemmas, words, function words,
POS tags, dependencies, CFG rules, Adaptor
Grammar, TSG fragments

• (Bykh and Meurers, 2016) – ensemble clas-
sifier; n-grams of lemmas, words, POS tags
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where 1 ≤ n ≤ 10, dependencies, suffixes,
verb subcategorization patterns

• (Gebre et al., 2013) – SVM; tf-idf of word
unigrams and bigrams, df ≥ 5, normalized
feature vectors

• (Jarvis et al., 2013) – SVM; {1,2,3}-grams
of words, lemmas, POS tags, df≥ 2, normal-
ized feature vectors

• (Ionescu et al., 2014) – Kernel-based learn-
ing; character {5-8}-grams

• (Krı́ž et al., 2015) – SVM; entropy-based
features using language modeling (tokens,
characters, POS, suffixes)

Malmasi et al. (2016) analyze the results of
the Discriminating between Similar Languages
shared task and they state that numerous teams
attempted to use new deep learning-based ap-
proaches, and that most of them ended with a
poor performance compared to traditional classi-
fiers. To the best of our knowledge, there has been
no published paper on using deep learning in text-
based NLI yet. We can only speculate that re-
searchers have already applied deep learning tech-
niques to text-based NLI but they did not beat tra-
ditional classifiers.

2.2 Speech-based NLI
The speech-based NLI shared task was orga-
nized under the name Native Language Sub-
challenge as one of the subtasks of the IN-
TERSPEECH 2016 Computational Paralinguistics
Challenge (Schuller et al., 2016).

The ETS Corpus of Non-native Spoken English
was provided for the task consisting of 5,132 ex-
amples in total – 3,300 examples were selected
for training, 965 examples for the development
test set, and 867 examples for the evaluation test
set. The corpus includes spoken responses from
non-native speakers of English drawn from 11 dif-
ferent L1 backgrounds that are identical to the
TOEFL11 L1s. The recorded utterances are 45-
second long for each speaker. The participants
were provided with the audio files (amplitude nor-
malized) and were also pointed to the toolkit that
was used to extract the audio features for the base-
line system provided by the sub-challenge orga-
nizers. It is obvious that the extracted features did
not reflect only the actual content of the utterances
but also – and possibly more prominently – the

System UAR (%)

1 (Abad et al., 2016) 84.6
2 (Shivakumar et al., 2016) 78.6
3 (Gosztolya et al., 2016) 70.7
4 (Huckvale, 2016) 69.8
5 (Senoussaoui et al., 2016) 68.4
6 (Keren et al., 2016) 61.5
7 (Jiao et al., 2016) 52.2
8 (Rajpal et al., 2016) 39.8

baseline 45.1

Table 3: Spoken NLI systems submitted to the
2016 NLI shared task. UAR stands for Un-
weighted Average Recall.

acoustic properties of the speech that are suppos-
edly and significantly influenced by the speaker’s
native language. Given the usual background of
the INTERSPEECH attendees, it is only natural
that most participants of the sub-challenge had a
strong background in speech signal processing and
(at least the top teams) concentrated on their own
sophisticated methods for feature extraction.

According to our knowledge, no transcriptions
of the recorded utterances were provided and none
of the participants attempted to use an automatic
speech recognition system in order to create tran-
scripts that could be used as the source of textual
features. Given the poor performance of the sys-
tem based solely on the (manual) speech transcrip-
tions in the NLI Shared Task 2017, it seems that
ignoring the textual content of the utterances was
a wise decision.

Table 3 presents the systems submitted to the
sub-challenge. Since the top two teams, whose
systems outperformed the rest by a large margin,
employed the i-vector feature representation, the
organizers have decided to provide the i-vectors
directly to the NLI Shared Task 2017 participants,
supposedly in order to lower the entry thresh-
old for participants without the speech processing
background. A short high-level description of the
i-vector principles is given in Section 3.

3 Feature extraction

Textual features Since our work concentrates
mainly on the different machine learning algo-
rithms (described in detail in the later sections),
we did not perform any sophisticated feature
engineering. Instead, we picked the textual
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features that have been proven to be effective in
the experiments performed by other researchers
previously, being mostly inspired by Gebre et al.
(2013). We have employed n-grams of various
lengths from the following “data streams”:

• Word unigrams, bigrams and trigrams ex-
tracted from both essays and speech tran-
scriptions.

• Character n-grams with n ranging from 3 to
5, extracted from the essays only.

• POS n-grams with n ranging from 1 to 5, also
extracted only from the essays.

All features were weighted using the well-
known tf-idf weighting scheme, with the sublinear
tf scaling and the standard idf, that is, the weight
w of each feature i in the document j is given by:

wi,j = (1 + log(tf i,j)) · log
N

ni
(1)

where N denotes the total number of documents
and ni the number of documents containing the
feature i. Then the resulting feature vectors are
normalized to unit length. Quick experiments on
the development data have shown that:

• Sublinear tf scaling substantially outper-
forms the unscaled tf.

• The number of n-gram based-features used
in the classification can be reduced to top
30,000 features (ordered by decreasing tf )
without hurting the performance.5 The fea-
ture vector dimension was thus limited to 30k
for all textual features described above.

Speech features Here we did not have any other
choice than using the i-vectors provided by the
Shared Task organizers. The i-vectors were orig-
inally developed as a representation of speech ut-
terances in a low-dimensional subspace, which ef-
ficiently conveys speaker’s “vocal” characteristics
and is therefore suitable for speaker recognition
(Dehak et al., 2011). The i-vectors of course con-
tain also the information about the acoustic envi-
ronment, transmission channel or phonetic content
of the utterance. Intuitively, the phonetic content
appears to be an important factor distinguishing

5Note that the total number of features would exceed 2.5
million in the case of word trigrams.

the L1 of the speaker as the native language nat-
urally influences the way the speaker pronounces
English phonemes. The i-vectors were extracted
from the 45-second audio files by the task orga-
nizers, employing a state-of-the-art approach and
using the Kaldi6 toolkit. The dimension of the i-
vectors is 800, reduced by factor analysis from su-
pervector of statistics accumulated on the univer-
sal background model with 1,024 components.

Several experiments (and the description of the
the state-of-the-art NLI in (Malmasi and Dras,
2017)) confirmed our intuition that simply con-
catenating the individual feature vectors and train-
ing a single classifier does not yield the best re-
sults. We therefore concentrated mainly on the de-
velopment of the fused (ensemble) classifiers, de-
scribed in details in the following section.

Finally, let us point out that we have decided
not to use the character and POS n-grams from the
speech transcription data in our final systems. The
reason is the fact that 1) word n-grams are by far
the best performing textual features, yet their per-
formance was rather poor on the speech transcrip-
tions, and 2) any performance gain from charac-
ter and POS n-grams was clearly overshadowed
by the i-vectors contribution in both speech and
fusion tasks.

4 Prediction model

We used multiple supervised models to process
each type of input features. Then, we fused the
predictions of such models, i.e. we combined the
outputs of the classifiers instead of combining the
input features and training one joint model. This
approach consists of two steps: (1) training the
stand-alone classifiers, and (2) training the addi-
tional parameters of the fused model. Optionally,
the step (2) could employ additional retraining of
the stand-alone classifiers.

4.1 Stand-alone classifiers

The term “stand-alone classifiers” is herein used
for the systems whose internal parameters are
trained with a standard supervised machine learn-
ing algorithm (e.g., gradient descent) and which
take the input feature vector and output a vector
of |C| probabilities. The decision about the class
membership is then determined solely by the index
of the maximum value of such output vector.

6http://kaldi-asr.org
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Linear models To perform the classification us-
ing textual features, we widely used linear mod-
els. The training procedure of such model var-
ied – we experimented with a linear SVM and
stochastic gradient descent training implemented
using the LinearSVC and SGDClassifier
classes from the scikit-learn toolkit (Pedregosa
et al., 2011). Both implementations support sparse
feature representation and therefore in our experi-
ments the full feature vector could be used.

Non-linear models We also used non-linear
models implemented as feed-forward neural net-
works (FFNN) containing hidden layers with non-
linear functions. In our experiments we also tried
the very deep architectures such as ResNets and
DenseNets, but they were outperformed by a rel-
atively simple FFNN with one hidden layer. This
is probably caused by a relatively low number of
training examples and a high number of parame-
ters of deeper networks. The FFNNs were used to
classify both textual and speech-related features.
The size of the textual feature vectors was reduced
to 30k as explained in Section 3. The FFNNs
were implemented in the Keras system (Chollet
et al., 2015). To optimize the FFNNs, we used
the ADAM algorithm (Kingma, 2015) with a cat-
egorical cross-entropy loss.

Probabilistic Linear Discriminant Analysis
(PLDA) is a state-of-the-art system for i-vector
based speaker verification (Kenny, 2005) and can
by easily used for representation of another infor-
mation, the L1 in our case. I-vectors also con-
tain some noisy information not relevant to the
L1 identity (e.g. influence of the channel, speaker
etc.). If structured training data (more than one
session for each L1) are available, PLDA can be
trained to model L1 and session variability sepa-
rately. Then, only the L1 domain is used for iden-
tification. Moreover, the PLDA model itself can
be used as a powerful tool for compute the simi-
larity between two i-vectors (only in L1 domain).
In our case, the test i-vector is compared to |C|
L1 i-vectors representing the models of particu-
lar L1 languages. The similarities are normalized
to sum up to one. The L1 i-vector is computed
as the mean of all i-vectors belonging to a given
class. The PLDA classifier was used to classify
i-vector features in the ensemble systems used in
the SPEECH and FUSION tasks.

4.2 Model combinations

To combine the outputs of the stand-alone clas-
sifiers, we experimented with three different
schemas: (1) discriminative logistic regression,
(2) softmax combination of hidden layer’s outputs,
and (3) softmax combination of classifier’s out-
puts. Since the development data set provides an
additional valuable source of labelled data, special
attention has to be paid to the correct estimation of
the fusion parameters, as described below.

Discriminative logistic regression for fusing
system’s outputs was implemented using an
open-source FoCal Multi-class toolkit (Brümmer,
2007). This MATLAB toolkit allows evaluation,
calibration and fusion of, and decision-making
with, multi-class statistical pattern recognition
scores. This toolkit is different from, but similar
in design principles to the original FoCal Toolkit
that was used by several NIST Speaker Recogni-
tion Evaluation 2006 participants to fuse and cali-
brate their scores (Brümmer et al., 2007). For the
fusion we used the tool based on calibration and
discriminative logistic regression of K classifiers

ŷ(x) =
K∑

k=1

αkyk(x) + β, (2)

where yk(x) ∈ <|C| is a vector of posterior proba-
bilities obtained from k-classifier, ŷ(x) is a vector
of fused probabilities and vectors α ∈ <K and
β ∈ <|C| are parameters of the fusion. These
parameters were first estimated on the held-out
data (data not used to train the stand-alone classi-
fiers), then the classifiers were retrained to employ
all available labelled data (train and development)
and the previously estimated vectorsα and β were
used.

Softmax combination The softmax combina-
tion is implemented as a neural network without
hidden layers. The vector of fused probabilities
ŷ(x) is given by:

a(x) = W ·

y1(x)
...

yK(x)

+ b (3)

ŷ(x) = softmax(a(x)) (4)

where W is a weight matrix and b is a bias vec-
tor. The values of W and b are optimized using
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Figure 1: Architecture of the homogeneous neural network for the FUSION task.

the ADAM algorithm and the categorical cross-
entropy loss. We experimented with two different
choices of yk:

• The output of the hidden layer from the
FFNN corresponding to a specific feature set.
In this case, we merged the trained stand-
alone FFNNs to form a fused FFNN ac-
cording to Figure 1 and the parameters of
the stand-alone FFNNs were trained using
the back-propagation errors. The stand-alone
FFNNs and the fused FFNN were trained on
the union of train and development datasets.

• The |C|-dimensional output of the stand-
alone classifier. For the linear models the out-
put consists of the values of decision func-
tions, for the FFNN such output is the po-
tential of the output layer before applying
the softmax activation. In this case, we
first trained the stand-alone classifiers on the
train dataset, and then we trained just the fu-
sion parameters W and b on the development
dataset.

4.3 Submitted systems
Based on the experiments with the development
data set, we finally decided to submit three dif-
ferent system architectures. Each architecture is a
combination of multiple systems trained on differ-
ent features, even in the ESSAY and SPEECH tasks.

• Classical model ensemble (“ensemble”) con-
sists of different stand-alone models trained

separately and combined using the discrimi-
native logistic regression.

• Homogeneous FFNN (“homogeneous”) uses
a set of stand-alone FFNNs trained sepa-
rately. The number of hidden layers, num-
ber of neurons in hidden layers, and activa-
tion functions are identical for each stand-
alone FFNN. The outputs of hidden layers in
the trained FFNNs are combined using soft-
max combination. The resulting network is
retrained. To avoid overfitting, we used the
dropout layer before the softmax layer.

• Heterogeneous FFNN (“heterogeneous”)
employs a set of FFNNs with different
architectures. The stand-alone classifiers
are trained separately using different objec-
tives. The |C|-dimensional outputs are then
combined using softmax combination. The
resulting network is not retrained during
estimating the softmax weights and biases.

For different tasks we used the following different
sets of features and classifiers:

ESSAY task – the ensemble system used
word, char and POS features and FFNN and
SGDClassifier models for each feature set (=
3×2 stand-alone models). The homogeneous sys-
tem used word, char and POS features and FFNN
with 1 hidden layer containing 100 neurons. The
heterogeneous system used the same features and
SGDClassifier only.
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Figure 2: Architecture of the heterogeneous neural
network for the SPEECH task.

SPEECH task – the ensemble system used
FFNN classifiers trained on word and char features
extracted from transcripts and PLDA and FFNN
trained from i-vectors. The homogeneous system
used word features from transcripts and i-vectors
and FFNN (1 hidden layer, 100 neurons). The het-
erogeneous system contained SGDClassifier
trained from transcript word features and FFNN
(1 hidden layer, 100 neurons) trained on i-vectors
(see Figure 2).

FUSION task – for each system we used a com-
bination of the stand-alone classifiers used in the
ESSAY and SPEECH tasks. An example of such a
combination for the homogeneous system is given
in Figure 1.

5 Results and discussion

The final results of the submitted systems mea-
sured on the unseen evaluation test set are shown
in Table 4. In this paper, all F1 values are macro-
averaged over all 11 output classes. It should be
noted that the relatively low number of test exam-
ples combined with a higher number of classes re-
sulted in quite wide confidence intervals. For ex-
ample, we evaluated the F1 measure for the ho-
mogeneous system on the FUSION task. Using
the development data set and a bootstrapping ap-
proach with 550 samples and 1,000 repetitions we
found that the resulting average F1 0.9112 has as-
sociated a 95 % confidence interval of <0.8850;

Task System F1

ensemble 0.8536
ESSAY homogeneous 0.8491

heterogeneous 0.8464

ensemble 0.8570
SPEECH homogeneous 0.7987

heterogeneous 0.8607

ensemble 0.9238
FUSION homogeneous 0.9257

heterogeneous 0.9244

Table 4: Summary of the results for each task and
our three architectures. The macro-averaged F1
value was measured on the unseen evaluation test
set by the shared task organizers.

Figure 3: Confusion matrix for the FUSION task,
homogeneous system. Measured on the unseen
evaluation test set.

0.9345> (!). Even the variations caused by the
random seed selection are noticeable: for ten dif-
ferent seeds the F1 value varies between 0.9075
and 0.9166. For proper perspective, it is important
to keep in mind that the difference of 0.001 in F1
evaluated on test data means that the systems mis-
match in approximately 1 correctly classified test
example.

Table 4 also shows another interesting fact
that the F1 value in the SPEECH task is higher
than in the ESSAY task. We assume this is
caused by the availability of two modalities – the
speech alone (i-vectors) and the lexical informa-
tion (transcripts). On the development test set, the
stand-alone classifier trained solely on i-vectors
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achieved an F1 value of only 0.8080, while the
classifier trained solely on transcribed text fea-
tures achieved only 0.5787. In this case, the
combination of a relatively weak predictor with a
strong model further improved the performance to
0.8610. We also observed that training classifiers
on the union of the training and development data
sets consistently improves performance – the in-
crease in the F1 value (evaluated on the unseen
test data) is approximately 0.004. To illustrate the
performance on different feature types, we eval-
uated the stand-alone classifiers of the homoge-
neous system trained for the FUSION task on the
development data. The results are summarized in
Table 5.

We also used the Local Interpretable Model-
agnostic Explanations (LIME) method (Ribeiro
et al., 2016) to extract the most informative fea-
tures for a given L1 class. The results showed
that just the presence of certain words very of-
ten leaks significant information about the L1 lan-
guage (this effect was already observed by (Ge-
bre et al., 2013)) – for example essays labelled as
JPN contain words Japan, Japanese, KOR men-
tion Korea and Korean. Also, there are some ty-
pos that have origin in the L1 language (e.g., ITA:
pubblic from Italian pubblico – 52 examples in the
training data, FRE: exemple from French exemple
– 174 examples). The confusion matrix in Fig-
ure 3 shows that 40 % of all errors are confusions
between the HIN and TEL classes. This is proba-
bly caused by the fact that the L1 speakers of these
languages have gone through the same educational
system of India. In addition, the geographic refer-
ences mentioned above do not allow to discrimi-
nate between them. During the system develop-
ment, we also experimented with the advanced
architectures of neural networks, such as convo-
lutional networks, recurrent networks, ResNets,
DenseNets and pretrained word embeddings but
none of them performed better than the linear
SVM baseline.

6 Conclusion

Malmasi et al. (2015b) previously showed that
even NLI systems working with just written es-
says can outperform human decisions. Our exper-
iments revealed that adding information extracted
from the spoken responses of non-native English
speakers results into a substantial improvement in

Features F1

word 0.8151
ESSAY char 0.8025

POS 0.5012

SPEECH
transcript words 0.5591
i-vectors 0.7962

Table 5: Performance of five stand-alone classi-
fiers used in the homogeneous FUSION system
measured on the development test set. The stand-
alone classifiers are FFNNs, 1 hidden layer with
100 neurons. In the FUSION model they were fur-
ther trained by the softmax combination training.

classification performance (about 5 % relative7). It
corroborates our initial intuition that the textual
and spoken data really complement well as the
source of information about the L1 language.

To sum up our results measured on the un-
seen evaluation test set, we attained the following
macro-averaged F1 scores:

• ESSAY task: 0.8536
– shared second place in the task,

• SPEECH task: 0.8607
– shared first place in the task,

• main FUSION task: 0.9257
– shared first place in the task.

Let us stress out that those results were achieved
by rather straightforward (yet at the same time in-
formed and careful) application of state-of-the-art
machine learning algorithms, using feature extrac-
tion methods that have already been proven effi-
cient both in previous NLI shared tasks and in our
NLP and speech processing research.
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Preslav Nakov, Ahmed Ali, and Jörg Tiedemann.
2016. Discriminating between Similar Languages
and Arabic Dialect Identification: A Report on the
Third DSL Shared Task. In Proceedings of the Third
Workshop on NLP for Similar Languages, Varieties
and Dialects (VarDial3). The COLING 2016 Orga-
nizing Committee, Osaka, Japan, pages 1–14.

Sean Massung and ChengXiang Zhai. 2016. Non-
Native Text Analysis: A Survey. Natural Language
Engineering 22(2):163–186.

Tomoya Mizumoto, Mamoru Komachi, and Masaaki
Nagata. 2011. Mining Revision Log of Language
Learning SNS for Automated Japanese Error Cor-
rection of Second Language Learners. In In Pro-
ceedings of the Fifth International Joint Conference
on Natural Language Processing. pages 147–155.

Garrett Nicolai, Md Asadul Islam, and Russ Greiner.
2013. Native Language Identification Using Proba-
bilistic Graphical Models. In International Confer-
ence on Electrical Information and Communication
Technology (EICT). Khulna, Bangladesh, pages 0–1.

Lourdes Ortega. 2009. Understanding Second Lan-
guage Acquisition / Rod Ellis. Hodder Education,
Oxford, UK.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research
12:2825–2830.

Avni Rajpal, Tanvina B. Patel, Hardik B. Sailor,
Maulik C. Madhavi, Hemant A. Patil, and Hiroya
Fujisaki. 2016. Native Language Identification Us-
ing Spectral and Source-Based Features. In Inter-
speech 2016. pages 2383–2387.

Francisco Rangel, Paolo Rosso, Moshe Moshe Kop-
pel, Efstathios Stamatatos, and Giacomo Inches.
2013. Overview of the Author Profiling Task at
PAN 2013. In CLEF Conference on Multilin-
gual and Multimodal Information Access Evalua-
tion. CELCT, pages 352–365.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2016. ”Why Should I Trust You?”: Ex-
plaining the Predictions of Any Classifier. In Pro-
ceedings of the 22Nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Min-
ing. ACM, New York, NY, USA, KDD ’16, pages
1135–1144.

Björn Schuller, Stefan Steidl, Anton Batliner, Julia
Hirschberg, Judee K. Burgoon, Alice Baird, Aaron
Elkins, Yue Zhang, Eduardo Coutinho, and Keelan
Evanini. 2016. The INTERSPEECH 2016 Compu-
tational Paralinguistics Challenge: Deception, Sin-
cerity and Native Language. In Interspeech 2016.
pages 2001–2005.

208



Mohammed Senoussaoui, Patrick Cardinal, Najim De-
hak, and Alessandro L. Koerich. 2016. Native Lan-
guage Detection Using the I-Vector Framework. In
Interspeech 2016. pages 2398–2402.

Prashanth Gurunath Shivakumar, Sandeep Nallan
Chakravarthula, and Panayiotis Georgiou. 2016.
Multimodal Fusion of Multirate Acoustic, Prosodic,
and Lexical Speaker Characteristics for Native Lan-
guage Identification. In Interspeech 2016. pages
2408–2412.

Ben Swanson and Eugene Charniak. 2012. Native Lan-
guage Detection with Tree Substitution Grammars.
In Proceedings of the 50th Annual Meeting of the
Association for Computational Linguistics: Short
Papers - Volume 2. Association for Computational
Linguistics, Stroudsburg, PA, USA, ACL ’12, pages
193–197.

Joel Tetreault, Daniel Blanchard, and Aoife Cahill.
2013. A Report on the First Native Language Iden-
tification Shared Task. In Proceedings of the Eighth
Workshop on Innovative Use of NLP for Building
Educational Applications. ACL, Atlanta, Georgia,
pages 48–57.

Joel Tetreault, Daniel Blanchard, Aoife Cahill, and
Martin Chodorow. 2012. Native Tongues, Lost
and Found: Resources and Empirical Evaluations
in Native Language Identification. In Proceedings
of COLING 2012. The COLING 2012 Organizing
Committee, Mumbai, India, pages 2585–2602.

209



Proceedings of the 12th Workshop on Innovative Use of NLP for Building Educational Applications, pages 210–216
Copenhagen, Denmark, September 8, 2017. c©2017 Association for Computational Linguistics

Native Language Identification
Using a Mixture of Character and Word N-grams

Elham Mohammadi, Hadi Veisi and Hessam Amini
Data and Signal Processing Lab (DSP Lab)

Faculty of New Sciences and Technologies (FNST)
University of Tehran (UT), Tehran, Iran

{elham.mohammadi;h.veisi;hessam.amini}@ut.ac.ir

Abstract

Native language identification (NLI) is the
task of determining an author’s native lan-
guage, based on a piece of his/her writ-
ing in a second language. In recent years,
NLI has received much attention due to its
challenging nature and its applications in
language pedagogy and forensic linguis-
tics. We participated in the NLI Shared
Task 2017 under the name UT-DSP. In
our effort to implement a method for na-
tive language identification, we made use
of a mixture of character and word N-
grams, and achieved an optimal F1-score
of 0.7748, using both essay and speech
transcription datasets.

1 Introduction

Native Language Identification (NLI) is the task of
using a piece of writing in a second language in or-
der to determine the writers native language. The
main applications of NLI are in language teaching
and also in forensic linguistics (Kochmar, 2011).

In language teaching, NLI can help in determin-
ing the role of native language transfer in second
language acquisition, so that course designers can
change the material based on the native language
of the learners (Laufer and Girsai, 2008).

In forensic linguistics, NLI can be the starting
point in making assumptions about the authors
identity of a text which is of some interest to in-
telligence agencies, yielding the linguistic back-
ground of the author (Tsvetkov et al., 2013).

The 2017 shared task contains 3 sub-challenges
(Malmasi et al., 2017). The first challenge is pre-
dicting the native language of an English language
leaner using a standardized assessment of English
proficiency for academic purposes. The second
challenge is native language identification using

the transcriptions of spoken responses produced
by test takers. The last sub-part of the NLI Shared
Task 2017 is a fusion of the two, i.e. we have both
written and spoken responses from test takers at
our disposal in order to make a prediction about
their native language.

Our team, UT-DSP participated in the NLI
Shared Task 2017. An account of our participa-
tion is given in this paper.

2 Related Work

The first NLI Shared Task was organized in 2013
(Tetreault et al., 2013). The task was designed to
predict the native language of an English learner
based only on his/her English writing. The cor-
pus used for the training phase of the task was the
TOEFL11 corpus (Blanchard et al., 2013) which
contained 11000 English texts written by native
speakers of 11 different languages.

29 teams participated in total, achieving an
overall accuracy rate between 0.836 and 0.319.
According to the NLI Shared Task 2013 report, the
prevailing trend among different teams was using
character, word, and POS N-grams (Jarvis et al.,
2013; Henderson et al., 2013; Bykh et al., 2013).
The leading team (Jarvis) used the support vec-
tor machine (SVM) method with as many as more
than 400,000 unique features including lexical and
POS N-grams.

A number of teams employed simple N-gram-
based methods as the implementation of these ap-
proaches can be simpler and, as a result, less time-
consuming. (Gyawali et al., 2013) developed four
different models using character n-grams, word
n-grams, POS n-grams, and the perplexity rates
of character n-grams. They used an ensemble of
these 4 different models to achieve an accuracy
rate of 0.75. (Kyle et al., 2013) used an approach
employing key N-grams. They could outperform

210



the random baseline with an accuracy of 0.59.
Three years after the first NLI Shared Task,

in 2016, the Computational Paralinguistics Chal-
lenge included a sub-task aiming at the prediction
of native language based on recordings of spoken
responses. The accuracy rates reported by partic-
ipating teams ranged from 30.9 to 47.5 per cent
(Schuller et al., 2016).

3 Data Description

The datasets for the NLI Shared Task 2017
were released by the Educational Testing Service
(ETS). These datasets were released in 4 phases,
two of which belonged to the training, and the re-
maining two belonging to the testing phases. Each
dataset released contained an equal number of files
belonging to each of the following 11 languages:
Araic, Chinese, French, German, Hindi, Italian,
Japanese, Korean, Spanish, Telugu, and Turkish.

3.1 Train - Phase 1

In this phase, a dataset containing 12,100 essay
files was released, 1,100 of which were included
in a collection named dev chosen for evaluation
purposes, and the rest were used for training the
method.

3.2 Train - Phase 2

The dataset released in this phase contained a col-
lection of 12,100 speech files, which were added
to the essay files released in the previous phase.
Similar to the previous phase, 1,100 of the speech
files were chosen as the dev collection, in order to
be used for evaluation. The remaining files were
used to train the method.

As, in this stage, both essay and speech files
were at our disposal, we could train a method to
predict the test taker’s native language, using both
essay and speech datasets simultaneously, as well
as using them separately.

3.3 Test - Phase 1

The first test phase’s purpose was to test the im-
plemented methods for native language prediction,
using speech and train collections separately. The
essay and speech collections contained 1,100 files
each, with no overlap among the files in the two.

3.4 Test - Phase 2

The aim of this phase was to test the fusion method
on a collection of files, belonging to 1,100 test tak-

ers. For each test taker, an essay and a speech file
were included in the collection.

4 Methodology

An N-gram-based language model is used to es-
timate the probability of the occurance of the
next language particle (i.e. character, word,
etc.) given its N previous particles of the same
type, by using a maximum likelihood estimation
(MLE) approach (Amini et al., 2016; Brown et al.,
1992). For example, considering N(wi

i−n+1) as
the number of occurances of the word sequence
wi−n+1wi−n+2...wi−1wi in a corpus, the n-gram
probability of word wi based on the sequence of
words wi−n+1wi−n+2...wi−1 which come before
it, is computed using formula 1:

Pw(wi|wi−1
i−n+1) =

N(wi
i−n+1)

N(wi−1
i−n+1)

(1)

Our work employed a simple approach using a
mixture of character and word N-grams. In or-
der to do so, we had to train N-grams for each of
the essay and speech transcription datasets in each
language. The method was implemented without
the use of i-vectors.

To compute the character N-grams, we first
extracted two separate lists of characters from
the essay and speech files. Then, for each lan-
guage within each of the essay and speech groups,
we computed the character trigrams and 4-grams,
smoothed using the additive smoothing method
with α = 0.1.

In order to compute the word N-grams, two sep-
arate lists of words from the essay and speech
files were extracted. These two lists were then
limited to the words which were encountered
more than once. Afterwards, we computed the
word monograms and bigrams (considering out-
of-vocabulary words), which were smoothed using
the additive smoothing method with α = 0.01.

In order to predict the native language for a text
file, considering it as an essay/speech transcrip-
tion, we have to compute its probabilities using
character and word N-grams of essay/speech for
each language. The character-level probabilities
are computed using the formulas 2 and 3:

Probl,c−3(C) =
m∑

i=3

logPl,c−3(ci|ci−2ci−1) (2)
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Probl,c−4(C) =
m∑

i=4

logPl,c−4(ci|ci−3ci−2ci−1)

(3)
In which Probl,c−N (C) stands for the

character-level probability of the text by the
character N-gram for language l, m is the number
of characters in the text, Pl,c−3(ci|ci−2ci−1)
represents the character trigram probability of
language l for character ci given its two previous
characters, and Pl,c−4(ci|ci−3ci−2ci−1) represents
the character 4-gram probability of language l for
character ci given its three previous characters.

The word-level probabilities are computed us-
ing the formulas 4 and 5:

Probl,w−1(W ) =
n∑

i=1

logPl,w−1(wi) (4)

Probl,w−2(W ) =
n∑

i=2

logPl,w−2(wi|wi−1) (5)

In which Probl,w−N (W ) stands for the word-
level probability of the text by the word N-gram
for language l, n is the number of words in
the text, Pl,w−1(wi) represents the word mono-
gram probability of language l for word wi, and
Pl,w−2(wi|ci−1) represents the word bigram prob-
ability of language l for wordwi given its previous
word.

In order to compute the character-level N-
grams, we used the 4-gram probability to predict
the language of an essay file, while for speech
files, we used the summation of trigram and 4-
gram character probabilities. In both essay and
speech files, we used the sum of word-level mono-
gram and bigram probabilities. These N-grams
were chosen in a way that they could achieve the
best results on the dev dataset, when trained using
the train one.

In order to compute the final probability of a
text file for each language, we added the character-
level and word-level probabilities together. The
language with the highest probability was chosen
as the predicted language for the text. To test our
system on the test dataset, we trained our system
using both train and dev datasets.

5 Results

In the first test phase, we achieved the macro F1-
score of 0.7609 and the overall accuracy of 0.7636
on the Essay track, and the macro F1-score of
0.4530 and the overall accuracy of 0.4536 on the
Speech track. Tables 1 and 2 show our method’s
performance on each class, and Figure 1 and 2
show the confusion matrices yielded in the first
test phase.

In the second test phase, we tested our system
using both essay, speech, and the fusion of both
essay and speech datasets. Table 3 shows the re-
sults achieved in each test. As you can see, the
best result was achieved in the fusion test. Table
4 shows our method’s performance on each class,
and Figure 3 shows the confusion matrix from the
fusion result in the second test phase.

All results reported in this section were offi-
cially submitted as part of the NLI Shared Task
2017.

6 Discussion

First of all, it is worth mentioning that all the re-
sults reported in this paper were achieved with-
out the use of i-vectors, and therefore the compar-
isons between the results of our method with the
baseline results are done only for essay, speech
(transcriptions-only) and the fusion of essay and
speech transcriptions.

Our implemented method is useful in the native
language identification of essays (outperforming
the baseline F1-score of 0.710), it does not per-
form well on speech transcriptions (whose base-
line F1-score is 0.544), and as a result the fusion
of essays and transcriptions (with a baseline F1-
score of 0.779). The reason for this can be the fact
that in speech transcriptions, the file lengths vary
much more than those of the essay files. The fact
that, in our method, the length of the file can affect
the probabilities can lead to this result.

As evident in Figure 1 to 3, most of the per-
formance reduction was due to complications in
telling Telugu and Hindi apart. Figure 2 shows
that, in the speech track, both of these languages
have very often been mistaken for each other;
however, Figure 1 and 3 point to the fact that in the
essay and fusion tracks, Hindi has been detected
more accurately, while Telugu has often been la-
beled as Hindi.

An interesting point worth mentioning is that,
although our method did not yield a decent perfor-
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Language Precision Recall F1-Score
ARA 0.8333 0.6500 0.7303
CHI 0.7944 0.8500 0.8213
FRE 0.8400 0.8400 0.8400
GER 0.8125 0.9100 0.8585
HIN 0.5590 0.9000 0.6897
ITA 0.8966 0.7800 0.8342
JPN 0.8506 0.7400 0.7914
KOR 0.8182 0.7200 0.7660
SPA 0.7345 0.8300 0.7793
TEL 0.7778 0.4200 0.5455
TUR 0.6726 0.7600 0.7136
Avg 0.7809 0.7636 0.7609

Table 1: Per Class Performance for the Essay Track

Language Precision Recall F1-Score
ARA 0.3204 0.3300 0.3251
CHI 0.5440 0.6800 0.6044
FRE 0.4343 0.4300 0.4322
GER 0.4907 0.5300 0.5096
HIN 0.3507 0.4700 0.4017
ITA 0.4444 0.4000 0.4211
JPN 0.5417 0.5200 0.5306
KOR 0.5176 0.4400 0.4757
SPA 0.4045 0.3600 0.3810
TEL 0.4040 0.4000 0.4020
TUR 0.5972 0.4300 0.5000
Avg 0.4591 0.4536 0.4530

Table 2: Per Class Performance for the Speech Track

mance on the speech dataset, it achieved optimal
performance when implemented on the combina-
tion of both essay and speech files in the fusion
phase.

As explained in Section 3, our method is a
rather simple one, compared to SVM and artificial
neural networks. The combination of character N-
grams and word N-grams used in our method is
purely experimental, and does not take advantage
of a strong mathematical basis.

All that being said, our method could still be
used in combination with a form of supervised
learning, in order to be more effective and achieve
a decent accuracy rate.

7 Acknowledgement

We would like to express our sincere gratitude to
Professor Leila Kosseim from Concordia Univer-
sity, for her support and encouragement through
this task.

References
Hessam Amini, Hadi Veisi, and Elham Moham-

madi. 2016. Target words selection for a persian
brain-computer-interface-based speller using lan-
guage model. In Information and Knowledge Tech-
nology (IKT), 2016 Eighth International Conference
on. IEEE, pages 216–220.

Daniel Blanchard, Joel Tetreault, Derrick Higgins,
Aoife Cahill, and Martin Chodorow. 2013. Toefl11:
A corpus of non-native english. Technical report,
Educational Testing Service.

Peter F Brown, Peter V Desouza, Robert L Mercer,
Vincent J Della Pietra, and Jenifer C Lai. 1992.
Class-based n-gram models of natural language.
Computational Linguistics 18(4):467–479.

Serhiy Bykh, Sowmya Vajjala, Julia Krivanek, and
Detmar Meurers. 2013. Combining shallow and
linguistically motivated features in native language
identification. NAACL/HLT 2013 page 197.

Binod Gyawali, Gabriela Ramı́rez-de-la Rosa, and
Thamar Solorio. 2013. Native language identifica-

213



C
H

I

JP
N

KO
R

H
IN

TE
L

FR
E

IT
A

SP
A

G
ER

A
R
A

TU
R

Predicted label

CHI

JPN

KOR

HIN

TEL

FRE

ITA

SPA

GER

ARA

TUR

T
ru

e
 l
a
b
e
l

85 3 1 8 1 2

6 74 9 2 4 5

6 7 72 2 3 2 8

1 90 6 1 1 1

4 1 1 31 42 5 9 7

2 1 84 3 7 3

5 6 78 4 5 2

6 1 3 4 83 2 1

1 4 1 1 91 2

2 3 6 1 1 2 8 2 65 10

3 1 2 5 2 5 1 4 1 76

Confusion Matrix

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 1: The Confusion Matrix in the Essay Track

System F1-Score Accuracy
Essay 0.7609 0.7636
Speech 0.4530 0.4536
Fusion 0.7748 0.7764

Table 3: Results in the Second Test Phase

tion: a simple n-gram based approach. In BEA@
NAACL-HLT . pages 224–231.

John C Henderson, Guido Zarrella, Craig Pfeifer, and
John D Burger. 2013. Discriminating non-native en-
glish with 350 words. In BEA@ NAACL-HLT . pages
101–110.

Scott Jarvis, Yves Bestgen, and Steve Pepper. 2013.
Maximizing Classification Accuracy in Native Lan-
guage Identification. In Proceedings of the Eighth
Workshop on Innovative Use of NLP for Building
Educational Applications. Association for Compu-
tational Linguistics, Atlanta, Georgia, pages 111–
118.

Ekaterina Kochmar. 2011. Identification of a writer’s
native language by error analysis. Master’s thesis,
University of Cambridge.

Kristopher Kyle, Scott A Crossley, Jianmin Dai, and
Danielle S McNamara. 2013. Native language iden-
tification: A key n-gram category approach. In
BEA@ NAACL-HLT . pages 242–250.

Batia Laufer and Nany Girsai. 2008. Form-focused in-
struction in second language vocabulary learning: A

case for contrastive analysis and translation. Applied
Linguistics 29(4):694–716.

Shervin Malmasi, Keelan Evanini, Aoife Cahill, Joel
Tetreault, Robert Pugh, Christopher Hamill, Diane
Napolitano, and Yao Qian. 2017. A Report on the
2017 Native Language Identification Shared Task.
In Proceedings of the 12th Workshop on Building
Educational Applications Using NLP. Association
for Computational Linguistics, Copenhagen, Den-
mark.

Bjrn Schuller, Stefan Steidl, Anton Batliner, Ju-
lia Hirschberg, Judee K. Burgoon, Alice Baird,
Aaron Elkins, Yue Zhang, Eduardo Coutinho,
and Keelan Evanini. 2016. The INTER-
SPEECH 2016 Computational Paralinguistics
Challenge: Deception, Sincerity & Native Lan-
guage. In Interspeech 2016. pages 2001–2005.
https://doi.org/10.21437/Interspeech.2016-129.

Joel Tetreault, Daniel Blanchard, and Aoife Cahill.
2013. A Report on the First Native Language Iden-
tification Shared Task. In Proceedings of the Eighth
Workshop on Building Educational Applications Us-

214



C
H

I

JP
N

KO
R

H
IN

TE
L

FR
E

IT
A

SP
A

G
ER

A
R
A

TU
R

Predicted label

CHI

JPN

KOR

HIN

TEL

FRE

ITA

SPA

GER

ARA

TUR

T
ru

e
 l
a
b
e
l

68 4 8 4 2 3 3 5 3

15 52 7 4 5 4 2 2 1 6 2

13 14 44 4 3 5 1 7 1 6 2

3 1 3 47 22 5 5 5 6 3

3 2 31 40 4 2 5 1 9 3

3 6 2 6 4 43 6 7 10 5 8

2 1 1 7 4 9 40 7 13 12 4

6 6 9 4 5 8 9 36 6 7 4

3 5 4 4 3 9 8 7 53 4

3 5 4 11 7 10 11 7 6 33 3

6 2 1 12 4 4 3 1 12 12 43

Confusion Matrix

0.00

0.08

0.16

0.24

0.32

0.40

0.48

0.56

0.64

Figure 2: The Confusion Matrix in the Speech Track

C
H

I

JP
N

KO
R

H
IN

TE
L

FR
E

IT
A

SP
A

G
ER

A
R
A

TU
R

Predicted label

CHI

JPN

KOR

HIN

TEL

FRE

ITA

SPA

GER

ARA

TUR

T
ru

e
 l
a
b
e
l

91 2 7

7 80 4 1 1 2 2 1 2

7 6 77 2 2 3 3

89 9 1 1

2 37 41 4 12 4

1 1 1 82 2 9 3 1

3 6 76 7 6 2

5 1 2 6 81 2 2 1

4 1 1 2 92

1 1 10 2 8 2 8 1 65 2

1 8 2 3 5 1 80

Confusion Matrix

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 3: The Confusion Matrix in the Fusion Track (Best Result)

215



Language Precision Recall F1-Score
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SPA 0.6983 0.8100 0.7500
TEL 0.7321 0.4100 0.5256
TUR 0.8511 0.8000 0.8247
Avg 0.7949 0.7764 0.7748

Table 4: Per Class Performance for the Fusion Track (Best Result)
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Abstract

Our team—Uvic-NLP—explored and
evaluated a variety of lexical features
for Native Language Identification (NLI)
within the framework of ensemble
methods. Using a subset of the highest-
performing features, we train Support
Vector Machines (SVM) and Fully Con-
nected Neural Networks (FCNN) as base
classifiers, and test different methods for
combining their outputs. Restricting our
scope to the closed essay track in the NLI
Shared Task 2017, we find that our best
SVM ensemble achieves an F1 score of
0.8730 on the test set.

1 Introduction

Native Language Identification (NLI) is the task
of identifying a person’s native language (L1)
based on a sample of their writing or speech in
a second language (L2). The underlying intu-
ition is that those with the same L1 tend to use
similar language patterns during L2 production.
This is known as cross-linguistic influence (Or-
tega, 2014).

NLI can accelerate second language acquisition
by giving students L1-specific feedback on their
written or spoken samples (Malmasi et al., 2014).
In forensic linguistics, NLI can be applied to iden-
tify the L1 of anonymous texts (Perkins, 2015).

The NLI Shared Task 2013—the first of its
kind—was based on written essays (Tetreault
et al., 2013), while the 2016 Computational Par-
alinguistics Challenge was based on spoken re-
sponses (Schuller et al., 2016). The NLI Shared
Task 2017 organizers provided a dataset of both
essays and transcriptions of verbal responses

∗These authors contributed equally to this work.

(Malmasi et al., 2017). As our team—Uvic-
NLP—participated in the closed essay track, we
performed classification on essays only.

We begin our analysis by comparing various
lexical features and focus on two high-performing
classifiers: Support Vector Machines (SVM) and
Fully Connected Neural Networks (FCNN). Then,
we explore different ensemble methods for com-
bining outputs of individual classifiers. We present
and discuss three of our best systems for this task:
a single SVM classifier, an SVM ensemble, and an
FCNN ensemble.

2 Related Work

NLI is generally conceptualized as a multi-
class supervised classification problem, where the
classes represent the set of possible L1s. One of
the first NLI systems trained SVMs on a variety of
stylistic features (Koppel et al., 2005).

The NLI Shared Task 2013 introduced a corpus
designed specifically for NLI (Blanchard et al.,
2013). Use of a standardized dataset and eval-
uation metric allowed for the effective compar-
ison of different models, and the results con-
firmed the usefulness of SVMs for NLI (Tetreault
et al., 2013). Popular features included word, part
of speech (POS), and character n-grams; higher-
order n-grams were shown to be especially useful.
Four of the top five teams used at least 4-grams,
with the top team using up to 9-grams. String ker-
nels using 5- to 8-grams at the character-level also
worked well, and were one of the best performing
models for this task (Ionescu et al., 2014).

A trend in recent work is the use of ensem-
ble methods, which combine the predictions of
a set of classifiers, giving more accurate results
than a single classifier trained on a combination of
different features (Tetreault et al., 2012; Malmasi
et al., 2013). Malmasi and Dras (2017) used meta-
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classifier ensembles, where results from base clas-
sifiers are fed to an ensemble of meta-classifiers.
Such models are the current state of the art for
NLI.

3 Data

The dataset for the essay track of the NLI Shared
Task 2017 was collected by Educational Testing
Services, and consists of written responses to a
standardized assessment of English proficiency for
academic purposes.

13,200 response essays from test takers were
separated into three sets: 11,000 for training
(TRAIN), 1,100 for development (DEV), and 1,100
for testing (TEST). Each set of documents
is equally distributed among eleven L1s: Ara-
bic (ARA), Chinese (CHI), French (FRE), Ger-
man (GER), Hindi (HIN), Italian (ITA), Japanese
(JPN), Korean (KOR), Spanish (SPA), Telugu
(TEL), and Turkish (TUR).

4 Features

Previous work demonstrates that a variety of lex-
ical and syntactic features are useful for NLI
(Tetreault et al., 2012). In addition to incorporat-
ing lexical features known to be effective for this
task, we also extract phonemes. Here, we describe
each of the features in turn.

Word n-grams Where topic bias is pervasive,
word n-grams are not useful features for classifica-
tion (Brooke and Hirst, 2011), but have been used
successfully in topic-balanced corpora (Tetreault
et al., 2012). Our dataset is balanced across top-
ics, making word n-grams useful.

Lemma n-grams Lemmas are the dictionary
representation of words, i.e. words that are
stripped of morphological marking. The lemma-
tized versions of all words in our corpus were at-
tained using Natural Language Toolkit’s WordNet
interface (Bird et al., 2009; Feinerer and Hornik,
2016; Wallace, 2007; Fellbaum, 1998).

Character n-grams Tsur and Rappoport (2007)
achieved good results on the NLI task using only
character bigrams as features. Methods working at
the character level were also the previous state of
the art (Ionescu et al., 2014). Character n-grams
can be generated from text within or across word
boundaries.

Part of speech n-grams Koppel et al. (2005)
found rare part of speech (POS) bigrams to be
a useful feature; many teams in the 2013 Shared
Task also made use of this feature (Tetreault et al.,
2013). We use the Stanford Tagger to extract POS
features (Toutanova et al., 2003).

Function words Function words are a closed
class of words that serve a grammatical function
in sentences, whose use for NLI was explored
early on (Koppel et al., 2005). These include ar-
ticles, determiners, conjunctions, and auxiliaries.
These were extracted based on a list provided in
the ModErn Text Analysis Toolkit (Massung et al.,
2016).

Spelling errors Spelling errors were extracted
by finding the difference between misspelled
words before and after they were corrected using
the autocorrect package (Jonas, 2013). We coded
a subset of the spelling errors defined by Koppel
et al. (2005): repeated letter, double letter appears
only once, letter replacement, letter inversion, in-
serted letter, and missing letter.

Phoneme n-grams Phonemes are representa-
tions of sounds in a language. In English, one
sound can be represented using many different let-
ters (e.g. cat and kick). For mapping orthogra-
phy onto phonemes, we used the Carnegie Mel-
lon Pronouncing Dictionary (Weide, 2005). To our
knowledge, phonemes have not yet been explored
as a feature.

5 Classifiers

We evaluated classifier performance across fea-
tures types and found that the SVM and FCNN
classifiers consistently outperformed other classi-
fiers, such as Perceptron and Multinomial Naive
Bayes. As such, we focus on these two classifiers
in subsequent experiments.

Ensemble methods involve combining the out-
puts of multiple classifiers to yield a final pre-
diction (Polikar, 2006). Three types of ensemble
methods which have been shown to be useful for
NLI are explored here (Malmasi and Dras, 2017).
At a high level, SVM and FCNN outputs are com-
bined using (1) a voting scheme, (2) a Linear Dis-
criminant Analysis (LDA) classifier trained on the
outputs, and (3) multiple LDA classifiers—trained
on random subsets of the outputs—whose predic-
tions are in turn combined using a voting scheme.
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Table 1: Comparison of individual feature types
using SVM and FCNN classifiers, using F1 scores
on DEV. The highest F1 score for each feature set
is indicated in bold.

Feature type SVM FCNN

Word unigram 0.6936 0.7645
Word bigram 0.7228 0.8027
Word trigram 0.6705 0.6790

Lemma 0.6703 0.7481

Character bigram 0.4787 0.5818
Character trigram 0.6360 0.7381
Character 4-gram 0.7213 0.7836
Character 5-gram 0.7363 0.8081

POS bigram 0.4286 0.4081
POS trigram 0.4723 0.4472

Function words 0.3036 0.5646

Spelling errors 0.2201 0.2509

Phoneme bigram 0.5356 0.5509
Phoneme trigram 0.6697 0.6654
Phoneme 4-gram 0.7089 0.6727
Phoneme 5-gram 0.7241 0.6654

Combined 0.8183 0.7784

5.1 Support Vector Machine (SVM)

SVMs (Joachims, 1998) are frequently used for
text classification and have been applied success-
fully to NLI (Tetreault et al., 2013). We use
a scikit-learn SVM implementation: LinearSVC
(Pedregosa et al., 2011).

5.2 Neural Networks

Since we found little previous work applying neu-
ral networks to NLI, this paper strives to fill this
gap by constructing a FCNN using TensorFlow
(Allaire et al., 2016) and the Keras (Chollet et al.,
2015) framework.

The network is comprised of one hidden layer
of 128 nodes that uses a tanh activation function
and an input dropout of 0.2. The optimal dropout
value was established empirically. Following the
hidden layer, there is an 11 node output layer that
uses the softmax activation function. The entire
network uses a cross entropy loss function and the
Adam optimization algorithm.

Due to memory constraints, we limit analysis to
only the 100,000 most important features, selected
by performing an ANOVA F-test on the entire fea-

ture set (Harwell et al., 1992).
In addition to the FCNN, we test another type of

neural network for this task. Following the archi-
tecture described by Wang et al. (2016), we train
a pipeline consisting of a convolutional neural net-
work (CNN) which transforms the input data at the
character-level and a Long Term Short Memory
(LSTM) neural network which performs classifi-
cation on the output of the CNN. We also trained
an LSTM on word vectors (Mikolov et al., 2013).
In both cases, however, we found results to be
lacking in accuracy.

5.3 Ensemble construction

For any given SVM or FCNN, the output for 11-
way classification can be represented as a vector
of 11 numbers. For the SVM, output is in the
form of confidence scores for each class, which
is equivalent to the signed distance of that sample
to each class’s hyperplane (Weston and Watkins,
1998). Similarly, each FCNN prediction is in the
form of confidence values for each class, derived
from the softmax output layer.

Using the best feature combination and rep-
resentation from the previous experiments, we
trained two sets of base classifiers—FCNNs and
SVMs—on different features and combined each
set of outputs using three different voting schemes
(Polikar, 2006):

• Mean: Final label is the class corresponding
to the greatest average confidence score.

• Median: Final label is the class correspond-
ing to the greatest median confidence score.

• Plurality vote: Final label is the class with
the greatest number of votes. In a tie, we
choose the class that comes first alphabeti-
cally.

In line with previous work, we achieve the high-
est accuracy using the mean rule (Malmasi et al.,
2013), as shown in Table 3.

5.4 Meta-classifier

Another way to combine the outputs of several
base classifiers is to feed their outputs into an-
other classifier, also known as a meta-classifier. To
obtain outputs from SVMs and FCNNs, we split
the training set into ten folds and perform cross-
validation. This gave us a set of meta-features
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that were then used as input to an LDA meta-
classifier, which was found to outperform other
algorithms for meta-classification in Malmasi and
Dras (2017).

5.5 Meta-classifier ensembles

Building on the idea of ensembles and meta-
classification, we experiment with ensembles of
meta-classifiers (Malmasi and Dras, 2017). SVM
and FCNN outputs—meta-features—are gener-
ated in the same way as in section 5.4. How-
ever, instead of training a single meta-classifier on
these features, we use bagging (bootstrap aggre-
gating) to train multiple LDAs on random subsets
of the base classifier outputs. A grid search was
performed to find the optimal number of meta-
classifiers and optimal percentage of samples to
train each LDA on. The predictions from multiple
LDAs were then combined using voting schemes
described in section 5.3.

6 Results and Discussion

In this section we present our results on single fea-
tures, feature combinations, single classifiers, and
classifier ensembles.

6.1 Individual features

The results of SVM and FCNN classifiers trained
on different features are shown in Table 1. For
these experiments, features were represented by
their frequency count. We observe a general trend
within different feature types: F1 scores increase
as n-gram order increases (see Table 1). This is not
unexpected, given the success of NLI models that
make use of higher-order n-grams (Jarvis et al.,
2013; Tetreault et al., 2013). One exception to this
trend is that there seems to be a upper-bound for
word n-grams at the bigram level, where accuracy
drops for word trigrams. This may be attributed in
part to the increased sparsity of features when we
move from bigrams to trigrams at the word-level.

Interestingly, spelling errors were less informa-
tive than what we had expected. Although we
did not evaluate the accuracy of the autocorrect
package we used for spelling correction, we sus-
pect that it did not perform well since it operates
naively, without looking at context (Jonas, 2013).
Additionally, the types of errors we defined might
have not been fine-grained enough to capture dif-
ferences unique to groups of L1 writers.

6.2 Single classifier results

As in Malmasi et al. (2013), we measure the ef-
fectiveness of different feature representations. Of
the feature types described above, we include in
our final system only a subset of the highest per-
forming features. Thus, analysis is limited to this
subset of features.

With frequency counts as a baseline, we com-
pare the performance of classifiers trained on three
different combinations of high-performing fea-
tures. These groups are:

• Word: Lemmas, words (1-, 2-, and 3-grams).

• Char: Characters (4- and 5-grams).

• Phoneme: Phonemes (4- and 5-grams).

Each group of features is tested with and with-
out term frequency-inverse document frequency
(TF-IDF) weighting. Further, we examine the ef-
fects of binarization, L1 normalization, and L2
normalization on the same feature set. Note that
L1 and L2 normalization refer to the vector norms
across each input row. These results are summa-
rized in Table 2.

Comparing classifiers trained on individual fea-
tures (Table 1) to those trained on combinations of
features (Table 2), it is evident that better results
are achieved by training a single classifier on mul-
tiple features than on any single feature type. Fur-
ther, Table 2 shows that the best performing clas-
sifiers use L2-normalized features with TF-IDF.

Our official submission to the NLI Shared Task
2017 used a single SVM classifier, which requires
less time and fewer computational resources to
train compared to a FCNN. An SVM on words (1-,
2-, and 3-grams) and characters (4- and 5-grams)
achieves an F1 score of 0.8633 on TEST (see Table
4). The features were binarized, L2-normalized
and TF-IDF weighted. The confusion matrix is
shown in Figure 1.

6.3 Ensembles

The results detailed in this section were not sub-
mitted as part of the NLI Shared Task 2017, and
were obtained after the test phase ended.

At the most basic level, individual classifiers are
combined in a straightforward manner using a vot-
ing scheme. As we increase the complexity of the
model, first by training an LDA meta-classifier on
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Table 2: Comparison of feature representations for SVM and FCNN classifiers, using F1 scores on DEV.
The best feature representation for each classifier is indicated in bold.

Word Char Phoneme

SVM FCNN SVM FCNN SVM FCNN

TF

Binarized 0.7983 0.8190 0.6932 0.8172 0.7550 0.6950
Frequency counts 0.8090 0.8090 0.6931 0.8003 0.7056 0.6971
L1 Normalized 0.6167 0.6372 0.4921 0.4427 0.4270 0.4604
L2 Normalized 0.7736 0.7854 0.7629 0.7610 0.7677 0.6971

TF-IDF

Binarized 0.8092 0.7872 0.6837 0.7693 0.7489 0.6623
Frequency counts 0.7772 0.7579 0.6834 0.7560 0.7085 0.6578
L1 Normalized 0.6954 0.7845 0.5911 0.3794 0.5325 0.2919
L2 Normalized 0.8049 0.8155 0.7709 0.8048 0.7812 0.7059
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Figure 1: SVM confusion matrix on TEST. The
SVM was trained on words (1-, 2-, and 3-grams)
and characters within word boundaries (4- and 5-
grams).

the outputs, and then by constructing an ensem-
ble of meta-classifiers, we observe a slight perfor-
mance gain for both SVMs and FCNNs at each
step, consistent with the results in Malmasi and
Dras (2017). Table 3 summarizes our results from
using different ensemble methods to combine in-
dividual classifiers trained on words (2- and 3-
grams), characters (4- and 5-grams) and phonemes
(4- and 5-grams).

Further experiments with SVMs and FCNNs
were conducted by selecting different features to
combine on a trial and error basis. The decision to
use character n-grams within as opposed to across
word boundaries was made arbitrarily. All fea-
tures are binarized, L2-normalized, and TF-IDF

Table 3: Comparison of different ensemble meth-
ods to combine outputs of SVM and FCNN clas-
sifiers: voting schemes, LDA meta-classifier, and
an ensemble of LDA meta-classifiers. F1 scores
on DEV are shown. The best result for each classi-
fier is indicated in bold.

SVM FCNN

Voting
scheme

Plurality vote 0.8285 0.8109
Mean 0.8417 0.8345
Median 0.8313 0.8363

Meta-
classifier

LDA 0.8448 0.8534

Meta-
classifier
ensembles

Plurality-LDA 0.8449 0.8507
Mean-LDA 0.8475 0.8544
Median-LDA 0.8475 0.8544

weighted. The results of our best ensemble classi-
fiers on DEV and TEST are displayed in Table 4.

While an ensemble of meta-classifiers outper-
forms both a simple voting scheme and a single
meta-classifier, we do not observe the same per-
formance gain with respect to FCNNs (see Table
3).

Our best SVM ensemble consists of an ensem-
ble of meta-classifiers. SVMs are trained on words
(2- and 3-grams), characters within word bound-
aries (4- and 5-grams), and phonemes (4- and 5-
grams), giving a total of six classifiers. The out-
puts of these individual classifiers are fed to an
ensemble of LDAs, as described in 5.5. Finally,
the LDA predictions are combined using the mean
rule. The F1 score on TEST for this model is
0.8730.

Our best FCNN ensemble applies a voting
scheme to classifier outputs. Four FCNN networks
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Table 4: F1 scores on TEST and on DEV for final
systems. Ensemble results were obtained after the
test phase. The best result for each dataset is indi-
cated in bold. ∗ = Official submission to the NLI
Shared Task 2017.

System DEV TEST

Random baseline 0.9090 —
Official baseline 0.7104 —
SVM∗ 0.8168 0.8633
SVM ensemble 0.8475 0.8730
FCNN ensemble 0.8576 0.8560

are trained on the following combination of fea-
tures: (1) word bigrams and lemma trigrams, (2)
word bigrams, (3) character 5-grams, (4) charac-
ter 5-grams within word boundaries. The outputs
from these individual networks are combined us-
ing the mean rule, yielding an F1 score of 0.8560
on TEST.

Additionally, we created an ensemble of differ-
ent SVM and FCNN classifiers but found no im-
provement over pure ensembles of either type.

7 Future work

We excluded from our system individual features
that did not perform well in our experiments. It
would be helpful to evaluate the influence of these
less accurate features and determine whether they
would be useful to include in ensemble classifiers.
Further, we tested a limited number of combina-
tions of features. One facet of the problem in-
volves developing a systematic approach to search
for a good feature set.

Although we trained several FCNNs on differ-
ent feature types, its utility as a meta-classifier has
not been examined.

A CNN-LSTM model shown to perform well
for sentiment analysis (Wang et al., 2016) did
not achieve good results for NLI. While senti-
ment classification typically involves five or fewer
classes, there were 11 classes for the NLI Shared
Task 2017. It may may be that additional classes
increase the possibility of error. Further investi-
gation is required to explain why a CNN-LSTM
architecture performs worse relative to a FCNN
model.

Our results show the utility of various features
for this task and confirm that ensemble methods
perform better than single classifiers trained on
multiple features. They also offer several new di-

rections to further improve NLI systems.
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Abstract

We describe a machine learning approach
for the 2017 shared task on Native Lan-
guage Identification (NLI). The proposed
approach combines several kernels using
multiple kernel learning. While most
of our kernels are based on character
p-grams (also known as n-grams) ex-
tracted from essays or speech transcripts,
we also use a kernel based on i-vectors,
a low-dimensional representation of au-
dio recordings, provided by the shared
task organizers. For the learning stage,
we choose Kernel Discriminant Analy-
sis (KDA) over Kernel Ridge Regression
(KRR), because the former classifier ob-
tains better results than the latter one
on the development set. In our previ-
ous work, we have used a similar ma-
chine learning approach to achieve state-
of-the-art NLI results. The goal of this
paper is to demonstrate that our shallow
and simple approach based on string ker-
nels (with minor improvements) can pass
the test of time and reach state-of-the-
art performance in the 2017 NLI shared
task, despite the recent advances in natu-
ral language processing. We participated
in all three tracks, in which the competi-
tors were allowed to use only the essays
(essay track), only the speech transcripts
(speech track), or both (fusion track). Us-
ing only the data provided by the orga-
nizers for training our models, we have
reached a macro F1 score of 86.95% in
the closed essay track, a macro F1 score
of 87.55% in the closed speech track, and
a macro F1 score of 93.19% in the closed
∗ The authors have equally contributed to this work.

fusion track. With these scores, our team
(UnibucKernel) ranked in the first group
of teams in all three tracks, while attain-
ing the best scores in the speech and the
fusion tracks.

1 Introduction

Native Language Identification (NLI) is the task of
identifying the native language (L1) of a person,
based on a sample of text or speech they have pro-
duced in a language (L2) other than their mother
tongue. This is an interesting sub-task in forensic
linguistic applications such as plagiarism detec-
tion and authorship identification, where the native
language of an author is just one piece of the puz-
zle (Estival et al., 2007). NLI can also play a key
role in second language acquisition (SLA) appli-
cations where NLI techniques are used to identify
language transfer patterns that help teachers and
students focus feedback and learning on particu-
lar areas of interest (Rozovskaya and Roth, 2010;
Jarvis and Crossley, 2012).

In 2013, Tetreault et al. (2013) organized the
first NLI shared task, providing the participants
written essays of non-native English learners. In
2016, the Computational Paralinguistics Chal-
lenge (Schuller et al., 2016) included a shared task
on NLI based on the spoken response of non-
native English speakers. The 2017 NLI shared
task (Malmasi et al., 2017) attempts to combine
these approaches by including a written response
(essay) and a spoken response (speech transcript
and i-vector acoustic features) for each subject.
Our team (UnibucKernel) participated in all three
tracks proposed by the organizers of the 2017 NLI
shared task, in which the competitors were al-
lowed to use only the essays (closed essay track),
only the speech transcripts (closed speech track),
or both modalities (closed fusion track).

Our approach in each track combines two or
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more kernels using multiple kernel learning. The
first kernel that we considered is the p-grams pres-
ence bits kernel1, which takes into account only
the presence of p-grams instead of their frequency.
The second kernel is the (histogram) intersection
string kernel2, which was first used in a text min-
ing task by Ionescu et al. (2014). While these
kernels are based on character p-grams extracted
from essays or speech transcrips, we also use an
RBF kernel (Shawe-Taylor and Cristianini, 2004)
based on i-vectors (Dehak et al., 2011), a low-
dimensional representation of audio recordings,
made available by the 2017 NLI shared task orga-
nizers (Malmasi et al., 2017). We have also con-
sidered squared RBF kernel versions of the string
kernels and the kernel based on i-vectors. We
have taken into consideration two kernel classi-
fiers (Shawe-Taylor and Cristianini, 2004) for the
learning task, namely Kernel Ridge Regression
(KRR) and Kernel Discriminant Analysis (KDA).
In a set of preliminary experiments performed on
the development set, we found that KDA gives bet-
ter results than KRR, which is consistent with our
previous work (Ionescu et al., 2014, 2016). There-
fore, we decided to submit results using just the
KDA classifier. We have also tuned the range of
p-grams for the string kernels. Using only the data
provided by the organizers for training our models,
we have reached a weighted F1 score of 86.95%
in the essay track, a weighted F1 score of 87.55%
in the speech track, and a weighted F1 score of
93.19% in the fusion track.

The first time we used string kernels for NLI, we
placed third in the 2013 NLI shared task (Popescu
and Ionescu, 2013). In 2014, we improved
our method and reached state-of-the-art perfor-
mance (Ionescu et al., 2014). More recently, we
have shown that our method is language indepen-
dent and robust to topic bias (Ionescu et al., 2016).
However, with all the improvements since 2013,
our method remained a simple and shallow ap-
proach. In spite of its simplicity, the aim of this
paper is to demonstrate that our approach can still
achieve state-of-the-art NLI results, 4 years after
its conception.

The paper is organized as follows. Related work
on native language identification and string ker-
nels is presented in Section 2. Section 3 presents

1We computed the p-grams presence bits kernel using the
code available at http://string-kernels.herokuapp.com.

2We computed the intersection string kernel using the
code available at http://string-kernels.herokuapp.com.

the kernels that we used in our approach. The
learning methods used in the experiments are de-
scribed in Section 4. Details about the NLI exper-
iments are provided in Section 5. Finally, we draw
conclusions and discuss future work in Section 6.

2 Related Work

2.1 Native Language Identification

As defined in the introduction, the goal of auto-
matic native language identification (NLI) is to de-
termine the native language of a language learner,
based on a piece of writing or speech in a foreign
language. Most research has focused on identify-
ing the native language of English language learn-
ers, though there have been some efforts recently
to identify the native language of writing in other
languages, such as Chinese (Malmasi and Dras,
2014b) or Arabic (Malmasi and Dras, 2014a).

The first work to study automated NLI was that
of Tomokiyo and Jones (2001). In their study, a
Naı̈ve Bayes model is trained to distinguish speech
transcripts produced by native versus non-native
English speakers. A few years later, a second
study on NLI appeared (Jarvis et al., 2004). In
their work, Jarvis et al. (2004) tried to determine
how well a Discriminant Analysis classifier could
predict the L1 language of nearly five hundred
English learners from different backgrounds. To
make the task more challenging, they included
pairs of closely related L1 languages, such as Por-
tuguese and Spanish. The seminal paper by Kop-
pel et al. (2005) introduced some of the best-
performing features for the NLI task: character,
word and part-of-speech n-grams along with fea-
tures inspired by the work in the area of second
language acquisition such as spelling and gram-
matical errors. In general, most approaches to
NLI have used multi-way classification with SVM
or similar models along with a range of linguistic
features. The book of Jarvis and Crossley (2012)
presents some of the state-of-the-art approaches
used up until 2012. Being the first book of its
kind, it focuses on the automated detection of L2
language-use patterns that are specific to differ-
ent L1 backgrounds, with the help of text classi-
fication methods. Additionally, the book presents
methodological tools to empirically test language
transfer hypotheses, with the aim of explaining
how the languages that a person knows interact in
the mind.

In 2013, Tetreault et al. (2013) organized the
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first shared task in the field. This allowed re-
searchers to compare approaches for the first time
on a specifically designed NLI corpus that was
much larger than previously available data sets. In
the shared task, 29 teams submitted results for the
test set, and one of the most successful aspects
of the competition was that it drew submissions
from teams working in a variety of research fields.
The submitted systems utilized a wide range of
machine learning approaches, combined with sev-
eral innovative feature contributions. The best
performing system in the closed task achieved an
overall accuracy of 83.6% on the 11-way classifi-
cation of the test set, although there was no signif-
icant difference between the top teams. Since the
2013 NLI shared task, several systems (Bykh and
Meurers, 2014, 2016; Ionescu et al., 2014, 2016)
have reported results above the top scoring system
of the 2013 NLI shared task.

Another interesting linguistic interpretation of
native language identification data was only re-
cently addressed, specifically the analysis of sec-
ond language usage patterns caused by native lan-
guage interference. Usually, language transfer
is studied by Second Language Acquisition re-
searchers using manual tools. Language transfer
analysis based on automated native language iden-
tification methods has been the approach of Jarvis
and Crossley (2012). Swanson and Charniak
(2014) also define a computational methodology
that produces a ranked list of syntactic patterns
that are correlated with language transfer. Their
methodology allows the detection of fairly obvi-
ous language transfer effects, without being able
to detect underused patterns. The first work to ad-
dress the automatic extraction of underused and
overused features on a per native language basis
is that of Malmasi and Dras (2014c). The work
of Ionescu et al. (2016) also addressed the auto-
matic extraction of underused and overused fea-
tures captured by character p-grams.

2.2 String Kernels

In recent years, methods of handling text at
the character level have demonstrated impres-
sive performance levels in various text analysis
tasks (Lodhi et al., 2002; Sanderson and Guenter,
2006; Kate and Mooney, 2006; Grozea et al.,
2009; Popescu, 2011; Escalante et al., 2011;
Popescu and Grozea, 2012; Popescu and Ionescu,
2013; Ionescu et al., 2014, 2016; Giménez-Pérez

et al., 2017; Ionescu and Butnaru, 2017). String
kernels are a common form of using information
at the character level. They are a particular case
of the more general convolution kernels (Haus-
sler, 1999). Lodhi et al. (2002) used string kernels
for document categorization with very good re-
sults. String kernels were also successfully used in
authorship identification (Sanderson and Guenter,
2006; Popescu and Grozea, 2012). For exam-
ple, the system described by Popescu and Grozea
(2012) ranked first in most problems and overall in
the PAN 2012 Traditional Authorship Attribution
tasks. More recently, various blended string ker-
nels reached state-of-the-art accuracy rates for na-
tive language identification (Ionescu et al., 2014,
2016) and Arabic dialect identification (Ionescu
and Popescu, 2016; Ionescu and Butnaru, 2017).
String kernels have also been used for sentiment
analysis in various languages (Popescu et al.,
2017) and in cross-domain settings (Giménez-
Pérez et al., 2017).

3 Kernels for Native Language
Identification

3.1 String Kernels

The kernel function captures the intuitive notion
of similarity between objects in a specific domain
and can be any function defined on the respec-
tive domain that is symmetric and positive definite.
For strings, many such kernel functions exist with
various applications in computational biology and
computational linguistics (Shawe-Taylor and Cris-
tianini, 2004). String kernels embed the texts in a
very large feature space, given by all the substrings
of length p, and leave it to the learning algorithm
to select important features for the specific task,
by highly weighting these features.

The first kernel that we use in the NLI experi-
ments is the character p-grams presence bits ker-
nel. The feature map defined by this kernel as-
sociates to each string a vector of dimension |Σ|p
containing the presence bits of all its substrings of
length p (p-grams). Formally, for two strings over
an alphabet Σ, s, t ∈ Σ∗, the character p-grams
presence bits kernel is defined as:

k0/1
p (s, t) =

∑
v∈Σp

inv(s) · inv(t),

where inv(s) is 1 if string v occurs as a substring
in s, and 0 otherwise.
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The second kernel that we employ is the inter-
section string kernel introduced in (Ionescu et al.,
2014). The intersection string kernel is defined as
follows:

k∩p (s, t) =
∑
v∈Σp

min{numv(s), numv(t)},

where numv(s) is the number of occurrences of
string v as a substring in s. Further details about
the string kernels for NLI are given in (Ionescu
et al., 2016). The efficient algorithm for com-
puting the string kernels is presented in (Popescu
et al., 2017).

Data normalization helps to improve machine
learning performance for various applications.
Since the value range of raw data can have large
variation, classifier objective functions will not
work properly without normalization. After nor-
malization, each feature has an approximately
equal contribution to the similarity between two
samples. To ensure a fair comparison of strings
of different lengths, normalized versions of the
p-grams presence bits kernel and the intersection
kernel are being used:

k̂0/1
p (s, t) =

k
0/1
p (s, t)√

k
0/1
p (s, s) · k0/1

p (t, t)
,

k̂∩p (s, t) =
k∩p (s, t)√

k∩p (s, s) · k∩p (t, t)
.

Taking into account p-grams of different lengths
and summing up the corresponding kernels, new
kernels, termed blended spectrum kernels, can be
obtained. We have used various blended spectrum
kernels in the experiments in order to find the best
combination. Inspired by the success of Ionescu
and Butnaru (2017) in using a squared RBF kernel
based on i-vectors for Arabic dialect identification,
we have also tried out squared RBF versions of the
above kernels. We first compute the standard RBF
kernels as follows:

k̄0/1
p (s, t) = exp

(
−1− k̂0/1

p (s, t)

2σ2

)
,

k̄∩p (s, t) = exp

(
−1− k̂∩p (s, t)

2σ2

)
.

We then interpret the RBF kernel matrix as a
feature matrix, and apply the dot product to obtain
a linear kernel for this new representation:

K̄ = K ·K ′.

The resulted squared RBF kernels are denoted
by (k̄0/1

p )2 and (k̄∩p )2, respectively.

3.2 Kernel based on Acoustic Features

For the speech and the fusion tracks, we also build
a kernel from the i-vectors provided by the orga-
nizers (Malmasi et al., 2017). The i-vector ap-
proach (Dehak et al., 2011) is a powerful speech
modeling technique that comprises all the updates
happening during the adaptation of a Gaussian
mixture model (GMM) mean components to a
given utterance. The provided i-vectors have 800
dimensions. In order to build a kernel from the
i-vectors, we first normalize the i-vectors using
the L2-norm, then we compute the euclidean dis-
tance between each pair of i-vectors. We next em-
ploy the RBF kernel (Shawe-Taylor and Cristian-
ini, 2004) to transform the distance into a similar-
ity measure:

k̂i-vec(x, y) = exp

−
√√√√ m∑

j=1

(xj − yj)2

2σ2

 ,

where x and y are two i-vectors and m represents
the size of the two i-vectors, 800 in our case. For
optimal results, we have tuned the parameter σ in
a set of preliminary experiments. We also interpret
the resulted similarity matrix as a feature matrix,
and we compute the product between the matrix
and its transpose to obtain the squared RBF kernel
based on i-vectors, denoted by (k̄i-vec)2.

4 Learning Methods

Kernel-based learning algorithms work by embed-
ding the data into a Hilbert feature space and by
searching for linear relations in that space. The
embedding is performed implicitly, by specify-
ing the inner product between each pair of points
rather than by giving their coordinates explicitly.
More precisely, a kernel matrix that contains the
pairwise similarities between every pair of train-
ing samples is used in the learning stage to assign
a vector of weights to the training samples.

Various kernel methods differ in the way they
learn to separate the samples. In the case of bi-
nary classification problems, kernel-based learn-
ing algorithms look for a discriminant function,
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a function that assigns +1 to examples belonging
to one class and −1 to examples belonging to the
other class. In the NLI experiments, we employed
the Kernel Ridge Regression (KRR) binary clas-
sifier. Kernel Ridge Regression selects the vector
of weights that simultaneously has small empiri-
cal error and small norm in the Reproducing Ker-
nel Hilbert Space generated by the kernel function.
KRR is a binary classifier, but native language
identification is usually a multi-class classification
problem. There are many approaches for com-
bining binary classifiers to solve multi-class prob-
lems. Typically, the multi-class problem is broken
down into multiple binary classification problems
using common decomposition schemes such as:
one-versus-all and one-versus-one. We considered
the one-versus-all scheme for our NLI task. There
are also kernel methods that take the multi-class
nature of the problem directly into account, for in-
stance Kernel Discriminant Analysis. The KDA
classifier is sometimes able to improve accuracy
by avoiding the masking problem (Hastie and Tib-
shirani, 2003). More details about the kernel clas-
sifiers employed for NLI are discussed in (Ionescu
et al., 2016).

5 Experiments

5.1 Data Set

The corpus provided for the 2017 NLI shared
task contains 13,200 multi-modal samples pro-
duces by speakers of the following 11 languages:
Arabic, Chinese, French, German, Hindi, Italian,
Japanese, Korean, Spanish, Telugu and Turkish.
The samples are split into 11,000 for training,
1100 for development and 1100 for testing. The
distribution of samples per prompt (topic) per na-
tive language is balanced. Each sample is com-
posed of an essay and an audio recording of a non-
native English learner. For privacy reasons, the
shared task organizers were not able to provide the
original audio recordings. Instead, they provided
a speech transcript and an i-vector representation
derived from the audio file.

5.2 Parameter and System Choices

In our approach, we treat essays or speech tran-
scripts as strings. Because the approach works
at the character level, there is no need to split
the texts into words, or to do any NLP-specific
processing before computing the string kernels.
Hence, we apply string kernels on the raw text

Kernel Accuracy
KRR KDA

k̂
0/1
5−9 82.18% 84.55%
k̂∩5−9 81.91% 84.18%

Table 1: Accuracy rates of KRR versus KDA on
the essay development set.

samples, disregarding the tokenized version of the
samples. The only editing done to the texts was the
replacing of sequences of consecutive space char-
acters (space, tab, and so on) with a single space
character. This normalization was needed in or-
der to prevent the artificial increase or decrease of
the similarity between texts, as a result of different
spacing.

We used the development set for tuning the pa-
rameters of our approach. Although we have some
intuition from our previous work (Ionescu et al.,
2016) about the optimal range of p-grams that
can be used for NLI from essays, we decided to
carry out preliminary experiments in order to con-
firm our intuition. We also carried out prelimi-
nary experiments to determine the optimal range
of p-grams to be used for speech transcripts, a dif-
ferent kind of representation that captures other
features of the non-native English speakers. We
fixed the learning method to KDA based on the
presence bits kernel and we evaluated all the p-
grams in the range 3-9. For essays, we found that
p-grams in the range 5-9 work best, which con-
firms our previous results on raw text documents
reported in (Ionescu et al., 2016). For speech tran-
scripts, we found that longer p-grams are not help-
ful. Thus, the optimal range of p-grams is 5-7. In
order to decide which classifier gives higher accu-
racy rates, we carried out some preliminary exper-
iments using only the essays. The KRR and the
KDA classifiers are compared in Table 1. We ob-
serve that KDA yields better results for both the
blended p-grams presence bits kernel (k̂0/1

5−9) and
the blended p-grams intersection kernel (k̂∩5−9).
Therefore, we employ KDA for the subsequent
experiments. An interesting remark is that we
also obtained better performance with KDA in-
stead of KRR for the English L2, in our previous
work (Ionescu et al., 2016).

After fixing the classifier and the range of p-
grams for each modality, we conducted further ex-
periments to establish what type of kernel works
better, namely the blended p-grams presence bits
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Kernel Accuracy Track
k̂

0/1
5−9 84.55% Essay
k̂∩5−9 84.18% Essay
k̂

0/1
5−9 + k̂∩5−9 85.18% Essay

(k̄0/1
5−9)2 85.45% Essay

(k̄∩5−9)2 85.09% Essay
(k̄0/1

5−9)2 + (k̄∩5−9)2 85.55% Essay
k̂

0/1
5−7 58.73% Speech
k̂∩5−7 58.55% Speech
k̂i-vec 81.64% Speech
k̂

0/1
5−7 + k̂∩5−7 58.73% Speech
k̂

0/1
5−7 + k̂i-vec 85.27% Speech
k̂∩5−7 + k̂i-vec 85.18% Speech
k̂

0/1
5−7 + k̂∩5−7 + k̂i-vec 84.91% Speech

(k̄0/1
5−7)2 59.00% Speech

(k̄∩5−7)2 59.82% Speech
(k̄i-vec)2 81.55% Speech
(k̄0/1

5−7)2 + (k̄∩5−7)2 59.91% Speech
(k̄0/1

5−7)2 + (k̄i-vec)2 85.36% Speech
(k̄∩5−7)2 + (k̄i-vec)2 85.27% Speech
(k̄0/1

5−7)2 + (k̄∩5−7)2 + (k̄i-vec)2 85.45% Speech
k̂

0/1
5−9 + k̂∩5−9 + k̂

0/1
5−7 + k̂i-vec 91.64% Fusion

k̂
0/1
5−9 + k̂

0/1
5−7 + k̂i-vec 92.09% Fusion

(k̄0/1
5−9)2 + (k̄∩5−9)2 + (k̄0/1

5−7)2 + (k̄∩5−7)2 + (k̄i-vec)2 91.72% Fusion

Table 2: Accuracy rates on the NLI development set obtained by KDA based on various kernels for the
essay, the speech and the fusion tracks. The submitted systems are highlighted in bold.

kernel, the blended p-grams intersection kernel,
or the kernel based on i-vectors. We also in-
cluded squared RBF versions of these kernels.
Since these different kernel representations are ob-
tained either from essays, speech transcripts or
from low-level audio features, a good approach
for improving the performance is combining the
kernels. When multiple kernels are combined,
the features are actually embedded in a higher-
dimensional space. As a consequence, the search
space of linear patterns grows, which helps the
classifier in selecting a better discriminant func-
tion. The most natural way of combining two or
more kernels is to sum them up. Summing up
kernels or kernel matrices is equivalent to feature
vector concatenation. The kernels were evaluated
alone and in various combinations, by employing
KDA for the learning task. All the results obtained
on the development set are given in Table 2.

The empirical results presented in Table 2 re-
veal several interesting patterns of the proposed

methods. On the essay development set, the pres-
ence bits kernel gives slightly better results than
the intersection kernel. The combined kernels
yield better performance than each of the indi-
vidual components, which is remarkably consis-
tent with our previous works (Ionescu et al., 2014,
2016). For each kernel, we obtain an improvement
of up to 1% by using the squared RBF version.
The best performance on the essay development
set (85.55%) is obtained by sum of the squared
RBF presence bits kernel and the squared RBF
intersection kernel. On the speech track, the re-
sults are fairly similar among the string kernels,
but the kernel based on i-vectors definitely stands
out. Indeed, the best individual kernel is the ker-
nel based on i-vectors with an accuracy of 81.64%.
By contrast, the best individual string kernel is the
squared RBF intersection kernel, which yields an
accuracy of 59.82%. Thus, it seems that the char-
acter p-grams extracted from speech transcripts
do not provide enough information to accurately
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Kernel Accuracy F1 (macro) Track Rank
k̂

0/1
5−9 + k̂∩5−9 86.91% 86.95% Essay 1st

(k̄0/1
5−9)2 + (k̄∩5−9)2 86.91% 86.95% Essay 1st

k̂
0/1
5−7 + k̂i-vec 87.55% 87.55% Speech 1st

(k̄0/1
5−7)2 + (k̄∩5−7)2 + (k̄i-vec)2 87.45% 87.45% Speech 1st

k̂
0/1
5−9 + k̂

0/1
5−7 + k̂i-vec 93.18% 93.19% Fusion 1st

(k̄0/1
5−9)2 + (k̄∩5−9)2 + (k̄0/1

5−7)2 + (k̄∩5−7)2 + (k̄i-vec)2 93.00% 93.01% Fusion 1st

Table 3: Accuracy rates on the NLI test set obtained by KDA based on various kernels for the essay, the
speech and the fusion tracks. The best marco F1 score in each track is highlighted in bold. The final rank
of each kernel combination in the 2017 NLI shared task is presented on the last column.

distinguish the native languages. On the other
hand, the i-vector representation extracted from
audio recordings is much more suitable for the
NLI task. Interestingly, we obtain consistently
better results when we combine the kernels based
on i-vectors with one or both of the string kernels.
The best performance on the speech development
set (85.45%) is obtained by sum of the squared
RBF presence bits kernel, the squared RBF inter-
section kernel and the squared RBF kernel based
on i-vectors. The top accuracy levels on the es-
say and speech development sets are remarkably
close. Nevertheless, when we fuse the features
captured by the kernels constructed for the two
modalities, we obtain considerably better results.
This suggests that essays and speech provide com-
plementary information, boosting the accuracy of
the KDA classifier by more than 6% on the fusion
development set. It is important to note that we
tried to fuse the kernel combinations that provided
the best performance on the essay and the speech
development sets, while keeping the original and
the squared RBF versions separated. We also tried
out a combination that does not include the inter-
section string kernel, an idea that seems to im-
prove the performance. Actually, the best perfor-
mance on the fusion development set (92.09%) is
obtained by sum of the presence bits kernel (k̂0/1

5−9)
computed from essays, the presence bits kernel
(k̂0/1

5−7) computed from speech transcripts, and the
kernel based on i-vectors (k̂i-vec). In each track, we
submitted the top two kernel combinations for the
final test evaluation.

5.3 Results

The results on the test set are presented in Ta-
ble 3. Although we tuned our approach to opti-
mize the accuracy rate, the official evaluation met-

ric for the NLI task is the macro F1 score. There-
fore, we have reported both the accuracy rate and
the macro F1 score in Table 3. Both kernel combi-
nations submitted to the essay track obtain equally
good results (86.95%). For the speech and the fu-
sion tracks, the squared RBF kernels reach slightly
lower performance than the original kernels. The
best submission to the speech track is the KDA
classifier based on the sum of the presence bits
kernel (k̂0/1

5−7) and the kernel based on i-vectors
(k̂i-vec), a combination that reaches a macro F1

score of 87.55%. These two kernels are also in-
cluded in the sum of kernels that gives our top
performance in the fusion track (93.19%). Along
with the two kernels, the best submission to the
fusion track also includes the presence bits kernel
(k̂0/1

5−9) computed from essays. An interesting re-
mark is that the results on the test set (Table 3)
are generally more than 1% better than the results
on the development set (Table 2), perhaps because
we have included the development samples in the
training set for the final test evaluation.

The organizers have grouped the teams based on
statistically significant differences between each
team’s best submission, calculated using McNe-
mar’s test with an alpha value of 0.05. The macro
F1 score of 86.95% places us in the first group of
methods in the essay track, although we reach only
the sixth best performance within the group. Re-
markably, we also rank in the first group of meth-
ods in the speech and the fusion tracks, while also
reaching the best performance in each of these two
tracks. It is important to note that UnibucKernel
is the only team ranked in first group of teams in
each and every track of the 2017 NLI shared task,
indicating that our shallow and simple approach is
still state-of-the-art in the field.

To better visualize our results, we have included
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Figure 1: Confusion matrix of the system based on squared RBF kernels on the essay track.
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Figure 2: Confusion matrix of the best system on the speech track.

the confusion matrices for our best runs in each
track. The confusion matrix presented in Figure 1
shows that our approach for the essay track has a
higher misclassification rate for Telugu, Hindi and
Korean, while the confusion matrix shown in Fig-

ure 2 indicates that our approach for the speech
track has a higher misclassification rate for Hindi,
Telugu and Arabic. Finally, the confusion ma-
trix illustrated in Figure 3, shows that we are able
to obtain the highest correct classification rate for
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Figure 3: Confusion matrix of the best system on the fusion track.

each and every L1 language (with respect to the
other two confusion matrices) by fusing the es-
say and speech information. While there are no
more than two misclassified samples for Chinese,
Japanese, Spanish and German, our fusion-based
approach still has some trouble in distinguishing
Hindi and Telugu. Another interesting remark is
that 5 native Arabic speakers are wrongly clas-
sified as French, perhaps because these Arabic
speakers are from Maghreb, a region in which
French arrived as a colonial language. As many
people in this region speak French as a second
language, it seems that our system gets confused
by the mixed Arabic (L1) and French (L2) lan-
guage transfer patterns that are observable in En-
glish (L3).

6 Conclusion and Future Work

In this paper, we have described our approach
based on learning with multiple kernels for the
2017 NLI shared task (Malmasi et al., 2017).
Our approach attained generally good results,
consistent with those reported in our previous
works (Ionescu et al., 2014, 2016). Indeed, our
team (UnibucKernel) ranked in the first group of
teams in all three tracks, while reaching the best
marco F1 scores in the speech (87.55%) and the
fusion (93.19%) tracks. As we are the only team

that ranked in first group of teams in each and ev-
ery track of the 2017 NLI shared task, we consider
that our approach has passed the test of time in na-
tive language identification.

Although we refrained from including other
types of features in order to keep our approach
shallow and simple, and to prove that we can
achieve state-of-the-art results using character p-
grams alone, we will consider combining string
kernels with other features in future work.
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Abstract

We present the RUG-SU team’s submis-
sion at the Native Language Identification
Shared Task 2017. We combine several
approaches into an ensemble, based on
spelling error features, a simple neural net-
work using word representations, a deep
residual network using word and character
features, and a system based on a recurrent
neural network. Our best system is an en-
semble of neural networks, reaching an F1
score of 0.8323. Although our system is
not the highest ranking one, we do outper-
form the baseline by far.

1 Introduction

Native Language Identification (NLI) is the task of
identifying the native language of, e.g., the writer
of an English text. In this paper, we describe the
University of Groningen / Stockholm University
(team RUG-SU) submission to NLI Shared Task
2017 (Malmasi et al., 2017). Neural networks con-
stitute one of the most popular methods in natural
language processing these days (Manning, 2015),
but appear not to have been previously used for
NLI. Our goal in this paper is therefore twofold.
On the one hand, we wish to investigate how well
a neural system can perform the task. On the other
hand, we wish to investigate the effect of using
features based on spelling errors.

2 Related Work

NLI is an increasingly popular task, which has
been the subject of several shared tasks in recent
years (Tetreault et al., 2013; Schuller et al., 2016;
Malmasi et al., 2017). Although earlier shared
task editions have focussed on English, NLI has
recently also turned to including non-English lan-
guages (Malmasi and Dras, 2015). Additionally,

although the focus in the past has been on using
written text, speech transcripts and audio features
have also been included in recent editions, for
instance in the 2016 Computational Paralinguis-
tics Challenge (Schuller et al., 2016). Although
these aspects are combined in the NLI Shared
Task 2017, with both written and spoken responses
available, we only utilise written responses in this
work. For a further overview of NLI, we refer the
reader to Malmasi (2016).

Previous approaches to NLI have used syntactic
features (Bykh and Meurers, 2014), string kernels
(Ionescu et al., 2014), and variations of ensemble
models (Malmasi and Dras, 2017; Tetreault et al.,
2013). No systems used neural networks in the
2013 shared task (Tetreault et al., 2013), hence
ours is one of the first works using a neural ap-
proach for this task, along with concurrent submis-
sions in this shared task (Malmasi et al., 2017).

3 External data

3.1 PoS-tagged sentences

We indirectly use the training data for the Stanford
PoS tagger (Manning et al., 2014), and for initial-
ising word embeddings we use GloVe embeddings
from 840 billion tokens of web data.1

3.2 Spelling features

We investigate learner misspellings, which is
mainly motivated by two assumptions. For one,
spelling errors are quite prevalent in learners’ writ-
ten production (Kochmar, 2011). Additionally,
spelling errors have been shown to be influenced
by phonological L1 transfer (Grigonytė and Ham-
marberg, 2014). We use the Aspell spell checker
to detect misspelled words.2

1https://nlp.stanford.edu/projects/
glove/

2http://aspell.net
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4 Systems

4.1 Deep Residual Networks

Deep residual networks, or resnets, are a class
of convolutional neural networks, which consist
of several convolutional blocks with skip connec-
tions in between (He et al., 2015, 2016). Such skip
connections facilitate error propagation to earlier
layers in the network, which allows for building
deeper networks. Although their primary applica-
tion is image recognition and related tasks, recent
work has found deep residual networks to be use-
ful for a range of NLP tasks. Examples of this in-
clude morphological re-inflection (Östling, 2016),
semantic tagging (Bjerva et al., 2016), and other
text classification tasks (Conneau et al., 2016).

We apply resnets with four residual blocks.
Each residual block contains two successive one-
dimensional convolutions, with a kernel size and
stride of 2. Each such block is followed by an
average pooling layer and dropout (p = 0.5, Sri-
vastava et al. (2014)). The resnets are applied to
several input representations: word unigrams, and
character 4- to 6-grams. These input represen-
tations are first embedded into a 64-dimensional
space, and trained together with the task. We do
not use any pre-trained embeddings for this sub-
system. The outputs of each resnet are concate-
nated before passing through two fully connected
layers, with 1024 and 256 hidden units respec-
tively. We use the rectified linear unit (ReLU, Glo-
rot et al. (2011)) activation function. We train the
resnet over 50 epochs with the Adam optimisa-
tion algorithm (Kingma and Ba, 2014), using the
model with the lowest validation loss. In addition
to dropout, we use weight decay for regularisation
(ε = 10−4, Krogh and Hertz (1992)).

4.2 PoS-tagged sentences

In order to easier capture general syntactic pat-
terns, we use a sentence-level bidirectional LSTM
over tokens and their corresponding part of speech
tags from the Stanford CoreNLP toolkit (Man-
ning et al., 2014). PoS tags are represented by
64-dimensional embeddings, initialised randomly;
word tokens by 300-dimensional embeddings, ini-
tialised with GloVe (Pennington et al., 2014) em-
beddings trained on 840 billion words of English
web data from the Common Crawl project.3

3https://nlp.stanford.edu/projects/
glove/

To reduce overfitting, we perform training by
choosing a random subset of 50% of the sentences
in an essay, concatenating their PoS tag and token
embeddings, and running the resulting vector se-
quence through a bidirectional LSTM layer with
256 units per direction. We then average the final
output vector of the LSTM over all the selected
sentences from the essay, pass it through a hid-
den layer with 1024 units and rectified linear ac-
tivations, then make the final predictions through
a linear layer with softmax activations. We apply
dropout (p = 0.5) on the final hidden layer.

4.3 Spelling features
Essays are checked with the Aspell spell checker
for any misspelled words. If misspellings occur,
we simply consider the first suggestion of the spell
checker to be the most likely correction. The fea-
tures for NLI classification are derived entirely
from misspelled words. We consider deletion, in-
sertion, and replacement type of corrections. Fea-
tures are represented as pairs of original and cor-
rected character sequences (uni, bi, tri), for in-
stance:

visiters visitors
{(e,o),(te,to),(ter,tor)}
travellers travelers
{(l,0),(ll,l0),(ole,l0e)}

These features are fed to a logistic regression
classifier with builtin cross-validation, as imple-
mented in the scikit-learn library.4

4.4 CBOW features
We complement the neural approaches with a
simple neural network that uses word representa-
tions, namely a continuous bag-of-words (CBOW)
model (Mikolov et al., 2013). It represents each
essay simply as the average embedding of all
words in the essay. The intuition is that this sim-
ple model provides complementary evidence to
the models that use sequential information. Our
CBOW model was tuned on the DEV data and con-
sists of an input layer of 512 input nodes, followed
by a dropout layer (p = 0.1) and a single soft-
max output layer. The model was trained for 20
epochs with Adam using a batch size of 50. No
pre-trained embeddings were used in this model.
We additionally experiment with a simple multi-
player perceptron (MLP). In contrast to CBOW it
uses n-hot features (of the size of the vocabulary),

4http://scikit-learn.org/
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Table 1: Official results for the essay task, with and without external resources (ext. res.).
Setting System F1 (macro) Accuracy

Baselines Random Baseline 0.0909 0.0909
Official Baseline 0.7100 0.7100

No ext. res.

01 – Resnet (w1+c5) 0.8016 0.8027
02 – Resnet (w1+c5) 0.7776 0.7782
03 – Ensemble (Resnet (w1+c5), Resnet (c4)) 0.7969 0.7964
04 – Ensemble (Resnet (w1+c5), Resnet (c6), Resnet (c4), Resnet (c3)) 0.8023 0.8018
05 – Ensemble (Resnet (w1+c5), Resnet (c6), Resnet (c4), CBOW) 0.8149 0.8145
06 – Ensemble (Resnet (w1+c5), Resnet (c6), MLP, CBOW) 0.8323 0.8318

With ext. res.

01 – Ensemble (LSTM, Resnet (w1+c5)) 0.8191 0.8186
02 – Ensemble (LSTM, Resnet (w1+c5), Resnet (c4)) 0.8191 0.8195
03 – Ensemble (Spell, LSTM, Resnet (w1+c5), Resnet (c6), CBOW) 0.8173 0.8175
04 – Ensemble (Spell, Resnet (w1+c5), Resnet (c6), CBOW) 0.8055 0.8051
05 – Ensemble (Spell, Spell, Resnet (w1+c5), Resnet (c6), Resnet (c4), CBOW) 0.8045 0.8048
06 – Ensemble (LSTM, Resnet (w1+c5), Resnet (c6), Resnet (c4), CBOW) 0.8009 0.8007
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Figure 1: Confusion matrix for our best run (closed track, run 06)

a single layer with 512 nodes, sigmoid activation
and dropout (p = 0.1). The remaining training pa-
rameters are the same as for CBOW. We see that
this model adds complementary knowledge in the
closed-track ensemble (run 06).

4.5 Ensemble

The systems are combined into an ensemble, con-
sisting of a linear SVM. We use the probability
distributions over the labels, as output by each
system, as features for the SVM, as in meta-
classification (Malmasi and Dras, 2017). The en-
semble is trained and tuned on a random subset of
the development set (70/30 split). For the selec-
tion of systems to include in the ensemble, we use
the combination of systems resulting in the highest

mean accuracy over five such random splits.

5 Results

The results when using external resources are
lower than when not using them (Table 1). Our
best result without external resources is an F1
score of 83.23, whereas we obtain F1 score of
81.91 with such resources. Figure 1 shows the
confusion matrix of our best system’s predictions
(run 06). Most confusions occur in three groups:
Hindi and Telugu (South Asian), Japanese and Ko-
rean (East Asian), and French, Italian and Spanish
(South European).
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6 Discussion

In isolation, the ResNet system yields a relatively
high F1 score of 80.16. This indicates that, al-
though simpler methods yield better results for
this task, deep neural networks are also applica-
ble. However, further experimentation is needed
before such a system can outperform the more tra-
ditional feature-based systems. This is in line with
previous findings for the related task of language
identification (Medvedeva et al., 2017; Zampieri
et al., 2017). Combining all of our systems with-
out external data yields an F1 score of 83.23,
which places our system in the third best perform-
ing group of the NLI Shared Task 2017 (Malmasi
et al., 2017).

When adding external data, the best performing
systems are those including the spelling system
predictions and/or the LSTM predictions. How-
ever, the highest F1 score obtained (81.91) is lower
than our best score without external resources.
This can attributed to overfitting of the ensemble
on the development data. It is nonetheless inter-
esting that adding spelling features does boost per-
formance within the external resources setting.

The main confusions of our system were within
three groups. We suggest two reasons for this bias.
On the one hand, the South European group also
encompasses only Romance languages, hence the
confusion could be attributed to the learners mak-
ing similar mistakes in the grammar. However,
both the South Asian group and the East Asian
group comprise languages which are not related
to one another. Therefore, it is reasonable to as-
sume that the confusion is also due to a cultural
bias, such as South European learners using more
vacation-related words, or South Asian learners
using words related to India (in which both of the
languages in question are spoken).

7 Conclusions

We describe our system for the NLI Shared Task
2017, which is one the first system to involve a
neural approach to this task. Although deep neural
networks are able to perform this task, traditional
methods still appear to be better.
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Abstract

We report on our experiments with N-
gram and embedding based feature rep-
resentations for Native Language Identifi-
cation (NLI) as a part of the NLI Shared
Task 2017 (team name: NLI-ISU). Our
best performing system on the test set for
written essays had a macro F1 of 0.8264
and was based on word uni, bi and tri-
gram features. We explored n-grams cov-
ering word, character, POS and word-POS
mixed representations for this task. For
embedding based feature representations,
we employed both word and document
embeddings. We had a relatively poor per-
formance with all embedding representa-
tions compared to n-grams, which could
be because of the fact that embeddings
capture semantic similarities whereas L1
differences are more stylistic in nature.

1 Introduction

Native Language Identification (NLI) refers to the
task of identifying the native language (L1) of a
writer based on their writings in another language
(L2). Identifying the L1 of a writer is useful in
applications such as authorship attribution, foren-
sic linguistics, language instruction and Second
Language Acquisition (SLA) (Koppel et al., 2005;
Estival et al., 2007; Jarvis and Crossley, 2012).
While early work on this problem began at the
beginning of this century (Tomokiyo and Jones,
2001; Jarvis et al., 2004), there has been an in-
creased interest in this task since 2012, with the
availability of some publicly accessible corpora
(Brooke and Hirst, 2012; Tetreault et al., 2012;
Bykh and Meurers, 2012).

The First NLI Shared Task (Tetreault et al.,
2013) and the release of large corpora such as

TOEFL11 corpus of non-native English (Blan-
chard et al., 2013) and EFCAMDAT corpus
(Geertzen et al., 2013) resulted in a surge of re-
search in this area in the past few years. While
most of the NLI research has been on English,
there is a significant amount of work on other lan-
guage texts such as Chinese, Finnish and Arabic
(Malmasi and Dras, 2015; Malmasi, 2016). Start-
ing form surface linguistic forms such as words
and characters to deeper syntactic structures, a
range of features have been explored for this task
in the past five years.

The last few years saw the field of NLI advance
in both the directions of feature engineering and
modeling. However, irrespective of what model-
ing choices were made, results seem to show that
word level features still are the most predictive
ones as a single group (e.g., Jarvis et al., 2013;
Gebre et al., 2013) for this data. So, in this pa-
per, we take a step back from complex feature and
model engineering, and explore how far can we get
by doing classification using simpler feature rep-
resentations based on words, characters and POS
tags. While our current experiments (team name:
NLI-ISU), done as a part of the NLI Shared Task
2017 (Malmasi et al., 2017), do not result in any
improvements over existing approaches, we be-
lieve they provide insights into the nature of the
task and why n-grams may still be needed for this
task despite the presence of more compact embed-
ding representations for texts.

The rest of this paper is organized as follows:
The next section describes some of the related
work and puts our experiments in context. Sec-
tion 3 briefly describes the corpus used. We de-
scribe our methodology including feature descrip-
tion in Section 4. Our experiments and results are
discussed in Section 5. Section 6 concludes the
paper with pointers to future work.
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2 Related Work

Native Language Identification is generally treated
as a supervised text classification problem in com-
putational linguistics literature. (Koppel et al.,
2005) can be described as one of the early works
that considers NLI as a supervised machine learn-
ing problem. Using a corpus of texts from Inter-
national Corpus of Learner English (ICLE) along
with word and letter n-grams and errors made by
the learners as features, they achieved a classifica-
tion accuracy of over 80%.

Along with n-grams, syntactic features based
on parse structures were also shown to be useful
for the task in the past (Wong and Dras, 2011) re-
sulting in accuracies in the range of 80-85% with
ICLE data. Extending the n-gram based feature
sets to larger n-gram sizes and using a combination
of word and POS tag n-grams, Bykh and Meur-
ers (2012) achieved an accuracy of 89.7% on the
same dataset. With combinations of n-grams, lexi-
cal and syntactic features, Brooke and Hirst (2012)
explored NLI with multiple corpora, and achieved
accuracies of over 90% on ICLE data. Summariz-
ing the research on NLI until then, Tetreault et al.
(2012) explored a range of features on ICLE and
introduced the TOEFL11 corpus for NLI (Blan-
chard et al., 2013).

This corpus was used in the first Native Lan-
guage Identification shared task (Tetreault et al.,
2013). 29 teams participating in the task, and wide
range of lexical and syntactic feature representa-
tions were explored. The best performing sys-
tem (Jarvis et al., 2013) resulted in an accuracy of
83.6% and used word, char, POS n-gram features.

After this shared task, interest in NLI contin-
ued with different groups exploring both finer fea-
ture representations and diverse ensemble meth-
ods for combining multiple classification mod-
els. These explorations resulted in an accuracy
gain of up to 2% on the 2013 shared task test set
(Ionescu et al., 2014; Bykh and Meurers, 2014,
2016). More recently, (Malmasi and Dras, 2017)
reported an accuracy of 87.1% on the 2013 test
set, using an ensemble of meta classifiers and a
range of word level and syntactic features. Apart
from TOEFL11, other corpora such as EFCAM-
DAT (Geertzen et al., 2013) were also used for
NLI in the recent past (e.g., Nisioi, 2015).

While most of the work in NLI happened in En-
glish, a substantial body of NLI research happened
in the past two years covering at least six other

languages (cf. Malmasi and Dras, 2015; Malmasi,
2016). In addition to using the written responses,
a recent development has been the use of speech
transcripts and audio features for dialect identifi-
cation (Malmasi et al., 2016) and native language
identification (Schuller et al., 2016). In this back-
ground, the NLI Shared Task 2017 was proposed,
with an additional spoken language component.

While a range of feature representations and
modeling representations have been explored from
this task, it has been shown that word/character
level n-grams have been unreasonably effective as
a single feature group (e.g., Jarvis et al., 2013;
Gebre et al., 2013; Bykh et al., 2013). As Jarvis
et al. (2013) concluded, ”complex features” such
as suffixes, length, lexical variety etc did not result
in any major improvement over n-gram features.
Further, other complex and memory intensive rep-
resentations such as constituency and dependency
parses did not result in large performance im-
provements without the support of stronger mod-
els and ensemble learners.

In this background, in this paper, we take a
step back from exploring new feature extraction
methods and new modeling techniques, and re-
investigate the role of surface feature represen-
tations in NLI. Word and document embeddings
became popular and useful alternatives to n-gram
features in several classification tasks in the recent
past as they result in dense representation com-
pared to sparse n-gram features. Hence, in addi-
tion to word, character and POS n-grams, we also
explored the use of embedding based feature rep-
resentations for this task.

3 Data

We used a corpus of standardized assessment of
English proficiency for academic purposes pro-
vided by the shared task organizers. It is a corpus
of non-native speaker English essays and speech
transcripts. The written corpus has a training data
of 11000 essays written by learners with 11 native
language backgrounds (Arabic, Chinese, French,
German, Hindi, Italian, Japanese, Korean, Span-
ish, Telugu, Turkish). The essays are written in
response to 8 prompts, and essays are evenly dis-
tributed across L1s (1000 essays per L1). The de-
velopment set had 1100 essays (100 per L1) and
the prompt information was provided. Exact text
for the prompts was not provided in the corpus.
No information was given about the proficiency
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scores for the essays. We discarded two texts from
the training data which had only two-three token
responses (e.g., ”I agree”) before starting with fea-
ture extraction.

The shared task task also had a speech track,
where the goal is to predict the speaker’s L1 based
on a transcription of a 45 second recording. There
were 11000 spoken transcriptions (1000 per L1) in
the training data and 1100 (100 per L1) in the de-
velopment set, similar to the essay section of the
corpus. The transcriptions were produced in re-
sponse to 9 prompts. While the original record-
ings were not provided, i-vectors, which are low-
dimensional representations of the speech signals
were provided using the Kaldi toolkit (http:
//kaldi-asr.org). We did not use the i-
vectors and only did preliminary n-gram based ex-
periments on that data as well.

Test Data: Test data for both written and spo-
ken texts had 1100 texts each (100 per L1 in each
case). i-vectors were provided for the spoken files
in the test data as well.

4 Features

As mentioned earlier, we explored two kinds of
feature representations in this task: n-grams and
embeddings.1

4.1 N-gram Representations
We explored N-gram representations at the level
of words, characters, POS tags and mixed word-
POS representations. Binary feature representa-
tion with a minimum n-gram frequency of 10 was
used as a common setting for across all features.
The maximum number of features was capped at
100K for most of the experiments, to limit feature
explosion and over-fitting to rare n-grams. We did
not find any significant differences between using
binary, count and TF-IDF representations.

Word n-grams : Word n-grams are used in
almost all the previous NLI approaches, and
we start with them as well. We explored 1–
8 lower cased n-grams with/without punctuation,
with/without stemming and with/without spell
check. We used the Enchant spell checker through
the PyEnchant library (http://pyenchant.
readthedocs.io). We considered two n-gram
representations using spell-checker:

1code for the feature extraction and classification is hosted
at: https://github.com/nishkalavallabhi/
NLIST2017/ for replication purposes.

• replace the spelling error with the most likely
word suggested by the checker

• replace the error with a pseudo-word

Spelling errors were used as features in earlier
NLI approaches (Koppel et al., 2005; Gebre et al.,
2013). But we are not aware of any previous
work that pre-processed for spelling errors before
n-gram extraction.

Char n-grams : We explored 2–10 character
grams (lower cased), with/without crossing over
word boundaries for n-gram extraction. Punctu-
ation was not included while extracting character
n-grams.

POS n-grams : We explored 1–5 POS grams.
We extracted features using both NLTK tagger and
Stanford POS tagger.

Word-POS mixed n-grams : (Bykh and Meur-
ers, 2012) in the past used Open Class POS n-
grams where n-grams for open class words (nouns,
verbs, adjectives, and cardinal numbers) were re-
placed by their POS tags and the other words are
left as is while calculating n-grams. Similarly, skip
word n-grams have also been explored in NLI re-
search before (Malmasi and Cahill, 2015). We
extended such feature representations further by
other Word-POS mixed representations such as:
replacing only nouns, or only verbs with their tags,
or replacing all except prepositions etc. We con-
sider such mixed representations as a form of skip
gram representations, where the gap has a name
(POS tag, for example). We used NLTK tagger for
feature extraction.

4.2 Embedding Representations
Embedding based representations are seen as an
alternative to the sparse n-gram based representa-
tions in the recent past as they resulted in dense
feature representations for text. Hence, we ex-
plored word and document level embeddings for
this task, using several models. We used gensim2

to train and classify using embedding features.

Word Embeddings : We trained the embed-
dings using the entire training corpus, and tun-
ing the number of dimensions using cross vali-
dation. We tried with both CBOW (continuous
bag-of-words) and skip-gram. In our experience,
CBOW generated the vector representations better

2https://radimrehurek.com/gensim/
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than skip-grams. For all the settings a minimum
word count of 5 was set. The negative sampling
rate, for all the settings, was left at default. We did
change the negative sampling rate in the hope of
obtaining better results but the results we obtained
was not significantly better than the default case.
For each of the settings, we explored 100 to 1000
features in an increment of 100 and a window set-
ting of 5 to 15 in increments of 2.

Three different methods were used to get the
vector representations for documents using these
word embeddings:

• summed vector of all the word embeddings

• averaged vector for all the word embeddings

• a combination of average and standard devi-
ation

For building these word embeddings, we used
Word2Vec (Mikolov et al., 2013) and FastText
(Joulin et al., 2016).

Document Embeddings : In addition to word
embeddings, vector representations were also
generated for an entire document with dis-
tributed memory (dm) and distributed bag-of-
words (dbow) architectures (Le and Mikolov,
2014) using Doc2Vec tool. Number of dimensions
ranged from 100 to 500 in 100 increments and the
window size ranged from 5 to 50. We did not use
negative sampling as it was shown in previous re-
search that negative sampling will result in a doc-
ument embedding that is biased to content words
(Lau and Baldwin, 2016) whereas function words
are important in the task of NLI.

For document embeddings, we used two repre-
sentations:

• Doc2Vec-Full: Using the entire training data
to construct an unsupervised Doc2Vec model

• Doc2Vec-PerL1: Using training data per L1
to build 11 Doc2Vec models, and use the con-
catenation of vectors from all 11 models per
text during classification training and testing.

Additionally, we also explored the use of Effi-
cient, Compositional, Order-sensitive n-gram Em-
beddings (ECO) proposed recently by Poliak et al.
(2017) for constructing the document embeddings.
In ECO embeddings, vector representation of
neighbouring words (both occurring before and af-
ter) are averaged to obtain the numeric representa-
tion of the current word. We used the pre-trained

word vectors from Wikipedia dump with dimen-
sionality ranging from 100 to 700 as provided by
Poliak et al. (2017).3 to generate document em-
beddings

5 Results

We used Logistic Regression and SVMs with de-
fault parameters to train our classification models.
While there are no significant differences between
both the algorithms, logistic regression was much
faster. So, unless otherwise stated, we report the
results with logistic regression in the rest of this
paper. We submitted runs for both the ESSAY
track and the SPEECH track. For the SPEECH
track we worked with the transcripts directly and
not with the i-vectors. macro-F1 and classification
accuracy were used as the evaluation measures for
this task.

• Run 1: Word 1-3 grams + incl. punctuation +
no stemming

• Run 2: Word 1-3 grams + POS Bi, Tri grams

• Run 3: Character n-grams (2–10), crossing
word boundaries.

Table 1 shows the results on test set for our sub-
mitted systems using Logistic Regression.

System F1
(macro)

Accuracy

Random Baseline 0.0909 0.0909
Official Baseline
(Essay)

0.7104 0.7109

Official Baseline
(Speech-transcriptions
only)

0.5435 0.5464

Official Baseline
(Speech-with ivectors)

0.7980 0.7982

Run 1-Essay 0.8264 0.8264
Run 2-Essay 0.8201 0.8200
Run 3-Essay 0.7829 0.7836
Run 1-Speech 0.4282 0.4259
Run 2-Speech 0.4036 0.4000

Table 1: Official Submissions for the ESSAY and
SPEECH tracks

Word n-grams (range: 1–3) turned out to be
most predictive feature representation among the
ones we tried. N-grams beyond 3 did not result

3https://zenodo.org/record/439387
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in a significant improvement in accuracy. While
adding bi-, tri-grams resulted in about 9% im-
provement in accuracy over unigrams, adding 4-8
grams did not result in any significant performance
difference on development set.

Stemming consistently resulted in a decrease in
performance compared to non-stemmed features,
and including punctuation always resulted in a 2-
3% increase in accuracy on the development set
for all settings we explored.4 Adding POS based
features to word n-grams did not result in any sig-
nificant difference in the accuracy. For character
n-grams, there was a 3.2% decrease in accuracy
on the development set when we did not consider
n-grams across word boundaries.

Spell checking: We did not find spell checking
particularly useful for this task. Both our spell
check feature representations did not result in any
improvement in the results on the development set.
It could be because we set our minimum frequency
threshold to 10 and the error patterns are not fre-
quent and consistent enough in the dataset. On
the other hand, this may also imply that the peo-
ple from the same native language may not always
have a consistent spelling error pattern significant
enough to be distinguishable from another native
language group.

Using only POS n-grams did not result in an ac-
curacy beyond 60% using both the taggers, for n
= 1 to 8. Combining them with word n-grams did
not result in any improvement either, as it was seen
in Run 2 results in Table 1.

Mixed Word-POS representations: In terms of
mixed word-POS representations, we explored the
following representations using the NLTK tagger:

• Rep 1: Replace all nouns, pronouns and
punctuation markers with a single string for
each category.

• Rep 2: Same as the above representation,
but having retaining punctuation tags for all
punctuation markers

• Rep 3: Same as Rep 2, but replacing all verb
tags with a single string.

4Since the classification accuracy was very sensitive to
decisions such as stemming and punctuation, and to how the
features are extracted, we are sharing our final list of word tri-
gram features for both essay and speech tracks extracted us-
ing LightSide (Mayfield and Rosé, 2013) on github for repli-
cation purposes.

• Rep 4: All words except prepositions were
replaced with a common tag, and all punctu-
ations were replaced with a common tag.

• Rep 5: OCPOS representation as described in
Bykh and Meurers (2012).

For all these cases, we trained classification
models with 1–8 n-grams, minimum frequency
of 10, and up to 300K features. While some of
these mixed word-POS representations were not
explored for this task before, none of the models
give an accuracy beyond 75% on the development
set. It has to be noted that we used only Logis-
tic Regression and SVM for classification. But,
it is unlikely that another classification algorithm
would result in a dramatic increase with these fea-
ture representations. We did not explore ensem-
ble models where different feature representations
are combined as multiple models instead of a large
single model.

In addition to training classifiers, we also briefly
explored using distance measures from stylistics
and authorship attribution research such as Bur-
row’s Delta (Burrows, 2002) and other related
measures (Evert et al., 2015) using 100-1000 most
frequent word, character and POS n-grams in the
corpus. We did not find them particularly useful
for this task, with highest accuracies of less than
60% on the development set. This could be due to
the fact that Delta based measures are usually used
on much longer texts, typically full length texts or
novels.5

Speech Data: As mentioned earlier, for speech
transcripts, we did not use the i-vectors and only
used the above mentioned n-gram features. They
were not as useful predictors for speech as they
were for essays. One possible reason could be
the fact that we have much smaller texts compared
to written texts. However, i-vectors, which cap-
ture the acoustic features, clearly play an impor-
tant role in NLI for speech data, as it was seen
from the improvement over baseline they achieved
on development set, as it was indicated in the doc-
umentation for corpus release.

5.1 With Embeddings on Development Set
In addition to the submitted runs, we explored
word and document embedding based feature rep-

5We used Stylo (Eder et al., 2016) and JGAAP (https:
//github.com/evllabs/JGAAP) libraries for calcu-
lating Delta scores
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resentations that were described in Section 4 for
this task. Our experiments with these represen-
tations did not result in better results than word
and character n-grams. Table 2 shows a summary
of the most predictive results with embedding fea-
tures in our experiments.

System F1 (macro) Accuracy
Random Baseline 0.0909 0.0909
Word2vec
(dim:200,window:11)

0.6311 0.6312

Word2vec
(Nouns and Num-
bers sub.)
(dim:200,window:11)

0.6311 0.6312

ECO 0.5744 0.5742
Doc2Vec-full
(dim:100,window:10)

0.5440 0.5463

Doc2Vec-full
(dim:500,window:25)

0.6276 0.6291

Doc2Vec-byL1
(dim:100,window:10)

0.6169 0.6190

Doc2Vec-byL1
(dim:500,window:25)

0.7119 0.7127

Table 2: Results for the ESSAY track with Em-
bedding Features on Development data

For word embeddings, we achieved a macro
F1 of 0.63 with Word2Vec (number of features
200 and window size 11), using SVM. We exper-
imented with various levels of negative sampling
but we could not attain any improvement. What
is more interesting to note is that the system per-
formance remains the same even when nouns and
numbers are substituted. We repeated our exper-
iments by averaging the word vectors with their
corresponding TF-IDF values but we did not any
improvement of performance. Training the em-
beddings on spell corrected data did not produce
better results.

For larger number of features we noticed that
the system performed better on the training set
than it did on the development set clearly hint-
ing at over-fitting. We performed 5 fold cross-
validation, with multiple parameter settings and
using linear, rbf and polynomial kernels, in a bid
to find optimum parameter settings which would
lead to the best classifier. Linear kernel emerged
out as the winner for the optimum parameter set-
tings for Word2Vec.

We got a macro F1 of 0.57 with ECO embed-

dings (number of features 700 and window size 4)
using SVM. The reason for a poorer performance
of ECO embeddings compared to Word2Vec could
be the training corpus. ECO embeddings were
trained on Wikipedia dump and not the training
corpus as was the case for Word2Vec embeddings.
Training embeddings on the shared task’s training
corpus could have possibly captured the specific
features of the corpus instead of more general lan-
guage features from Wikipedia corpus.

FastText performed much worse than
Word2Vec and ECO, and was even below
baseline with some of the parameter settings. We
found that the performance of the system did not
change appreciably when the number of features
was increased, indicating that a large number
of features may not be essential or desirable to
capture all the stylistic differences in the corpus.

With Doc2Vec, concatenating the vectors from
L1 specific doc2vec models performed much bet-
ter than training a single Doc2Vec model on the
entire dataset, giving a macro F1 of 0.7119 (500
features per L1, window size 25, dbow representa-
tion) using Logistic Regression. Doc2Vec-byL1
was consistently better than Doc2Vec-full in all
the parameter settings we explored, always result-
ing in over 7% increase in accuracy.

Number of features and window size seemed to
have a good influence on the classification per-
formance and window sizes below 10 resulted in
low performance for L1 classification. It was
also shown in a previous empirical evaluation that
dbow favors larger window sizes (Lau and Bald-
win, 2016), although the longest they had was 15.
Overall, from what we observed so far, training
L1 specific Doc2Vec models may result in better
performance for this task. Finding a better way to
combine L1 specific features instead of just con-
catenating everything may boost the performance
further.

5.2 Prompt based classification

Our results so far seem to show that embedding
based representations are not particularly useful
for this task. We hypothesized that this could
be due to the fact that most of what embeddings
capture is semantic similarity, while NLI involves
capturing stylistic choices such as use of function
words, punctuation markers etc, along with con-
tent word choices. To test this hypothesis, we did
prompt based classification instead of L1 classifi-
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cation.
Doc2Vec-Full models for prompt based clas-

sification achieved accuracy of over 95% on the
development for smaller feature/dimension sizes
(10–20) and window sizes (5–10) using logistic
regression. A dimensionality of 5 already gave
an accuracy of 73% on the development set for
prompt classification (8 prompts in essays cor-
pus). This clearly indicates that the embeddings
were able to capture topical differences between
prompts easily even in a low dimensional space.

From a comparison of Doc2vec experiments for
L1 and prompt classification, we can conclude that
embeddings are more suitable when the categories
have more semantic and less stylistic differences.
However, an interesting observation from L1 clas-
sification using Doc2Vec was the influence of win-
dow size on classification performance. Perfor-
mance steadily improved with both larger dimen-
sions and larger window sizes. Whether this cap-
tures something unique about stylistic variation is
something that should be more systematically ex-
plored in future.

6 Discussion

We described some of our experiments that study
the usefulness of n-gram and embedding based
feature representations for Native Language Iden-
tification as a part of the NLI Shared Task 2017.
Our main conclusions so far are:

• Word uni–trigram features performed the
best as a single group for classifying writ-
ten texts, and there is no significant improve-
ment in terms of adding infrequent trigrams
or adding n-grams beyond 3.

• Character n-grams (n=2–10) were the sec-
ond best performing feature group for written
texts.

• Results with word and character n-grams
could not be replicated with speech tran-
scripts.

• Word and document embedding features did
not give better results than n-grams, possibly
because they capture semantic similarities in-
stead of stylistic aspects.

6.1 Outlook
While modeling innovations may result in perfor-
mance improvement, they make predictions more

and more opaque. For NLI to be useful in ap-
plications such as language instruction or in lan-
guage generation (e.g. generating texts with in-
dividual writing style in applications such as ma-
chine translation) we may need interpretable mod-
els. More qualitative analysis and eventually more
concrete stylistic features for specific L1 back-
grounds need to be developed. With this goal,
and inspired by previous work on learning stylistic
variation for language generation (Lin, 2012) and
learning to segment phrasal features (instead of
words) for sentiment analysis (Tang et al., 2014),
we plan to focus on working towards better fea-
ture representations that may result in generaliz-
able insights into the nature of L1 influence on L2
writing.
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Abstract

This paper describes the systems sub-
mitted by GadjahMada team to the Na-
tive Language Identification (NLI) Shared
Task 2017. Our models used a continuous
representation of character n-grams which
are learned jointly with feed-forward neu-
ral network classifier. Character n-grams
have been proved to be effective for style-
based identification tasks including NLI.
Results on the test set demonstrate that the
proposed model performs very well on es-
say and fusion tracks by obtaining more
than 0.8 on both F-macro score and accu-
racy.

1 Introduction

Native Language Identification (NLI) is the task of
identifying the native language (L1) of the speak-
ers in which English is usually their second lan-
guage (L2). Given F = {f1, f2, ..., f3} be a set of
written or speech responses and K = {k1, k2, km}
a pre-defined set of native languages (L1), the NLI
task is to assign L1 to each of the responses in F .
This task is often considered as a subset of au-
thor profiling task which currently focuses more
on age and gender identification (Lopez-Monroy
et al., 2014; Johannsen et al., 2015; Rangel Pardo
et al., 2016).

The growing interest in this field is due to the
applicability of this task to support language learn-
ers by providing a tailored feed-back about their
errors. Swan and Smith (2001) argued that speak-
ers of different native languages tend to make dif-
ferent mistakes. Thus, targeted feed-back is ex-

pected to improve the process of language learn-
ing (Tetreault et al., 2013).

The NLI Shared Task 2017 (Malmasi et al.,
2017) is the continuation of the first task that has
been held in 2013 (Tetreault et al., 2013). This
year’s task aims to combine written responses (es-
say) and spoken responses (speech transcript and
i-vector acoustic features) for identifying 11 native
language classes.

To address the NLI Shared Task 2017 problem,
we adopted an approach that has been applied for
authorship attribution task (Sari et al., 2017). In
this approach, continuous representations of char-
acter n-grams are used jointly with feed-forward
neural network classifier. The methods performed
very well on essay and fusion tracks by obtaining
more than 0.8 on both F-macro score and accu-
racy. However, due to the poor hyper-parameter
setting and the limitation of training data, we only
managed to get around 0.5 on speech track for
both evaluation scores, using only the speech tran-
scripts.

The paper is organised as follows: Section 2
provides a review of relevant work in NLI. We
then explain our methodology in Section 3. The
next section describes our experiments including
the description of the dataset and the details of
training and hyper-parameter tuning. Result and
discussion are presented in Section 5. Finally, con-
clusion and future work are drawn in Section 6.

2 Related Work

The first NLI shared task (Tetreault et al., 2013)
was introduced in 2013 with a total of 29 teams
participated across three different subtasks. The
dataset for the task was TOEFL11 corpus (Blan-

249



· · ·x2x1 xN−1 xN

embedding layer

average pool

output layer

(a) Model for essay and speech tracks

output layer

hidden layer

xImax pool max pool

embedding layer embedding layer

xSxE

(b) Model for fusion track

chard et al., 2013) consists of 11,000 essays writ-
ten by a high-stakes college-entrance test taker.
Same as this year’s task, there are 11 native lan-
guages covered. Tetreault, et. al reported that
majority of the participant addressed the problem
by utilising powerful machine learning algorithms
such as Support Vector Machine (SVM) and Lo-
gistic Regression. In term of features, word, char-
acter and POS n-grams were the most common
used features.

One of the interesting findings from the first
NLI task is simple features such as words, word
forms, sequential word combinations, and sequen-
tial POS combinations turn out to be effective in-
dicators for identifying L1. Jarvis et al. (2013)
who implemented those features successfully se-
cured the best systems in the first NLI task by ob-
taining 10-fold cross-validated accuracy of 84.5%
and overall accuracy of 83.6% on the test set. In
addition, they reported that a model with charac-
ter n-grams achieved similar accuracy to the best
model involving lexical and POS n-grams.

Following the first NLI task, Ionescu et al.
(2014) extended their submission system by
implementing character n-grams with two ker-
nel classifiers namely Kernel Ridge Regression
(KRR) and Kernel Discriminant Analysis (KDA).
Their result outperformed Jarvis, et. al by 1.7%
on the overall accuracy. Character n-grams have
been known for its impressive performance in
style-based text analysis task such as authorship
attribution (Peng et al., 2003; Stamatatos, 2013;
Schwartz et al., 2013). It has advantages of captur-
ing stylistic and morphological information (Kop-
pel et al., 2011; Sapkota et al., 2015) regardless
of the language. This has motivated us to utilised
character n-grams in our system.

In addition to written responses, recent trend
starts to consider spoken responses (speech tran-
scripts and audio features) for NLI task. Incor-
porating spoken responses has produced good re-
sult for dialect identification (Malmasi et al., 2016;
Zampieri et al., 2017). However compared to
audio features, speech transcripts are less useful
since ambiguity is more pronounced in written
transcripts.

3 Methodology

In this section, we describe our models and fea-
tures used in our NLI system. First, we present the
details of the features. Then we explain our model
architectures which use shallow feed-forward neu-
ral network.

3.1 Features
There are two types of features used in our system:
character n-grams and i-vectors. We used only
character n-grams features in essay and speech
tracks and combined them with i-vectors for fu-
sion track. The details of the features are ex-
plained as follows:

• Character n-grams: This substring takes
n characters constructing the text along the
whole text as features. We set the vocabu-
lary to 70 most common characters including
letters, digits, and some punctuation marks
as conducted by Zhang et al. (2015). We
followed Sari et al. (2017) who represented
the features as continuous vectors. The idea
of representing n-grams in continuous space
was introduced by Joulin et al. (2017) who
proposed an efficient model for text classifi-
cation called fastText. Instead of using a sin-
gle value of n, we applied a range of n values
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from three to six grams.

• i-vectors: i-vector or identity vector is one of
feature representation that commonly used in
speech processing. It is a low-dimensional
vector derived from mapping sequence of
speech frames (Dehak et al., 2011). The i-
vectors correspond to the speech transcrip-
tions and have a length of 800. We used
the provided i-vectors without any additional
pre-processing.

3.2 Model Architecture
Our model adopted fastText architecture which
was proposed by Joulin et al. (2017). FastText
represents a document with an average of feature
embeddings for the features present. The proba-
bility distribution over the labels then is simply
predicted using softmax function. However, in-
stead of working on word level, we chose to work
on character level, since it is found to be more
suitable for the task. Figure 1a shows the model
that we used for both essay and speech tracks.
In that figure, xn represents a single character n-
gram, while N is the maximum sequence which
the value is fixed. In our experiment, feature em-
beddings are learned during training.

For fusion track, we extended the first model
with an auxiliary input to accommodate i-vectors
as presented in Figure 1b. We also added one hid-
den layer with the size of 128 right before the out-
put layer. Slightly different with the first model, in
the fusion track we used max pooling as it pro-
duced higher performances. Both of the mod-
els were implemented using Keras (Chollet et al.,
2015) with Tensorflow backend.

3.3 Baseline Systems
As a benchmark, the organiser developed baseline
systems which use SVM as the classifier. Essay
and speech transcript are represented as bag-of-
words (BoW). The baseline results on the test set
are presented in the Table 1.

4 Experiments

4.1 Dataset
The dataset provided by Educational Testing Ser-
vice (ETS) contains test responses from a stan-
dardised assessment of English proficiency for
academic purposes. It consists of 13,200 En-
glish essays (written responses) and 13,200 of 45

seconds English speech transcriptions (spoken re-
sponses). In addition to that, i-vectors of the
speech audios are generated in lieu of the audio
files. The essays typically range in length from
300 to 400 words and the transcriptions typically
contain approximately 100 words.

The test responses are from 13,200 different
test takers. Each test taker contributed one essay
and one speech transcription. There are 11 native
languages (L1) covered, including Arabic (ARA),
Chinese (CHI), French (FR), German (GER),
Hindi (HIN), Italian (ITA), Japanese (JPN), Ko-
rean (KOR), Spanish (SPA), Telugu (TEL), and
Turkish (TUR). The organiser set the 11,000 sam-
ples from the dataset for training purpose, 1,100
for development and the rest as the test set.

4.2 Hyper-parameter Tuning and Training
Details

During training, we tried different combinations
of hyper-parameter configurations. However, only
the configurations of the best run are reported in
this paper.

Feature hyper-parameters. For essay and
speech tracks, we only used character n-grams
features. We set the range of n-gram values from
2 to 5. The sequence lengths were set to 6,000
for essay and 4,000 for speech. Meanwhile, for
fusion track in addition to the character n-grams,
i-vectors were used. The n-grams range was set
to 3 to 5. In order to reduce the input dimen-
sions, we decreased the length of the sequence to
1,500 for essays and 300 for speech transcriptions.

Model hyper-parameters. The best run for
essay and speech tracks used embedding size
of 25 with dropout rate of 0.75. For fusion
model, embedding size for both essay and speech
representation was set to 128. Between the layers,
we put dropout with the probability of 0.5.

Training. For all sub-tracks, the models were
trained using Adam Optimizer (Kingma and Ba,
2015) with cross-entropy loss. We also imple-
mented early stopping procedure in order to avoid
over-fitting. We set batch size of 64 for essay and
fusion tracks; and 32 for speech track. Number of
epochs for essay, speech, and fusion tracks were
set to 80, 50, and 100 respectively. For both essay
and speech tracks, learning rate of 0.005 was used.
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Track Baseline System GadjahMada System
F1-score Accuracy F1-score (macro) Accuracy

Essay 0.7104 0.7109 0.8107 0.8109
Speech (transcription only) 0.5435 0.5464 0.5084 0.5073
Fusion (essay, speech transcripts, i-vectors) 0.7901 0.7909 0.8414 0.8409

Table 1: Submission Results

While fusion track used learning rate of 0.0002,
higher rates did not make any improvement.

5 Results and Discussion

Table 1 shows our submission results for all the
sub-tracks. We participated in closed- training
subtask in which we only used provided train-
ing data to train our models. Results on the ta-
ble present that our systems performed very well
on the essay and fusion tracks. Our systems out-
performed the baseline systems with accuracy of
0.8109 and 0.8409 on the essay and fusion tracks
respectively. However, the system failed to pro-
duce similar performances on speech track. Our
system produced accuracy of 0.5073 which is
lower than the baseline. This might happen due
to the poor hyper-parameter tuning. Note that on
speech track, we only utilised speech transcripts.

Similar to the previous NLI shared task re-
sults, character n-grams demonstrate their effec-
tiveness for capturing style in written responses.
We believe that speakers of each native language
have their own learning experiences which are re-
flected in their responses. The speaker’s charac-
teristics are better captured in written responses
than speech transcripts. Written responses are sig-
nificantly longer compared to speech transcripts
which make it better on providing information
about the speaker. In addition to that, speech tran-
scripts are less useful since ambiguity is more pro-
nounced (Malmasi et al., 2016). Audio features in
the form of i-vectors help to improve the perfor-
mance. Our results on the fusion track are higher
than the results on other tracks.

In order to get more insight into the classifica-
tion results, confusion matrices for the best run in
each sub-track are presented in Figure 2. In the
essay and fusion tracks, it can be seen that Ger-
man (GER) speaker are the easiest class to identify
with more than 90% on the accuracy. It is also in-
teresting to highlight that the system is mistakenly
identified several native language classes that have
morphological and lexical similarities, for exam-

ple: Chinese (CHI), Japanese (JPN) and Korean
(KOR); Hindi (HIN) and Telugu (TEL); French
(FRE), Italian (ITA) and Spanish (SPA). However
in the speech track as shown in Figure 2b, in most
classes the system made correct predictions no
more than 50% of the total samples. It demon-
strates that spoken response in the form of speech
transcripts is not good enough to be used as fea-
ture.

6 Conclusion and Future Work

This paper presents our submission approaches
for NLI Shared Task 2017. Results on the test
set show our model that utilises shallow feed-
forward neural network with character n-grams
features could effectively identify the native lan-
guage (L1) of the speaker. Our proposed model
performed very well on the essay and fusion tracks
but failed to achieve similar scores on the speech
track. It is interesting to note that character n-
grams mostly works for any style-based classifica-
tion tasks including NLI. More details analysis on
the languages with similar lexical and morpholog-
ical forms can be an interesting work to explore.
Indicative features for those languages are essen-
tial since most incorrect predictions were made on
those groups.
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Figure 2: Confusion matrices for the best run in each sub-track
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Abstract

This paper describes our results at the NLI
shared task 2017. We participated in es-
says, speech, and fusion task that uses text,
speech, and i-vectors for the task of iden-
tifying the native language of the given
input. In the essay track, a linear SVM
system using word bigrams and charac-
ter 7-grams performed the best. In the
speech track, an LDA classifier based only
on i-vectors performed better than a com-
bination system using text features from
speech transcriptions and i-vectors. In the
fusion task, we experimented with systems
that used combination of i-vectors with
higher order n-grams features, combina-
tion of i-vectors with word unigrams, a
mean probability ensemble, and a stacked
ensemble system. Our finding is that word
unigrams in combination with i-vectors
achieve higher score than systems trained
with larger number of n-gram features.
Our best-performing systems achieved F1-
scores of 87.16 %, 83.33 % and 91.75 %
on the essay track, the speech track and the
fusion track respectively.

1 Introduction

In this paper, we describe our (team tubafs) ef-
forts in three different tasks during our partici-
pation in NLI shared task 2017 (Malmasi et al.,
2017). All the three tasks aim at identifying native
language using essays (essay track), speech tran-
scriptions along with i-vectors (speech track) and
fusion track that allows the participants to use all
the three data sources to design and test a system
for the purpose of NLI.

The first NLI task employed only essays written
in English for the identification of native language.

To date, all NLI shared tasks have been based on
L2 English data, but NLI research has been ex-
tended to at least six other non-English languages
(Malmasi and Dras, 2015). In addition to using
the written responses, a recent trend has been the
use of speech transcriptions and audio features for
dialect identification (Malmasi et al., 2016). The
combination of transcriptions and acoustic fea-
tures has also provided good results for dialect
identification (Zampieri et al., 2017). Following
this trend, the 2016 Computational Paralinguistics
Challenge (Schuller et al., 2016) also included an
NLI task based on the spoken response. The NLI
2017 shared task attempts to combine these ap-
proaches by including a written response (essay)
and a spoken response (speech transcriptions and
i-vector acoustic features) for each subject. The
task also allows for the fusion of all features.

Recent years have seen a large amount of work
on employing text based features for the pur-
pose of native language identification. The win-
ning system (Jarvis et al., 2013) of NLI shared
task 2013 featured a single model SVM system
that used n-grams of lemmas, words, and part-of-
speech tags. The authors normalized each text to
unit length and obtained an accuracy of 83.60 %.
In another work, Ionescu et al. (2014) applied a
union of character n-gram based string kernels and
obtained an accuracy of 85.30 % on the dataset
from NLI shared task 2013.

Using the data from NLI shared task 2013,
Bykh and Meurers (2014) explored the use of
phrase structure rules for the purpose of NLI. The
authors obtained an accuracy of 84.82 % which is
similar to the results reported by previous authors.
In another paper, Goutte et al. (2013) employed
an ensemble of SVM classifiers trained on char-
acter, word, part-of-speech n-grams, and syntactic
dependencies and showed that the system achieves
an accuracy of 81.82 % at NLI task. Recently,
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Malmasi and Dras (2017) explored ensemble re-
lated classifiers using word, character, lemma, and
grammar based features and found that stacking
the classifiers’ ensemble achieves an accuracy of
87.10 %.

In this paper, we used the single SVM model of
Çöltekin and Rama (2016) that combines charac-
ter n-grams with word n-grams for the essay task.
We explored different ensemble models such as
hard majority ensemble, mean majority ensemble,
and stacked ensemble for the fusion task. In the
case of speech task, we found that a linear clas-
sifier trained on i-vectors (alone) achieves an ac-
curacy greater than 80 % on the test data. We also
found that i-vectors combined with word unigrams
from essays and speech transcriptions achieve an
accuracy of 90.64 % on the test data. The main
result from our experiments is that i-vectors con-
tribute towards improving the performance of NLI
systems.

We also experimented with adding POS tags as
features, and a number of neural network classi-
fiers. However, within our efforts, neither options
improve the results. As a result we only submitted
results with the linear models noted above, and we
only discuss these models in detail in this paper.

The remainder of the paper is organized as fol-
lows. In section 2, we describe the different tasks
and systems. In section 3, we describe the results
of our experiments. We conclude our paper in sec-
tion 4.

2 Methodology and Data

2.1 Task description

In this subsection, we provide a description of the
three subtasks in NLI shared task 2017 (Malmasi
and Dras, 2017). The goal of the shared task is to
produce a system that can identify the native lan-
guage of the test giver based on written response
(essays), speech transcriptions, and audio files (i-
vectors). The native languages are known before-
hand and are as follows: Arabic, Chinese, French,
German, Hindi, Italian, Japanese, Korean, Span-
ish, Telugu, Turkish.

The essays task is limited to using (only) writ-
ten response for identifying the native language of
the individual. The speech task consists of using
speech transcriptions and i-vectors (fixed-length
vectors representing some acoustic properties of
whole utterances) for NLI. In the fusion task, we
use essays, speech transcriptions, and i-vectors for

the purpose of NLI.
The organizers provided separate training and

development datasets for each task. The training
dataset consisted of 11 000 examples and the de-
velopment dataset consisted of 1 100 examples.

2.2 NLI with a single classifier
In this paper, we extracted character n-grams,
word n-grams, and word skip-grams from essays
and speech transcriptions for training our classi-
fiers. Specifically, we used the following features
in our experiments. We used a simple regular ex-
pression based tokenizer for extracting words and
did not apply any filtering (e.g., case normaliza-
tion).

• Word n-grams: Unigrams and bigrams.

• Character n-grams: We extracted character
substrings of length from 1–9.

• Word skip-grams: We extracted word bi-
grams by skipping a intermediary word for
extracting 1-skip word bigram (Ionescu et al.,
2014).

For each task, we extracted the following fea-
tures:

• Essays task: Each document is represented as
a combination of word and character n-grams
which are weighted using sub-linear tf-idf
scaling (Jurafsky and Martin, 2009, p.805).

• Speech task: We used a combination of i-
vectors, word and character n-grams (ex-
tracted from speech transcriptions). The
word/character n-grams are weighted sepa-
rately using sublinear tf-idf scaling and then
combined with the i-vectors.

• Fusion task: We extracted word and charac-
ter n-grams from both essays and speech tran-
scriptions and, then, applied sublinear tf-idf
scaling to the combined word and character
n-gram vectors. Finally, we combined the i-
vectors with the sublinear tf-idf scaled speech
& transcriptions n-grams.

In all the tracks, we normalize the combined
document vectors to unit length. We also tuned the
number of character and word n-grams, as well as
the SVM margin parameter ‘C’ for each task sep-
arately. The SVMs were not very sensitive to the
changes in ‘C’ parameter. All linear SVM mod-
els were implemented with scikit-learn (Pedregosa
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et al., 2011) and trained and tested using Liblin-
ear backend (Fan et al., 2008). All our multi-class
classifiers are trained in a one-vs-many fashion.

2.3 Ensemble classifiers
In a recent paper, Malmasi and Dras (2017)
showed that ensemble classifiers perform the best
at NLI task. Specifically, Malmasi and Dras
(2017) showed that ensemble of linear classifiers
trained on multiple feature types performed bet-
ter than a single classifier trained on a combina-
tion of feature types. We trained an SVM classi-
fier on each of the above listed feature types ex-
tracted from essays and speech transcriptions. In
the case of i-vectors, we trained an LDA classi-
fier (Hastie et al., 2009, p.106) since it performed
better than the SVM classifier on the development
data. A classifier trained on a feature type predicts
both the label and the probability score for each
class. Based on this, we created two ensembles as
follows:

• Majority Ensemble: In this system, each clas-
sifier labels an example and the class with the
highest frequency is chosen as the label for
the instance.

• Mean probability Ensemble: In this system,
the probability estimates for each class are
added and the class with the highest sum is
chosen as the label for the instance.

• Meta Classifier: Following Malmasi (2016),
we train a linear SVM classifier for each fea-
ture type through ten-fold cross-validation on
the training data. This step results in 10 clas-
sifiers for each feature type. For each fea-
ture type, we average the class probability es-
timates of the ten classifiers and then train
a linear SVM classifier with the probability
estimates as features and the corresponding
class label as target class.

2.4 Submitted systems
• Essay task: We trained SVM classifiers on

combinations of word n-grams (ranging from
1 to 3) and character n-grams (ranging from
1-9) and found that the SVM system trained
with word bigrams and character 7-grams
performed the best at F1-score on the devel-
opment data. We submitted the results of the
trained model as w2c7.

• Speech track: We submitted the following
two systems:

– only i-vectors: In our experiments, we
found that a Linear Discriminant Clas-
sifier (LDA) trained on i-vectors per-
formed better than an SVM model on
the development data. We submitted the
system as LDA (only i-vectors).

– Transcripts + i-vectors: We submitted
the results of the SVM model trained
on a combination of i-vectors, word bi-
grams, and character 7-grams (extracted
from speech transcriptions) as SVM
(i+t).

• Fusion track: We submitted four systems in
this task. The first two systems are based on
two SVM models trained on different combi-
nations of word- and character-ngrams. The
third system is a mean majority ensemble
based on different feature types. The fourth
system is a meta classifier model based on
different feature types.

3 Results

In this section, we describe the results of the sub-
mitted systems in each track.

3.1 Essay task
In this track, the best performing model is a lin-
ear SVM model trained with word bigrams and
character 7-grams (w2c7 model). We explored
the effect of using higher order word and charac-
ter n-grams for this task by training a linear SVM
model on the training data and testing the model
on the development data. In the case of develop-
ment data, with w2c7 model, we report an accu-
racy of 84.09 % and an F1 score of 84.04 %. The
results on the test data for the same model is given
in table 1. The results suggest that the model per-
formed better on the testing data than development
data. We also explored the effect of tuning the
SVM hyperparameter ‘C’ and found that the F1-
score on the development data are not sensitive to
the ‘C’ parameter.

The confusion matrix for the essay task is given
in figure 1. The confusion matrix shows that
model makes most of the mistakes occur at the
classification of Telugu vs. Hindi and Japanese
vs. Korean language pairs. More generally,
the system makes mistakes between languages
that have a history of long geographical contact
(Chinese-Japanese–Korean; Hindi–Telugu) or be-
long to the same language subgroup (French–

257



System F1 (macro) Accuracy

w2c7 0.871 6 0.871 8

Official baseline 0.710 4 0.710 9
Random baseline 0.090 9 0.090 9

Table 1: The results for word bigrams and charac-
ter 7-grams using Linear SVMs for essay task.
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Figure 1: Confusion matrix for the essay track.

Italian–Spanish). In the case of Turkish, the model
errs uniformly at classifying Turkish instances as
instances of other classes.

3.2 Speech task

We submitted two systems in the case of speech
task: an LDA classifier based on i-vectors and an
SVM classifier based on the combined features of
speech transcriptions and i-vectors. We expected
that a combination of transcriptions and i-vectors
might capture the acoustic features that would dis-
criminate the highly confused language pairs such
as Hindi–Telugu. However, the F1-scores in table
2 show that i-vectors alone perform better than a
combination of transcriptions and i-vectors at NLI
task. Although the combination model of tran-
scriptions and i-vector features yield an F1-score
of 81.57 % on the development data, the combined
model performs poorly with test data. In contrast,
the LDA model trained on i-vectors yielded an F1-
score of 83.33 % on the test data.

The confusion matrix for the LDA model is
presented in figure 2. The results suggest that
the model makes most of its mistake at classi-
fying Telugu–Hindi language pair. We hypothe-

System F1 (macro) Accuracy

LDA (only i-vectors) 0.833 3 0.833 6
SVM (combined) 0.280 1 0.293 6

Official Baseline
transcriptions 0.543 5 0.546 4
combined 0.798 0 0.798 2

Random Baseline 0.909 0 0.909 0

Table 2: Results of LDA classifier on i-vectors
and the results on combined transcriptions and i-
vectors.
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Figure 2: Confusion matrix for the speech task (i-
vectors only).

sized that i-vectors might be useful to discriminate
Telugu–Hindi language pair since they might cap-
ture differences between languages that are in con-
tact. However, the LDA (only i-vector) model errs
more than the essay-based SVM model for the test
dataset originating from the same set of individu-
als.

3.3 Fusion task

We submitted four systems in this task.
The first system is a Combined feature system

is a combination of the following features:
• Word bigrams and character 7-grams from

essays (w2c7 model)
• Word bigrams from transcriptions
• i-vectors

The combined feature system achieved an F1-
score of 85.24 % on the development data and an
F1-score of 88.71 % on the test data. The differ-
ence between the performance on the development
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and test data is similar to that of the SVM model
trained on essays data. We attribute the improve-
ment from essay model SVM mainly to i-vector
based features.

Due to the poor performance of the combination
of transcriptions and i-vectors, we also explored
if reducing the features would improve the per-
formance of the model. After exploring different
combinations of n-grams in essays and transcrip-
tions, we found that the following feature com-
bination (a 66 881 dimension vector) yielded an
F1-score of 88.20 % on the development data and
90.65 % on the test data.

• Both Essays and transcriptions: Word uni-
grams and no character n-grams

• i-vectors
The third system is a mean probability ensemble

trained on the following features:
• Essays: char ngrams (n ranging from 2–5),

word ngrams (n ranging from 1–2), 1-skip
word bigram

• Transcripts: word 1gram, 1-skip word bi-
gram

• i-vectors
The mean probability ensemble yielded an F1-
score of 89.93 % on the development data and a
score of 91.75 % on the test data. The mean prob-
ability ensemble made the most number of mis-
takes in classifying Telugu–Hindi language pair
but erred less than the essay based SVM model
at other language pairs.

The meta classifier described in section 2.3 was
trained on the following feature types and yielded
an F1-score of 90.54 % on the development data.

• essays: character ngrams 2–7, word ngrams
1–2

• transcriptions: word 1-gram
• i-vectors: LDA
The meta classifier performed better than the

mean probability ensemble on the development
data. This result is in line with the previously re-
ported results of Malmasi and Dras (2017). Sur-
prisingly, the meta classifier performs worse on
the test data.

4 Discussion

In this paper, we described our systems participat-
ing in the NLI shared task 2017. We participated
in all the three tasks offered during this shared
task campaign. We find that word unigram fea-
tures in conjunction with i-vectors perform bet-

System F1 (macro) Accuracy

Combined system 0.887 1 0.887 3
Simple system 0.906 5 0.906 4
Mean probability ensemble 0.917 5 0.917 3
Meta Classifier 0.848 1 0.848 2

Official Baseline
essays and trans. 0.778 6 0.779 1
all 0.790 1 0.790 9

Random Baseline 0.909 0 0.909 0

Table 3: Results of different submissions for Fu-
sion track.
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Figure 3: Confusion matrix of Mean probability
ensemble for the fusion track.

ter than a combination of word or character based
higher order n-gram features. We also find that
transcription-based features do not improve the
performance on the test data as is in the case of
the combination system. All the systems make er-
rors when discriminating between Hindi vs. Tel-
ugu. Another surprising result from experiments is
that the Meta Classifier approach does not perform
better than the mean probability ensemble which
is not in line with the result of Malmasi and Dras
(2017).

Besides the models we describe above, we also
experimented with additional linguistic features
(POS tags) and neural network classifiers. The
POS tag n-gram features used together with our
best-performing models did not improve the re-
sults. Furthermore, the best performing neural
network architectures performed a few percentage
scores worse than the linear models described in
this paper in all of our experiments. Although this
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is in line with our earlier experiments (Çöltekin
and Rama, 2016, 2017) in a similar task, discrim-
inating between similar languages and dialects
(Malmasi et al., 2016; Zampieri et al., 2017), our
experiments were not exhaustive and it is likely
that one can get better results with neural networks
with different architectures, and/or more data.
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Abstract

Learners need to find suitable documents to
read and prioritize them in an appropriate
order. We present a method of automati-
cally generating reading lists, selecting doc-
uments based on their pedagogical value
to the learner and ordering them using the
structure of concepts in the domain. Result-
ing reading lists related to computational lin-
guistics were evaluated by advanced learn-
ers and judged to be near the quality of
those generated by domain experts. We pro-
vide an open-source implementation of our
method to enable future work on reading
list generation.

1 Introduction
More scientific and technical literature is instantly
accessible than ever before, but this means that it
can also be harder than ever to determine what
sequence of documents would be most helpful for a
learner to read. Standard information retrieval tools,
e.g., a search engine, will find documents that are
highly relevant, but they will not return documents
about concepts that must be learned first, and they
will not identify which documents are appropriate
for a particular user. Learners would greatly benefit
from an automated approximation of the sort of
personalized reading list an expert tutor would
create for them. We have developed TechKnAcq
– short for Technical Knowledge Acquisition – to
automatically construct this kind of pedagogically
useful reading list for technical subjects.

Presented with only a “core corpus” of technical
material that represents the subject under study,
without any additional semantic annotation, Tech-
KnAcq generates a reading list in response to a
simple query. For instance, given a corpus of doc-
uments related to natural language processing, a

reading list can be generated for the query “machine
translation.” The reading list should be similar to
what a PhD student might be given by her advisor:
it should include prerequisite subjects that need to
be understood before attempting to learn material
about the query, and it should be tailored to the
individual needs of the student.

To generate such a reading list, we first infer the
conceptual structure of the domain from the core
corpus. We then expand this corpus to include a
greater amount of relevant, pedagogically useful
documents, and we relate concepts to one another
and to the individual documents in a concept graph
structure. Using this graph and a model of the
learner’s expertise, we generate personalized read-
ing lists for the user’s queries. In the following
sections, we describe these steps and then evaluate
the resulting reading lists for several concepts in
computational linguistics, compared to reading lists
generated by domain experts.

2 Generating a Concept Graph

A concept graph (Gordon et al., 2016) is a model
of a knowledge domain and related documents. To
generate a concept graph, we start with a core cor-
pus, consisting of technical documents, e.g., the
archives of an academic journal. We identify tech-
nical phrases in the core corpus and use these to
find additional, potentially pedagogically valuable
documents, such as reference works or tutorials. For
each document in the resulting expanded corpus,
we infer a distribution over a set of pedagogical
roles. We model the concepts in the domain using
topic modeling techniques and apply information-
theoretic measures to predict concept dependency
(roughly, prerequisite) relations among them. Asso-
ciating the documents of the expanded corpus with
these concepts results in a rich graph representation
that enables structured reading list generation.
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2.1 Pedagogical Corpus Expansion
Most technical corpora are directed at experts, so
they typically focus on presenting new methods
and results. They often lack more introductory
or instructional documents, and those covering
fundamental concepts. Therefore, before generating
a reading list, we want to automatically expand a
core technical corpus to include relevant documents
that are directed at learners at different levels.

Identifying terms Given a collection of docu-
ments, our first step is to identify a list of technical
terms that can be used as queries. We adapt the
lightweight, corpus-independent method presented
by Jardine (2014):
1. Generate a list of n-grams that occur two or

more times in the titles of papers in the corpus.
2. Filter unigrams that appear in a Scrabble dic-

tionary (e.g., common nouns).
3. Filter n-grams that begin or end with stop

words, such as conjunctions or prepositions.
(Remove “part of” but not “part of speech”.)

4. Filter any n-gram whose number of occur-
rences is within 25% of the occurrences of
a subsuming n+1-gram. E.g., remove “statis-
tical machine” because “statistical machine
translation” is nearly as frequent.

Based on manual inspection of the results, we
increased the threshold for subsumption to 30%
and added two steps:
5. Filter regular plurals if the list includes the

singular.
6. Order technical terms based on the density of

the citation graph for documents containing
them (Jo et al., 2007).

Jardine (2014) removes the bottom 75% of uni-
grams and bigrams by frequency (but keeps all
longer n-grams). The Jo et al. (2007) method is
better for comparing terms than simple frequency,
butmost technical termswe discover are also of high
quality, making aggressive filtering of unigrams and
bigrams unnecessary. Jardine also adds acronyms
(uppercase words in mixed-case titles), regardless
of frequency. We find acronyms from the initial
collection of terms and do not consider it necessary
to add singleton acronyms to our results – or those
that are also a common noun, e.g., TRIPS, since we
cannot assure case sensitivity in our searches.

Wikipedia and ScienceDirect We retrieve book
chapters from Elsevier’s ScienceDirect full-text
document service and encyclopedia articles from

Wikipedia. For Wikipedia, each term is queried in-
dividually, but only the top two results are included.
For ScienceDirect, terms are used to retrieve batches
of 50 results for each disjunction of 100 technical
terms. This identifies documents that are central
to the set of query terms rather than those with
minimal shared content, and it reduces the num-
ber of API requests required. These documents are
filtered based on heuristic relevance criteria: For
Wikipedia, we keep documents if they contain at
least 15 occurrences of at least five unique technical
terms. For ScienceDirect, we require at least 20
occurrences of at least 10 unique technical terms
since these documents tend to be longer.
Given this initial set of matching documents,

we can then exploit their natural groupings: For
Wikipedia, these are the categories that articles
belong to, while for ScienceDirect, they are the
books the chapters are from. For each grouping
of the matched documents, ordered by size, we
add the most relevant 75% of the documents that
belong to the grouping and pass a weaker threshold
of relevance to the query terms (four occurrences
of two unique technical terms). This adds back in
documents that would not pass the more stringent
filters above but are likely to be relevant based on
these groupings. These thresholds were manually
tuned to balance the accuracy and coverage of
expansion documents for these sources, but a full
consideration of the parameter space is left for
future work.

Tutorials Tutorials are often written by re-
searchers for use within their own groups or for
teaching a course and are then made available to
the broader community online. For developing sci-
entists in the field, these serve as valuable training
resources, but they are not indexed or collected in
any centralized way. Our approach for downloading
tutorials from the Web is as follows:
1. Search Google or Bing for each of the top-200

technical terms and for randomized disjunc-
tions of 10 technical terms for the full list.

2. Filter the results with the “.pdf” file extension
and containing the phrase “this tutorial.”

3. For each result found for more than one query,
perform OCR and export the document.

2.2 Computing Pedagogical Roles
Given an expanded corpus of pedagogically diverse
documents, we would like to infer a distribution for
each document of how well it fulfills different ped-
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agogical roles. Sheng et al. (2017) have created an
annotated corpus and trained a classifier to predict
these roles:

• Survey: A survey examines or compares
across a broad concept.

• Tutorial: Tutorials describe a coherent process
about how to use tools or understand a concept,
and teach by example.

• Resource: Does this document describe the
authors’ implementation of a tool, corpus, or
other resource that has been distributed?

• Reference work: Is this document a collection
of authoritative facts intended for others to
refer to? Reports of novel, experimental results
are not considered authoritative facts.

• Empirical results: Does this document de-
scribe results of the authors’ experiments?

• Software manual: Is this document a manual
describing how to use different components
of a piece of software?

• Other: This includes theoretical papers, pa-
pers that present a rebuttal for a claim, thought
experiments, etc.

For the training corpus – a subset of the pedagog-
ically expanded corpus – annotators were instructed
to select all applicable pedagogical roles for each
document. In the experiments we report, we use a
combination of the predicted roles and manually
set prior probabilities for the different document
sources (e.g., an article from Wikipedia is most
likely to be a Reference work).

2.3 Computing Concepts and Dependencies
To infer conceptual structure in a collection of doc-
uments, TechKnAcq must first identify the concepts
that are important in the document domain. We
model concepts as probability distributions over
words or phrases, known as topics (Griffiths and
Steyvers, 2004). Specifically, we use latent Dirichlet
allocation (LDA) (Blei et al., 2003), implemented
in MALLET (McCallum, 2002), to discover topics
in the core corpus.1
Many relations can hold between concepts, but

for reading list generation we are most interested
in concept dependency, which holds whenever one
concept would help you to understand another.
This is strongest in the case of prerequisites (e.g.,
First-order logic is a prerequisite for understand-
ing Markov logic networks). Gordon et al. (2016)

1 Concepts are not tied to standard topic modeling, e.g.,
they can also come from running Explicit Semantic Analysis
(Gabrilovich and Markovitch, 2007) using Wikipedia pages.

propose and evaluate approaches to predict concept
dependency relations between LDA topics, and we
adopt the average of their best-performing methods:

Word-similarity method The strength of depen-
dency between two topics is the Jaccard similarity
coefficient J(t1, t2) = t1∩t2

t1∪t2 , using the top 20 words
in the associated topic distributions. A limitation
of this method is that it is symmetric, while depen-
dency relations can be asymmetric.

Cross-entropy method Topic t1 depends on
topic t2 if the distribution (e.g., of top-k associ-
ated words) for t1 is better approximated by that
of t2 than vice versa – for cross entropy H func-
tion, H(t1, t2) > H(t2, t1) – and their joint entropy is
lower than a chosen threshold, namely, the average
joint entropy of topics known not to be dependent.

2.4 Concept Graphs

In a concept graph, concepts are nodes, which
may be connected by weighted, directed edges for
relations including concept dependency. These con-
cepts have associated features, most importantly
their distribution over words or phrases, which will
be used to match learners’ queries. Documents
are also represented as nodes, which have as their
features basic bibliographic information and their
pedagogical role distributions. Documents are con-
nected to concepts by weighted edges indicating
their relevance.

A natural basis for identifying the most relevant
documents for a concept is the distribution over top-
ics that LDA produces for each document. However,
high relevance of a topic to a document does not
entail that the document is highly relevant to the
topic. In particular, the LDA document–topic com-
position gives anomalous results for documents that
are not well aligned with the topic model. Therefore,
we also compute scores for a document’s relevance
to a topic based on the importance of each word
in the document to the topic. For each document,
we sum the weight of each word or phrase for the
topic (i.e., the number of times LDA assigned the
word to that topic in the entire corpus). This score
is then normalized by dividing by the length of the
document and then by the maximum score of any
document for that topic. The algorithm is given in
Figure 1. In the concept graph, we use the average
of the original document–topic composition weight
and this alternative measure.
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Input: topic model T , corpus C, document d
scores← nested hash table
foreach topic t ∈ T do

scores[t][d]← 0
max_score← 0
foreach document d ∈ C do

foreach word w ∈ d do
scores[t][d]← scores[t][d] +
topic_weight(w, t)

scores[t][d]← scores[t][d] / length(d)
if scores[t][d] > max_score then

max_score← scores[t][d]
foreach document d ∈ C do

scores[t][d]← scores[t][d] /max_score
return scores

Figure 1: Algorithm to score the relevance of docu-
ments to concepts.

3 Generating a Reading List

Given a concept graph linking each concept to the
concepts it depends upon and to the documents that
describe it, we generate a reading list by
1. computing the relevance of each concept to

the user’s query string,
2. performing a depth-first traversal of the depen-

dencies, starting from the best match, and
3. selecting documents for each concept based

on our model of the user’s expertise and the
documents’ pedagogical roles.

Learner models The learner model gives the
user’s level of familiarity with each concept in the
concept graph for the domain. By modeling the
user’s familiarity with concepts when we generate
personalized reading lists, we can prefer introduc-
tory material for new concepts and more advanced
documents for the user’s areas of expertise, omit-
ting them when they would be included only as
dependencies for another concept. Such a model
can be built from an initial questionnaire or inferred
from other inputs, such as documents the user has
marked as read. In the absence of a model of the
specific user, we fall back to generic “beginner,” “in-
termediate,” and “advanced” preferences, where all
concepts are assigned the same level of familiarity.

Concept relevance Given a query, we match con-
cepts based on lexical overlap with their associated
word distribution. For each concept with a match
score over a threshold, if the learner model indicates
that the user is a beginner at that concept, we tra-
verse concept dependencies until the relevance score
drops below a threshold. If concept d is a prerequi-
site of the matched topic m with weight P(d,m), the

relevance R(d) = M(d)+M(m) ·P(d,m), where M
is the function giving the lexical overlap strength.

Document selection When we include concept
dependencies, we bookend their presentation on
the reading list by presenting one or more introduc-
tory or overview documents, presenting documents
about the dependencies, and then proceeding to
more advanced documents about the original con-
cept. So, for instance, a reading list might include
an overview about Markov logic networks, then
present documents about the prerequisite concepts
First-order logic andMarkov network, and end with
more advanced documents about Markov logic net-
works. This avoids the confusion of presenting doc-
uments in strict concept dependency order, where
the learner may not have the basic understanding
of a subject to recognize why the prerequisites are
in the reading list and how they relate to the query
concept.

If the user already has advanced knowledge of a
concept, we do not follow dependencies. Instead,
we present three papers for that concept: a survey
and two empirical results papers. We keep track of
the concepts and documents that have been covered
by the reading list generation so that, for instance,
a matching topic that is also a dependency of a
stronger match will be included as a dependency
but not repeated later.

4 Evaluation
To enable comparison to an existing gold standard,
we evaluated TechKnAcq on the domain of compu-
tational linguistics and natural language processing.
Our evaluation covers 16 topics: For eight topics,
we evaluate the expert-generated Jardine (2014)
gold standard (JGS) reading lists and reading lists
generated by TechKnAcq for the same topics. We
additionally evaluated reading lists generated by
TechKnAcq for eight topics of central importance
in the domain, sampled from the list of “Major
evaluations and tasks” on the Wikipedia article on
natural language processing.2 In this section, we
describe the generation of a concept graph for the
evaluation domain, the evaluation methodology and
participants, and the results.

4.1 Evaluation Domain
As our core corpus, we used the ACL Anthology,
which consists of PDFs – many of them scanned –

2 https://en.wikipedia.org/wiki/Natural_language_
processing#Major_evaluations_and_tasks
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of conference and workshop papers and journal arti-
cles. There have been multiple attempts to produce
machine-readable versions of the corpus, but all
suffer from problems of text quality and extraction
coverage. We used the December 2016 release of
the ACL Anthology Network corpus (Radev et al.,
2009), which includes papers published through
2014. We automatically and manually enhanced
this corpus by adding missing text, removing doc-
uments not primarily written in English and ones
with only abstracts, and joining words split across
lines. After running the corpus expansion method
described in Section 2.1, the corpus includes:

• 22,084 papers from the ACL Anthology
• 1,949 encyclopedia articles from Wikipedia
• 1,172 book chapters from ScienceDirect
• 114 tutorials retrieved from the Web

The concept graph was generated using a 300-topic
LDA model, defined over bigrams. Names were
manually assigned to 238 topics, and 62 topics that
could not be assigned a name were excluded from
the concept graph.

4.2 Evaluation Method
We recruited 33 NLP researchers to take part in
the evaluation, primarily from an online mailing
list for the computational linguistics community.
Participants were required to have institutional af-
filiations and expertise in NLP. In the evaluation,
participants were presented with the reading lists3
and asked to change the order of documents to the
order they would recommend a novice in NLP to
read, i.e., ensuring that the first documents require
limited knowledge and the documents that follow
are predicated on the ones that came before. The
participants could also remove documents from the
reading list and suggest new documents be added
in any position. By tracking changes in the reading
lists, we can measure how many entries had to be
changed for the list to be satisfactory.
Three sets of reading lists were evaluated. The

first two were comparable lists, consisting of expert-
generated lists, and their TechKnAcq counterparts.
Together, these constitute the “comparison” set.
The third set consisted of additional TechKnAcq-
generated reading lists; this constitutes the “stand-
alone” set. In addition to this edit-based evaluation,
for the stand-alone set participants were asked to
rate their agreement with statements about read-

3 The order in which TechKnAcq and JGS reading lists
were presented was randomized and counterbalanced to control
for order effects.

ing lists generated by TechKnAcq for a qualitative
measure of a reading list’s pedagogical value.

4.3 Evaluation Results
The similarity of TechKnAcq reading lists to expert-
generated ones in terms of pedagogical value was
assessed based on the changes participants made
to the lists – the fewer documents that were moved,
deleted, or added, the better the participant consid-
ered the reading list. The total number of changes to
a reading list was measured using edit distance, but
we are also interested specifically in the stability
of document positions, the number of documents
deleted, and the number of documents added to the
reading lists.

Edit distance One of the most natural ways to
compute how much a participant modified a given
reading list overall is to use Levenshtein (1966) edit
distance. This is a method of computing the fewest
edit operations necessary to turn one sequence into
another, classically applied to spell-checking. The
operations are insertion, deletion, and substitution
of an item. So, for instance, if the participant re-
moves a paper and adds another in the same location
in the reading list, she has performed a substitution,
with an edit distance of one. If she then moves a pa-
per from the end of the reading list to the beginning,
that is a deletion from the old location followed
by an insertion. A limitation of edit distance is
that it does not take into account the length of the
sequence being modified. E.g., a long reading list
that is mostly considered to be good may have the
same number of edits as a shorter reading list that
is much worse. As such, we also normalized the
edit distance scores by dividing by the length of the
original reading list. For the comparable set, the
average edit distance was 0.22 for an expert reading
list and 0.33 for a TechKnAcq-generated one. The
edit distance for TechKnAcq reading lists for the
stand-alone set was 0.38. These results are shown
in Figure 2.

List stability One indicator of reading list qual-
ity is how stable a list is, i.e., whether a document
changes position within a list. This is computed
as the number of documents whose absolute posi-
tion in the reading list has changed, not including
documents that were added (written in) by the par-
ticipants. The mean level of stability for reading
lists is given in Table 1. Smaller means, paired with
smaller standard deviations indicate more stability
within the reading list for a query. Minimums and
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Average edit distance (normalized by original reading list length)

Query Average edit distance

Expert TechKnAcq

Concept to Text 0.31521739 0.36363636

Distributional Semantics 0.20089286 0.31972789

Domain Adaptation 0.21090909 0.27142857

Information Extraction 0.45925926 0.68181818

Lexical Semantics 0.30000000 0.57428571

Parser Evaluation 0.10000000 0.11868132

Statistical Machine Translation Models 0.09130435 0.14661654

Statistical Parsing 0.10101010 0.19542620

Coreference Resolution 0.35585586

Machine Translation 0.23725490

Morphological Segmentation 0.22493225

Parsing 0.47272727

Question Answering 0.42424242

Sentiment Analysis 0.67171717

Speech Recognition 0.27272727

Word Sense Disambiguation 0.41250000

Avg for comp. 0.22232413 0.33395260

Avg for extra 0.38399464
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Figure 2: Average Levenshtein edit distances for reading lists produced by domain experts and by
TechKnAcq, normalized by dividing by the original length of each reading list.

TechKnAcq-generated reading lists Expert-generated reading lists
Domain Norm Mean SD Min Max Len. Norm Mean SD Min Max Len.

Concept to Text 0.63 3.75 2.01 0 6 6 0.80 12.83 4.26 0 16 16
Distributional Semantics 0.66 4.62 2.93 0 7 7 0.71 10.00 4.73 0 14 14
Domain Adaptation 0.69 4.13 1.55 2 6 6 0.80 8.78 1.64 6 10 11
Information Extraction 0.64 7.04 3.25 0 10 11 0.65 5.85 3.72 0 9 9
Lexical Semantics 0.60 5.95 3.95 0 10 10 0.56 7.90 5.04 0 14 14
Parser Evaluation 0.77 10.00 1.41 9 12 13 0.75 3.00 1.41 1 4 4
Stat. Machine Trans. Models 0.84 15.88 3.40 10 19 19 0.55 2.75 2.05 0 5 5
Statistical Parsing 0.79 10.29 4.64 0 13 13 0.66 14.57 10.03 0 22 22

Average 0.70 0.69

Coreference Resolution 0.60 3.58 1.98 0 6 6
Machine Translation 0.55 8.25 4.74 0 13 15
Morphological Segmentation 0.67 6.00 2.78 0 9 9
Parsing 0.54 5.40 4.81 0 10 10
Question Answering 0.56 3.36 2.17 0 6 6
Sentiment Analysis 0.68 4.05 1.86 0 6 6
Speech Recognition 0.73 8.00 4.18 0 11 11
Word Sense Disambiguation 0.64 3.81 2.04 0 6 6

Average 0.62

Table 1: Changes to document positions in expert and TechKnAcq reading lists, for the comparison and
stand-alone sets. Lower numbers indicate greater list stability. Norm is the mean number of changes
normalized by dividing by the reading list length to allow comparison across lists.
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maximums are also reported, with TechKnAcq scor-
ing a minimum of zero more often, indicating that
participants left these lists unchanged more often
than the expert (JGS) lists. Note that, unlike for edit
distance, some changes to reading lists, such as mov-
ing the first document to the end, have an outsize
effect on the stability score compared with others,
like swapping the first and last documents. This in-
dicator is also sensitive to list length – the longer the
list, the more potential there is for changes within
the list. For the comparison set, the average stability
for TechKnAcq reading lists, normalized by length,
is 0.70 vs 0.69 for expert-generated reading lists,
indicating a similar level of document movement.

Deletions Fewer deletions signals a judgment that
the reading list contents are appropriate. Table 2
presents the mean number of deletions. When dele-
tions are normalized by reading list length, there are
fewer (0.16) for expert-generated reading lists than
for for TechKnAcq (0.23) on the comparison set.
While the stability scores were similar for the com-
parison set, the deletions suggest that TechKnAcq
does worse at selecting documents than experts
do. This may be a limitation of computing rele-
vance using a coarse-grained topic model or it may
reflect that TechKnAcq includes more documents
for concept dependencies than the participants felt
necessary.

Additions Participants were encouraged to add
any documents they felt belonged in the reading list
that were not present. However, this was relatively
labor-intensive, requiring the participant to either
remember or look up relevant papers and then enter
information about them. As such, relatively few
documents were added. Statistics for additions are
given in Table 3, but the rate with which documents
were added is similar for TechKnAcq and expert-
generated reading lists.

Qualitative For reading lists generated for the
stand-alone set, participants qualitatively evaluated
whether they were appropriate to use in a pedagogi-
cal setting. They were asked to rate their agreement
with these statements on a scale from 1 (strongly
disagree) to 7 (strongly agree):
1. This reading list is complete.
2. This is a good reading list for a PhD student.
3. I would use this reading list in one of my

classes.
4. I would send this reading list to a colleague of

mine.

5. This is a good reading list for a master’s stu-
dent.

6. I could come up with a more complete reading
list than the one provided.

7. If a PhD read the articles in this reading list in
order, they would master the concepts.

Cronbach’s α was calculated for each set of ques-
tions; high values (α > .8) indicate that each set of
items were internally consistent, and closely related
as a set (Santos, 1999). Thus, we averaged these
ratings (with responses to Statement 6 inverted) for
a composite measure of the pedagogical value of
each reading list. Results indicate that, on average,
the reading lists have moderate-to-high potential.
These results are in Table 4.

5 Related Work

Research on information retrieval provides a his-
torically sizable literature describing methods to
catalog, index, and query document collections, but
it focuses on the task of finding the most relevant
documents for a given query (Witten et al., 1999).
Wang et al. (2007) build a repository of learning
objects characterized bymetadata and then personal-
ize recommendations based on a user’s preferences.
Tang (2008) introduces the problem of reading list
generation and addresses it using collaborative fil-
tering techniques. Ekstrand et al. (2010) provide a
good run-through of possible competition based on
collaborative filtering.
The doctoral work of Jardine (2014) addresses

the question of building reading lists over corpora
of technical papers. Given an input word, phrase,
or entire document, Jardine identifies a weighted
set of relevant topics using an LDA model trained
on a corpus and then selects the most relevant
papers for each topic using his ThemedPageRank
metric. This is an unstructured method for reading
list generation, while TechKnAcq uses concept
dependency relations to order the presentation of
topics. Jardine’smethod selects documents based on
their importance to a topic butwithout consideration
of the pedagogical roles the documents serve for
different learner models.

Jardine’s work provides a set of expert-generated
gold-standard reading lists, which we have reused
in our evaluation. Jardine asked experts to compose
gold standard reading lists and compared these to
the reading lists generated by his system, using a
citation substitution coefficient to judge how similar
a paper in his output is to that chosen by an expert.
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TechKnAcq-generated reading lists Expert-generated reading lists
Domain Norm Mean SD Min Max Len. Norm Mean SD Min Max Len.

Concept to Text 0.17 1.00 1.28 0 4 6 0.31 4.92 4.27 0 14 16
Distributional Semantics 0.73 5.08 1.04 3 7 7 0.09 1.23 1.59 0 4 14
Domain Adaptation 0.11 0.78 1.09 0 3 7 0.19 2.11 1.05 0 4 11
Information Extraction 0.12 1.37 1.71 0 5 11 0.50 4.48 1.19 2 7 9
Lexical Semantics 0.26 2.55 3.43 0 10 10 0.07 1.00 1.62 0 5 14
Parser Evaluation 0.08 1.00 1.41 0 3 13 0.00 0.00 0.00 0 0 4
Stat. Machine Trans. Models 0.18 3.50 2.33 1 7 19 0.05 0.25 0.71 0 2 5
Statistical Parsing 0.19 2.43 1.81 0 4 13 0.11 2.43 2.37 0 7 22

Average 0.23 0.16

Coreference Resolution 0.05 0.27 0.47 0 1 6
Machine Translation 0.08 1.13 2.80 0 8 15
Morphological Segmentation 0.23 2.11 2.32 0 6 9
Parsing 0.08 0.83 1.60 0 4 10
Question Answering 0.06 0.36 0.63 0 2 6
Sentiment Analysis 0.07 0.41 0.80 0 3 6
Speech Recognition 0.18 2.00 1.80 0 5 11
Word Sense Disambiguation 0.07 0.44 0.89 0 3 6

Average 0.10

Table 2: Number of documents participants deleted from expert and TechKnAcq reading lists, for the
comparison and stand-alone sets. Lower numbers indicate better document selection. Norm is the mean
number of deletions normalized by dividing by the reading list length to allow comparison across lists.

TechKnAcq-generated reading lists Expert-generated reading lists
Domain Norm Mean SD Min Max Len. Norm Mean SD Min Max Len.

Concept to Text 0.00 0.00 0.00 0 0 6 0.00 0.00 0.00 0 0 16
Distributional Semantics 0.11 0.77 1.17 0 3 7 0.04 0.54 0.78 0 2 14
Domain Adaptation 0.06 0.44 1.01 0 3 7 0.04 0.44 1.01 0 3 11
Information Extraction 0.04 0.48 0.98 0 4 11 0.02 0.19 0.48 0 2 9
Lexical Semantics 0.09 0.85 1.69 0 5 10 0.00 0.00 0.00 0 0 14
Parser Evaluation 0.08 1.00 1.41 0 3 13 0.13 0.50 0.58 0 1 4
Stat. Machine Trans. Models 0.07 1.38 1.41 0 4 19 0.08 0.38 0.74 0 2 5
Statistical Parsing 0.07 0.86 1.46 0 3 13 0.02 0.43 1.13 0 3 22

Average 0.06 0.04

Coreference Resolution 0.10 0.58 1.24 0 4 6
Machine Translation 0.01 0.13 0.35 0 1 15
Morphological Segmentation 0.06 0.56 1.01 0 3 9
Parsing 0.04 0.40 0.97 0 3 10
Question Answering 0.02 0.14 0.53 0 2 6
Sentiment Analysis 0.08 0.48 0.93 0 3 6
Speech Recognition 0.05 0.56 1.33 0 4 11
Word Sense Disambiguation 0.05 0.31 0.70 0 2 6

Average 0.05

Table 3: Number of documents participants added to expert and TechKnAcq reading lists, for the comparison
and stand-alone sets. Lower numbers indicate better original reading lists. Norm is the mean number of
additions normalized by dividing by the reading list length to allow comparison across lists.
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N Mean SD Min Max α

Coreference Resolution 12 4.22 1.18 1.33 5.50 0.89
Machine Translation 8 4.04 1.95 1.00 5.83 0.97
Morphological Segmentation 9 3.41 1.73 1.00 5.50 0.96
Parsing 10 4.32 1.63 1.17 6.83 0.97
Question Answering 14 3.80 1.51 1.33 5.50 0.93
Sentiment Analysis 22 4.18 1.25 1.00 6.67 0.93
Speech Recognition 9 4.41 1.35 2.00 6.83 0.91
Word Sense Disambiguation 16 4.40 1.23 1.17 6.50 0.92

Table 4: Descriptive statistics for the pedagogical value of each TechKnAcq reading list, with 1 = weak
pedagogical potential and 7 = strong pedagogical potential. N is the number of participants who rated the
reading list for each query.

He also performed user satisfaction evaluations,
where thousands of users of the Qiqqa document
management system evaluated the quality of the
technical terms and documents generated from their
libraries.
In Section 2.1, we use a variant of Jardine’s

method for identifying technical terms in a set of
documents, in order to run queries for expanding a
core technical corpus to includemore pedagogically
helpful documents. There is significant prior work
on identifying key phrases or technical terminology,
e.g., Justeson and Katz (1995). We could also select
phrases based on TF–IDF weighting of n-grams or
using the highest weighted phrases in the LDA topic
model. However, since the technical terms are only
used to find additional documents, whose relevance
is then determined by the LDA topic model and
the document–topic relevance algorithm (Figure 1),
the accuracy of technical term identification is not
critical to our results. As this was not a focus of our
research, Jardine’s method was chosen largely for
its simplicity.

6 Conclusions
We have presented the first system for generating
reading lists based on inferred domain structure and
models of learners. Ourmethod builds a topic-based
index for a technical corpus, expands that corpus
with relevant pedagogically oriented documents,
provides a preliminary encoding of the pedagogical
roles played by individual documents, and builds
a personalized, structured reading list for use by
learners.
We predict that the greatest performance gains

to be generated in future work are likely to come
from more detailed and complete studies of the
pedagogical value of specific documents (and types
of documents) for individual learners. Thus, an
important direction for future investigation may be

to characterize a learner’s knowledge in order to
be able to score the pedagogical value of reading
material for that person rather than for the generic
learner models used in our evaluation.

We have demonstrated that the quality of reading
lists generated in this way may be quantitatively
compared to existing expert-generated lists and
that our system approaches the performance of hu-
man experts. We are releasing our implementation4
to support future efforts and serve as a basis for
comparison.
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Abstract

Eye tracking studies from the past few
decades have shaped the way we think
of word complexity and cognitive load:
words that are long, rare and ambiguous
are more difficult to read. However, online
processing techniques have been scarcely
applied to investigating the reading dif-
ficulties of people with autism and what
vocabulary is challenging for them. We
present parallel gaze data obtained from
adult readers with autism and a control
group of neurotypical readers and show
that the former required higher cognitive
effort to comprehend the texts as evi-
denced by three gaze-based measures. We
divide all words into four classes based on
their viewing times for both groups and in-
vestigate the relationship between longer
viewing times and word length, word fre-
quency, and four cognitively-based mea-
sures (word concreteness, familiarity, age
of acquisition and imagability).

1 Introduction

Online methodologies such as eye tracking and
event-related potentials have been extensively
used to investigate word processing among neu-
rotypical readers (Rayner et al., 2012; Dehaene
and Cohen, 2011). The idea that the duration of
gaze fixations and revisits (go-back fixations to a
previously fixated object) could be used as a proxy
for measuring cognitive load dates back to the
strong eye-mind hypothesis by Just and Carpenter
(1980), according to which, “there is no apprecia-
ble lag between what is fixated and what is pro-
cessed” (Just and Carpenter, 1980). That is, when
a subject looks at something, he/she also processes
it cognitively and the amount of time the subject

spends on processing the particular object is equal
to the amount of time his/her gaze stays fixated on
this object. According to this hypothesis, gaze du-
ration metrics allow measuring the cognitive load
imposed on the reader by certain words, clauses
and sentences (Just and Carpenter, 1980).

A series of studies investigating the effects of
word frequency, verb complexity and lexical am-
biguity (Juhasz and Rayner, 2003; Rayner et al.,
2012), as well as contextual effects on word per-
ception (Ehrlich and Rayner, 1981) concluded that
long, rare and ambiguous words are more likely
to be fixated longer and their processing requires
more cognitive effort from the reader. These are
also words that are likely to be replaced with
shorter and more frequent ones during lexical sim-
plification aimed at making text more accessible
to wider populations (Bott et al., 2012; Glavaš and
Štajner, 2015).

Eye tracking has also been extensively used for
the investigation of reading-related disorders ow-
ing to its capacity to provide information about
the online processing of the text. For example,
aphasic readers show “qualitatively different gaze
fixation patterns” when answering comprehension
questions (Dickey et al., 2007) and readers with
dyslexia have been found to exhibit longer fixation
durations and less efficient scanning techniques
(Kim and Lombardino, 2016).

In spite of the decades-long tradition of using
gaze data to investigate word processing among
neurotypical readers and readers with reading-
related disorders, this methodology has been
scarcely used to investigate reading among people
with Autism Spectrum Disorder (ASD). People
with ASD have been shown to experience compre-
hension difficulties at lexical, syntactic and prag-
matic level (Frith and Snowling, 1983; Happe,
1997; O‘Connor and Klein, 2004; Happé and
Frith, 2006; Whyte et al., 2014) and thus studies
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employing online processing techniques have the
potential to cast light on the particular linguistic
constructions which people with autism find chal-
lenging.

1.1 Autism Spectrum Disorder

Autism Spectrum Disorder (ASD) is a neurode-
velopmental disorder characterised by impairment
in communication and social interaction (Ameri-
can Psychiatric Association, 2013). A majority of
children on the spectrum experience language de-
lay, which results in reading comprehension dif-
ficulties later on in their lives, such as resolving
ambiguity in meaning (Frith and Snowling, 1983;
Happé and Frith, 2006), syntax processing of long
sentences (Whyte et al., 2014) and identifying pro-
noun referents (O‘Connor and Klein, 2004).

Unlike people with other developmental con-
ditions such as dyslexia, autistic readers are not
considered to have deficits in word decoding, suc-
cessfully applying both lexical (look-and-say) and
phonological (grapheme-to-phoneme conversion)
strategies for reading words (Frith and Snowling,
1983; Smith Gabig, 2010). This implies that in the
case of readers with autism, decoding difficulties
are unlikely to be the reason for longer fixation
times. However, while decoding skills are consid-
ered intact, there is an evidence of semantic deficit
in ASD (Henderson et al., 2011; Löfkvist et al.,
2014), and more specifically in word comprehen-
sion rather than word production (Charman et al.,
2003; Luyster et al., 2008). This suggests that a
difficulty with accessing and integrating the se-
mantic representation of words could pose higher
cognitive load on readers with autism.

This hypothesis is supported through an online
measurement of word processing using gaze data.
Sansosti et al. (2013) provide evidence for sig-
nificant differences between the total fixation du-
rations, number of fixations and number of re-
gressions between autistic and non-autistic ado-
lescents while reading individual sentences, sug-
gesting that the reading task imposed an overall
heavier cognitive load on the participants from the
ASD group.

Brock et al. (2008) also used gaze data1 and
showed that both the ASD and the control partici-
pants were able to use context to successfully dis-

1The study by Brock et al. (2008) did not contain gaze
data produced during a reading task. Instead, the participants
were asked to look at an image on the screen which was either
relevant or irrelevant to the target word they were hearing.

ambiguate the ambiguous target words. The stud-
ies by Sansosti et al. (2013) and Brock et al. (2008)
are, to the best of our knowledge, the only two ex-
isting studies investigating reading among people
with autism using gaze data; we advance this by i)
using a larger dataset from a natural reading task
as opposed to individual sentences, ii) identifying
which words impose heavier cognitive load on the
participants and what their lexical properties are.

1.2 Complex Word Identification

Complex Word Identification (CWI) task received
high attention only recently, with findings suggest-
ing that using a CWI module at the beginning of
a lexical simplification (LS) pipeline significantly
improves performances of LS systems (Paetzold
and Specia, 2016c) and with the recently organ-
ised SemEval-2016 CWI shared task.2 The goal of
the shared task was building CWI systems which
would identify challenging words for non-native
English speakers. The dataset consisted of sen-
tences (without context), each with one content
word (noun, verb, adjective, or adverb) marked as
a target word. The training dataset contained 200
sentences, where each target word was annotated
by 20 non-native English speakers as ‘easy’ or
‘complex’, depending on whether they understood
its meaning or not. The participants were asked
to mark the word as ‘complex’ even if they un-
derstood the meaning of the sentence as a whole,
as long as they did not understand the word itself.
The test set consisted of 9,000 sentences, this time
each sentence annotated only by one non-native
speaker (300 different annotators in total). The
main goal of the task was to predict potentially
complex words for a non-native English speaker
based on the annotations collected from 20 non-
native speakers. The analysis of the crowdsourced
annotations revealed that ‘complex’ words are on
average shorter, less ambiguous, and less frequent
in Simple English Wikipedia3. The results of the
shared task (Paetzold and Specia, 2016b) showed
that the use of features focused only on isolated
words and not their context lead to best performing
CWI systems. Among many investigated lexical
and syntactic features, some of them taking into
account the context of the target word and some
not, the word frequency of the target word in Sim-
ple English Wikipedia was identified as the best

2http://alt.qcri.org/semeval2016/task11/
3https://simple.wikipedia.org
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feature (Wróbel, 2016).
In an earlier organised shared task on English

Lexical Substitution at SemEval-2012,4 which had
the aim of providing a framework for evaluation of
lexical simplification systems, for each given sen-
tence containing one target ‘complex’ word and
four substitution candidates, participating systems
were competing in ranking the four given substi-
tution candidates according to their simplicity, i.e.
how easy they are to be understood by fluent but
non-native English speakers. The best perform-
ing system (Jauhar and Specia, 2012) used a com-
bination of collocational features and four psy-
cholinguistic measures extracted from the MRC
(Machine Readable Dictionary) Psycholinguistic
Database (Coltheart, 1981):

• Concreteness – the level of abstraction asso-
ciated with the concept a word describes.

• Imageability – the ability of a given word to
arouse mental images.

• Familiarity – the frequency of exposure to a
word.

• Age of Acquisition – the age at which a given
word is appropriated by a speaker.

1.3 Study Aims and Contributions
We advance previous approaches to CWI by fo-
cusing on a new, less-studied population of target
readers with autism, and by using a more sophisti-
cated approach based on eye tracking data.

In this study, we use parallel gaze data to study
the differences in word processing between par-
ticipants with autism and a control group of neu-
rotypical (non-autistic) participants in a natural
reading task. Our aim is to find out which words
could potentially be considered challenging for
both groups of readers for the purposes of au-
tomatic text simplification (ATS) and to explore
which lexical properties underpin the differences
in word processing. The contributions of this
study are as follows.

We first show that in spite of the fact that both
groups achieved similar level of reading compre-
hension, the reading task imposed significantly
heavier cognitive load on the participants with
autism as measured by three different gaze mea-
sures (Section 3). This finding is consistent with
the results of Sansosti et al. (2013) (Section 1.1).

4https://www.cs.york.ac.uk/semeval-
2012/task1/index.html

Next, we identify which particular words (in
their specific contexts) impose heavier cognitive
load on each group of participants by clustering
them as challenging or not, based on viewing time
of each participant individually (Section 4.1), and
then classifying them into four classes depending
on the number of participants who found them
challenging (Section 4.2).

Finally, we investigate the lexical properties
which underpin the different processing times for
the different word classes in two groups of par-
ticipants, using both statistical (word frequency
and length) and cognitively-based (familiarity, age
of acquisition, concreteness, and imagability) fea-
tures. To account for the context in which the
words appear, we treat the same word in different
contexts as different entries in our clustering and
classification tasks, i.e. we are actually clustering
and classifying the Areas of Interest (AOIs) and
not the words (Section 4.3).

Identifying such lexical properties has both the-
oretical and practical implications. On one hand,
understanding into what makes a word challeng-
ing for a reader with autism could inform fu-
ture writing guidelines for easy-to-read content
and the design of exams and test items for stu-
dents with autism (Elliott et al., 2010). On the
other hand, as shown is Section 1.2, the identifi-
cation of challenging words based on their lexi-
cal properties is on a high demand in the field of
Natural Language Processing (NLP) for the pur-
pose of automated text simplification for people
with autism and other disorders (Martos et al.,
2013; Siddharthan, 2014) as well as for non-native
speakers.

2 Data Collection

An experimental group of participants with a diag-
nosis of autism and a control group of non-autistic
participants were asked to read 20 texts while their
eye movements were recorded by an eye tracker.
In order to explore between-group differences in
reading patterns, the groups were matched based
on their reading comprehension, as follows. It
was important to ensure that i) all participants had
understood the presented texts at a similar level
and ii) that they read for meaning as opposed to
simply skimming through the text, which is why
they were asked to answer three multiple-choice
(MCQ) questions per passage with three possible
answers each. The questions assessed both literal
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Texts Group Participants Age in years Years of schooling
1 - 9 ASD 9 (5 male, 4 female) m = 33, SD = 9.18 m = 15.66, SD = 2.12
1 - 9 Control 9 (5 male, 4 female) m = 31.33, SD = 7.48 m = 16.88, SD = 1.83

10 - 17 ASD 14 (8 male, 6 female) m = 37.9 , SD = 9.6 m = 16, SD = 3.77
10 - 17 Control 13 (9 male, 4 female) m = 33.84, SD = 9.02 m = 18.54, SD = 3.13
18 - 20 ASD 8 (7 male, 1 female) m = 36.5, SD = 9.78 m = 15.63, SD = 3.74
18 - 20 Control 10 (6 male, 4 female) m = 31.3, SD = 6.4 m = 18.1, SD = 2.6

Table 1: Mean age and years spent in formal education for the participants whose gaze data was retained

and inferential reading comprehension and were
developed following the taxonomy and guidelines
of Day and Park 2005. Gaze data from both groups
were collected for 3,636 words.

Materials: A total of 20 text passages with
varying complexity were obtained from the Web5.
The registers were miscellaneous, covering ed-
ucational (7 documents), news (10 documents)
and general informational articles (3 documents).
Each text passage was self-contained and coher-
ent (did not refer to information given in the rest
of the article and could be comprehended inde-
pendently of it), did not require specific cultural
background to be comprehended and did not con-
tain highly specialised terms, unless they were ex-
plained within the text. The average number of
words per text was 156 with a standard devia-
tion of 49.94 (min = 74 words and max = 242
words). The texts covered a range of readabil-
ity levels, with an average Flesch Reading Ease
score6 (Flesch, 1948) of 65.07 and a standard de-
viation (SD) of 13.71 (min = 40.66, max = 95).

Participants: All participants were native
speakers of English, had no diagnosed conditions
affecting reading (other than autism in the ASD
group) and no diagnosed developmental delay.
The participants from the two groups had similar
age and similar number of years spent in formal
education (Table 1). All participants had normal
or corrected vision.

The participants with autism had a confirmed
clinical diagnosis obtained in the UK after a refer-
ral from a general practitioner and based on the the
ADOS diagnostic criteria (Gotham et al., 2007).
Out of a total of 27 participants in the ASD group,
11 had a diagnosis of ASD and 15 had a diagnosis

5The data are available at https:
//github.com/victoria-ianeva/
ASD-Comprehension-Corpus. For more information
about the data see Yaneva (2016).

6Expressed on a scale from 0 to 100 (the higher the score,
the easier the text).

of Asperger’s syndrome (obtained before the in-
troduction of DSM-5 in 2013). Some participants
were diagnosed also with depression (four in ASD
group; one in control group) and anxiety (six in
ASD group).

The gaze recordings were obtained in three cy-
cles of data collection and the 20 text passages
were initially read by a total of 27 different peo-
ple with a formal diagnosis of autism (texts 1-9
by 20 people, texts 10-17 by 18 people and texts
18-20 by 18 people) and by 31 different neurotyp-
ical participants (texts 1-9 by 20 people, texts 10-
17 by 18 people and texts 18-20 by 14 people).
Participants who performed poorly on comprehen-
sion testing, had missing or inaccurate gaze data
or were unable to calibrate the eye tracker, were
subsequently excluded from the study. The final
number of participants whose data was retained
and analysed were 21 participants with autism and
19 participants without autism.

Apparatus and Procedure: Texts were pre-
sented on a 19 LCD monitor. The device used for
recording the gaze of the participants was a Gaze-
point GP3 video-based eye tracker7 (60Hz sam-
pling rate and accuracy of 0.5 - 1 degree of visual
angle). The eye tracker was calibrated individu-
ally for each participant using a 9-point calibration
procedure. The distance between each participant
and the eye tracker was controlled by a sensor in-
tegrated within the Gazepoint software, and was
approximately 65 cm. The software randomised
both the order of presentation of the texts and the
questions pertaining to texts for each participant,
to avoid bias. Participants were instructed about
the purpose and the procedure of the experiment,
signed a consent form and then read all texts and
answered all questions, taking breaks if needed.
At the end of the experiment, demographic data
was collected and participants were debriefed.

Data Post-Processing: Each word in the texts
7Available at: https://www.gazept.com/
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was defined as an Area of Interest (AOI) using the
in-built Gazepoint analysis software. The output
contains three gaze based measures for a total of
3,636 words for each participant separately: Time
Viewed (TV) (the time an AOI was viewed, mea-
sured in seconds), Fixations (F) (the number of
gaze fixations in a given AOI) and Revisits (R) (the
number of go-back fixations in a given AOI, after
the eyes have left the AOI and have moved to the
right). Cognitive load is usually studied through
the temporal aspects of the gaze data. In this pa-
per, we identify challenging words by using the
late measure of time viewed per word as opposed
to early processing measures such as first fixation
duration. This is done in order to account for the
overall cognitive load rather than the individual
stages of visual word recognition.

3 Between-group Differences in
Comprehension and Cognitive Effort

In this section we compare the level of compre-
hension of the two groups, as well as the dura-
tion and number of their fixations and revisits for
each word for each participant. A chi-square test
for independence revealed that there was no sta-
tistically significant association between the group
type (ASD vs. Control) and the level of compre-
hension (χ2(1) = 3.442; p = 0.064). Never-
theless, while both groups achieved similar levels
of text comprehension, it took significantly more
cognitive effort for the ASD participants to com-
prehend the text, as shown by all three gaze-based
measures (Table 2).8 This means that identifica-
tion and simplification of words which pose higher
cognitive load on readers with autism could poten-
tially reduce the time and effort required for read-
ing a text, completing an exam, etc.

In order to gain some preliminary insights into
the between-group differences we examined the
box-plots with outliers and extreme values for TV
for each of the 20 texts. We observed that the par-
ticipants with ASD were more heterogeneous than
the control group participants in the words that
they viewed extremely long. In contrast, within

8Differences in means between the fixations of the two
groups of participants for each word were found statistically
significant on all three gaze measures using the two-tailed
t-test for equality of means in independent samples, where
equal variances are not assumed (for TV: t = 19.842, df=
61652.575, p = 0.000 with 95% CI (0.035, 0.042); for F:
t = 20.781, df= 64963.384, p = 0.000 with 95% CI (0.229,
0.277); and for R: t = 22.666, df= 63955.256, p = 0.000 with
95% CI (0.263, 0.313)).

Statistic
TV (sec) Fix. Rev.

ASD Con. ASD Con. ASD Con.
Mean 0.20 0.16 1.71 1.46 1.22 0.94
SD 0.29 0.21 1.78 1.41 1.88 1.44
Skewness 5.40 2.47 1.91 1.45 2.55 2.26

Table 2: Eye-tracking data statistics

the control group, the words with extreme TV val-
ues were similar for most participants, suggest-
ing that the existing differences between the two
groups were not merely based on individual dif-
ferences between the participants.

To better understand the reasons behind certain
words been viewed so long and differences be-
tween the two groups of participants, we took a
systematic approach. We classified all words into
four classes using the procedure explained in the
next section and then explored the lexical proper-
ties of each word class and for each group of par-
ticipants separately.

4 Between-group Differences in Words
Found Challenging

Motivated by the need of automatically recognis-
ing potentially challenging words (i.e. CWI task)
which should then be replaced by their simpler
synonyms in the task of automated text simplifi-
cation, and the need for ranking substitution can-
didates according to their simplicity for intended
reader (Section 1.2), we wanted to classify all
AOIs into different classes according to their po-
tential challenge to the intended reader. Taking
into account that different readers might find dif-
ferent words challenging, instead of just classify-
ing words into challenging or not, we wanted to
have more fine-grained classes depending on how
many readers found them challenging. Therefore,
we had a two-step procedure:

1. We divided the words into challenging and
not challenging, according to the TV feature,
for each reader separately.

2. We divided the words into four classes, de-
pending on how many readers found them
challenging.

4.1 Challenging vs. Not Challenging
The division of words into challenging and not
challenging according to the time viewed could be
done in different ways, e.g. by finding a cut-off
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Group Mean SD Var. Min. Max.
ASD 17.68 4.62 21.37 8.94 27.69
Control 19.81 3.04 9.21 15.14 26.12

Table 3: Percentage of words clustered as chal-
lenging (per participant-session combination)

point based on the feature distribution and stan-
dard deviation, or by using a parameter-free clus-
tering approach. As there have been no previ-
ous studies trying to divide words into those two
groups according to the time viewed, and thus no
evidence on which approach is better, we opted for
the second approach which is parameter-free.

We thus clustered the words from 20 texts into
two clusters (challenging vs. not challenging) for
each participant-session combination separately
by applying the K-Means algorithm in SPSS, tak-
ing only into consideration the TV feature. We
applied the iterative KMeans algorithm with two
clusters (until convergence, i.e. no change in clus-
ter centers). In a few cases, where there was an ex-
treme outlier (extremely long gazed word) in the
given participant-session combination, the clus-
tering resulted in two clusters where one cluster
contained only the outlier and the other all other
words. In such cases, we applied the K-Means
with three clusters, which resulted in having one
cluster with not challenging words, another with
challenging words, and the third one with the out-
lier. We then added the outlier to the cluster of
challenging words and retained the two resulting
clusters.

The average percentage of challenging AOIs
(out of all words read) was lower, on average,
within the ASD group than within the Control
group (Table 3).9 Although this might seem
contradictory to the overall higher cognitive load
(viewing time) in the ASD group, it is actually a
result of the significantly stronger skewness of the
TV in the ASD group (Table 2); the participants in
the ASD group find fewer AOIs challenging, but
they focus on them longer.

4.2 Word Classes
In the second step, for each AOI-id and for each
group of participants separately, we assigned one

9The between-group differences in percentage of words
found challenging were statistically significant using the two-
tailed t-test for equality of means in independent samples,
where equal variances are not assumed (t = −2.084; df =
45.252; p = 0.043 with 95% CI (−4.184,−0.072)).

Class
# words % words

ASD Control ASD Control
NOT 1,845 1,608 54.51% 47.31%
P-CH 1,158 1,344 34.10% 39.54%
CH 381 444 11.26% 13.06%
E-CH 1 3 3e-4% 9e-4%

Table 4: Distribution of classes

of the following four classes:

• EXTREMELY CHALLENGING (E-CH) if
that AOI-id was clustered as challenging for
all participants;

• CHALLENGING (CH) if that AOI-id was
clustered as challenging for at least half of the
participants (in the case of the texts read by
an odd number of participants, the half was
the mean value rounded to the lower integer)
but not for all;

• POTENTIALLY CHALLENGING (P-CH) if
that AOI-id was clustered as challenging for
at least two participants, but less than a half
of the participants;

• NOT CHALLENGING (NOT) if none of above
(i.e. that AOI-id was clustered as challenging
for one participant at the most).

The number of AOIs found in each class for
each group of participants is presented in Table 4.
The distribution of AOIs among classes was simi-
lar for both groups of participants, while the num-
bers supported our hypothesis that the participants
in the ASD group are more heterogeneous in the
AOIs they find challenging (i.e. the AOIs they
viewed long), which results in a lower overlap of
challenging AOIs among the participants (i.e. the
lower number of POTENTIALLY CHALLENGING

(P-CH) and CHALLENGING (CH) AOIs than in the
Control group).

Extremely challenging words (E-CH) for the
Control group were: conservative, Academicians,
and iconoclasm, whereas for the ASD group it was
only the word acquaitance.

4.3 Importance of Context
In order to account for the influence that the con-
text can have on certain word requiring greater
cognitive effort, we were classifying AOIs, allow-
ing thus for the same word (but different AOI) to
be classified in different classes.
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Word Context Class
computer Experts in Namibia are using a computer system to identify and track... CH

computer Next, they store the photos on a computer. NOT

computer Whenever a new print is added, the computer compares it to all the other
prints...

NOT

comes Secondhand smoke (SHS) comes from burning cigarettes, pipes, or cigars. NOT

comes ... where an excellent music policy comes complete with a decent pint of
Guinness.

CH

Table 5: Examples of same words placed in different classes depending on their context.

Class
Age of aquisition (AoA) Familiarity (Fam)

ASD Control ASD Control
NOT CHALLENGING (NOT) 235.1 ± 108.7 230.4 ± 107.5 600.5 ± 71.7 602.8 ± 70.3
POTENTIALLY CHALLENGING (P-CH) 331.0 ± 122.0 317.6 ± 122.4 548.0 ± 83.9 555.5 ± 82.9
CHALLENGING (CH) 427.9 ± 114.3 420.0 ± 115.6 489.5 ± 94.4 495.1 ± 97.6
EXTREMELY CHALLENGING (E-CH) NotFound 604.7 ± 113.5 NotFound 317.2 ± 162.6

Table 6: Age of aquisition and familiarity of the words in different classes (mean ± standard deviation)

Among the total of 3398 AOIs, 1495 were
unique words. Out of those 1495, 1048 appeared
only once in the whole corpus (20 texts), 224 ap-
peared twice, 187 appeared between three and ten
times, while 36 words appeared more than ten
times (stop words only).

For each of the two groups of participants, we
closely examined all words that appeared more
than once searching for those which (appearing
in different contexts) were classified in different
levels of difficulty, and especially for those that
appear in two not-neighbouring levels (e.g. NOT

CHALLENGING and CHALLENGING).

In the case of non-autistic readers, out of 347
words which appeared more than once in the pre-
sented texts, 175 were placed always in the same
level of difficulty (irrespective of their context), 18
of them (which repeated at least three times) were
placed in three different classes (three neighbour-
ing classes – NOT CHALLENGING, POTENTIALLY

CHALLENGING, and CHALLENGING), whereas
six words (comes, won, Foxes, provides, artists,
computer) were placed in two non-neighbouring
difficulty levels (NOT CHALLENGING and CHAL-
LENGING).

Two examples of the same words (but differ-
ent AOIs) classified into two non-neighbouring
classes are presented in Table 5 together with con-
texts.

4.4 Analysis of Word Classes

The mean value with the standard deviation of the
cognitively-based features (age of acquisition, fa-
miliarity, imagability, and concreteness) in each
word class are presented in Tables 6 and 7.

Given that the manually created MRC psy-
cholinguistic database (Coltheart, 1981) covered
only 4.76% of words in our texts, we used the
bootstrapped larger version of it (Paetzold and
Specia, 2016a) which covered 95% of the words.10

While the cognitively-based features (age of
aquisition, familiarity, imagability and concrete-
ness) were obtained from non-ASD college stu-
dents, we argue that these properties transfer be-
tween subject groups. The reason for this is that
our participants were all high-functioning (none
of them attended a specialised school) and thus
they have all been exposed to a similar vocabu-
lary by going through the national curricula. In
addition, both groups understood the texts equally
well and we did not observe large between-group
differences in the correlation of these metrics with
the gaze data.

No significant differences between the values
obtained for the same word classes between the
two groups of participants were observed. How-
ever, it is interesting to note that the extremely

10The words not covered by the bootstrapped MRC
database (Paetzold and Specia, 2016a) were excluded from
the analysis.
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Class
Imagability (Img) Concreteness (Con)

ASD Control ASD Control
NOT CHALLENGING (NOT) 354.3 ± 90.3 353.3 ± 90.0 322.4 ± 92.9 322.0 ± 92.8
POTENTIALLY CHALLENGING (P-CH) 390.0 ± 97.4 385.3 ± 96.6 360.9 ± 100.6 355.3 ± 99.9
CHALLENGING (CH) 399.7 ± 89.6 396.6 ± 93.3 376.8 ± 90.9 372.1 ± 95.6
EXTREMELY CHALLENGING (E-CH) NotFound 302.4 ± 87.1 NotFound 333.3 ± 36.4

Table 7: Imagability and Concreteness of the words in different classes (mean ± standard deviation)

Class
Length SWiki

ASD Control ASD Control
NOT CHALLENGING (NOT) 3.6 ± 1.7 3.5 ± 1.7 0.012 ± 0.018 0.012 ± 0.018
POTENTIALLY CHALLENGING (P-CH) 5.6 ± 2.3 5.3 ± 2.3 0.004 ± 0.012 0.005 ± 0.013
CHALLENGING (CH) 7.8 ± 2.3 7.6 ± 2.4 0.001 ± 0.004 0.001 ± 0.004
EXTREMELY CHALLENGING (E-CH) 11.0 ± NA 11.3 ± 1.2 NotFound 1e-5 ± 2e-5

Table 8: Length and frequency of words in different classes (mean ± standard deviation)

challenging words (E-CH) for the Control group
had lower imagability and concreteness than the
words classified as less challenging (Table 7).
Moreover, the imagability and concreteness val-
ues seem to have the opposite correlations with
the “challenging” classifications; i.e. the average
imagability and concreteness values increase from
the NOT to the CH groups. These results imply
that the imagability and concreteness may not be
well correlated with the cognitive load measured
as TV.

The mean value with the standard deviation of
the statistically-based measures (length in charac-
ters and frequency in Simple Wikipedia) in each
word class are presented in Table 8. It is inter-
esting to note that the relative word frequencies
in Simple Wikipedia had extremely high standard
deviations (Table 8), thus implicating that this fea-
ture is not the main characteristic of whether the
word is challenging or not.

4.5 Correlation of TV and Word Classes with
Lexical Complexity Features

Finally, for each group of participants separately,
we tested how the time viewed (taking each
participant-AOI combination as a separate data
point) and word classes are correlated (using the
Spearman’s rho coefficient) with both statistical
and cognitively-based lexical properties of the
words (Table 9).

As can be observed, all investigated lexical
properties are better correlated with the word
classes than with the raw viewing times (TV). This

Feature
TV Classes

ASD Control ASD Control
Len (char.) +0.297 +0.308 +0.563 +0.556
Con +0.113 +0.116 +0.241 +0.217
Img +0.103 +0.107 +0.223 +0.206
AoA +0.252 +0.261 +0.465 +0.479
Fam −0.231 −0.235 −0.448 −0.433
SWiki −0.235 −0.242 −0.457 −0.446

Table 9: Correlation (Spearman’s rho) of TV and
word classes with lexical complexity features (all
statistically significant at a 0.001 level of signifi-
cance)

is probably due to the fact that word classes elim-
inate the influences of individual differences in
reading speed among the participants, which di-
lute the correlations with the TV.

5 Discussion

We collected parallel gaze data to study the dif-
ferences in word processing between participants
with autism and a control group of neurotypical
participants in a natural reading task.

The presented results indicated that even though
both groups understood the texts at a similar level,
participants with autism had significantly longer
viewing times, more fixations and more revisits
per word, indicative of heavier cognitive load.
Even when individuals on the spectrum appear
highly able and achieve comprehension similar to
their peers, they put more cognitive effort into do-
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ing so. Another possible explanation of this re-
sult could be that the pattern of results observed
in the ASD readers reflects a different, perhaps
more cautious reading strategy rather than reflect-
ing greater cognitive load associated with lexical
processing. In other words, it is possible that given
the same instructions, readers with ASD are more
careful than control participants to ensure that they
have read the text thoroughly and understood the
sentences completely. Under this alternative, its
not that ASD readers are spending more time and
making more fixations because reading is chal-
lenging, but instead because they are simply read-
ing more cautiously. Whichever one of these in-
terpretations of the result is valid, this finding pro-
vides experimental evidence for the need to allow
extra time for exams and for rewriting texts in a
way that reduces cognitive load. Both of these ac-
commodations are important steps towards the in-
clusion of students with ASD.

Although the readers with ASD had signifi-
cantly longer viewing times, they did not fixate
long on as many words as the control participants
did. Their overall longer viewing times were heav-
ily skewed towards the words they find challeng-
ing. This result reveals differences in the reading
patterns between the two groups.

Finally, other than word length which is natu-
rally highly correlated with viewing time, the age
of acquisition (AoA) seems to be an important fac-
tor related to the viewing times of both groups,
followed by frequency and familiarity. This re-
sult is consistent with Juhasz and Rayner (2003),
who also reported that the effect age of acquisition
had on fixation duration was above and beyond the
effect of word frequency. Furthermore, the large
standard deviation in the word frequency implies
that this measure is not suitable for choosing alter-
native words for lexical substitution in text simpli-
fication. Based on our data, an improved strategy
for lexical simplification would be basing the word
substitutes on the age of acquisition or familiarity
ratings. Concreteness and imagability were only
weakly related to viewing time. There were no
between-group differences observed with regards
to the importance of lexical features.

Another important conclusion of this study is
that the absolute measures such as concreteness
and imagability, which were obtained based on
rating of individual words, might not be suitable
for complex word identification task, as the gaze

data showed that the same word presented in dif-
ferent contexts could be identified as both chal-
lenging or not.

One limitation of this study is the fact that it
explores only the lexical effects on viewing times
and does not explore the effect of contextual fea-
tures. While we acknowledge the high importance
of context for the duration of gaze fixations, the fo-
cus on the lexical component in the present study
allows for future comparisons between lexical and
context-based effects on viewing times. Another
limitation is the low speed of the eye tracker used
for data collection, which reduces the precision of
the recordings and does not allow for comparison
of early and late gaze features. However, the data
used in this study is the only existing resource of
its kind to date and it would be interesting to com-
pare the results obtained from this study with fu-
ture results based on more sophisticated sets of
text and gaze features.

6 Conclusion

This paper presented a study investigating which
words are found challenging by readers with high-
functioning autism and a control group of non-
autistic readers based on gaze data from a nat-
ural reading task. We fist showed that even
though there were no differences between the
level of comprehension of the texts between the
two groups, the analysis of the gaze data showed
that the readers with autism produced significantly
more fixations and revisits, as well as longer view-
ing times per word. We then clustered the view-
ing times for each participant-session combination
and classified the words into four classes of dif-
ficulty based on the gaze data. Finally, we in-
vestigated the relationship between those classes
and cognitively-based features commonly used in
text simplification such as age of acquisition, fa-
miliarity, imagability, concreteness, and word fre-
quency and length. Our results showed that re-
lying on such absolute measures for the complex
word identification task is not always justified be-
cause a given word could be perceived as challeng-
ing or not based on the surrounding context.
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Abstract

We present a very simple model for text
quality assessment based on a deep con-
volutional neural network, where the only
supervision required is one corpus of user-
generated text of varying quality, and
one contrasting text corpus of consistently
high quality. Our model is able to pro-
vide local quality assessments in different
parts of a text, which allows visual feed-
back about where potentially problematic
parts of the text are located, as well as a
way to evaluate which textual features are
captured by our model. We evaluate our
method on two corpora: a large corpus of
manually graded student essays and a lon-
gitudinal corpus of language learner writ-
ten production, and find that the text qual-
ity metric learned by our model is a fairly
strong predictor of both essay grade and
learner proficiency level.

1 Introduction and related work

What makes a text good? A confluence of diverse
qualities: coherent narrative, correct grammar, ab-
sence of spelling mistakes, a rich vocabulary and
set of idioms. Some of these are simple to detect
automatically, while others seem to require a deep
understanding of the text.

Early attempts to measure text quality were pi-
oneered by approaching it as an aggregate of dis-
tinct text features that were easy to specify man-
ually, such as type/token ratio, average length of
sentences or words, and so on. More recently, ma-
chine learning techniques have been applied that
can learn such features from data.

∗ The source code for our system is available
at https://github.com/robertostling/
bea12-textquality

Our primary goals in this work are to investigate
how well a model for textual quality can be trained
without any labeled data, and to see whether the
quality model agrees with human essay graders or
is able to predict second language learner profi-
ciency.

1.1 Automated text assessment

Recent work on automated assessment mainly
covers English learners’ written text and it aims at
assigning grades based on textual features that try
to balance performance errors and language com-
petency. Most of the work in this area falls into
a category of a supervised text classification (At-
tali and Burstein, 2006; Landauer, 2003; Rudner
and Liang, 2002; Yannakoudakis et al., 2011). Of
particular interest are methods that, like ours, are
based on neural networks and require little or no
manual feature engineering.

1.2 Neural network approaches

Alikaniotis et al. (2016) present a model for essay
scoring based on recurrent neural networks at the
word level. This is trained by supervision from a
graded essay corpus, and allows basic visualiza-
tion of the contribution of individual words on the
overall grade through error gradients. Dong and
Zhang (2016) similarly train a hierarchical neural
network that encodes word sequences to sentence
representations, and sentence representations to
essay representations, in both cases through con-
volution and pooling layers. The same type of ap-
proach is taken by Taghipour and Ng (2016), who
however explore a wider range of models.

Cummins et al. (2016) exploit external re-
sources through multi-task learning for automated
essay scoring. This is also one of our primary mo-
tivations, but our methods are quite different.

Our method is based on deep convolutional
neural networks with residual connections, which
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have recently gained popularity in natural lan-
guage processing (Östling, 2016; Bjerva et al.,
2016; Johnson and Zhang, 2016; Conneau et al.,
2017).

2 Model

Since one of our primary concerns is transparency,
we choose a fixed-width convolutional neural net-
work so that it is easy to infer how each part of
the text contributes to the model’s estimate. In
short, the whole text is passed through a one-
dimensional convolutional network with residual
connections, followed by a global mean pooling
operation and a single fully connected layer which
produces a scalar prediction of text quality. We
now proceed to describe this in more detail.

Assume that the input text is a sequence of sym-
bols (in our case characters) s1, s2, . . . , sN . Each
symbol is represented by a row in an embedding
matrix We of size V × d, where V is the vocabu-
lary size and d is the dimensionality of the embed-
dings. For convenience, we denote the embedding
vector of si by wi.

The sequence w1, w2, . . . , wN is passed
through a number of blocks with one-dimensional
convolutions and residual connections (He et al.,
2016). For simplicity, we let the sequence length
and number of filters remain constant throughout
the network (in our experiments, 512). For the
first block, we use kernels of size 3, 5, 7 and 9 in
order to capture character n-grams of varying size.
The outputs of these are concatenated for each
position in the text, similar to the encoder used
by Lee et al. (2016) for character-level machine
translation. This is followed by a number of
blocks with only size-3 kernels. All our models
use 10 blocks in total, each containing two con-
volutions with batch normalization layers (Ioffe
and Szegedy, 2015) and rectifier non-linearities
following each convolution. Let the vector xl

i

be the d-dimensional output after layer l at text
position i. The final quality score of a text is
computed as q(s1...N ) = Wo · 1

N

∑N
i xL

i , that
is, the dot product of the output weight vector
Wo and the mean value of the outputs at the final
residual layer L. In our experiments, L = 10.

This structure implies that the model’s score for
a text is the mean score over each symbol, which
means that the score q(si...j) can be computed for
any subsequence si...j of a text without depending
on the length of the sequence. This allows visual-

izing the low- and high-scoring sections of a text
by coloring it according to the local scores.

2.1 Training
We base our model training on pairwise compar-
ison between text snippets from different corpora
or authors. We use a pseudo-probabilistic frame-
work, where the probability of text a being better
than b is defined as P (a > b) = σ(q(a) − q(b)),
where σ(x) = 1

1+exp(−x) is the logistic function
and q(·) is the quality score from our network, as
detailed above. We should point out here that “bet-
ter” is used from the perspective of formal writ-
ten Swedish, and that “poor” text could either be
informal, or due to lack of competence. During
training we use cross-entropy loss, with the fol-
lowing axioms:

1. P (a > b) = 0 if a is user-generated text
(Blogs) and b is professional prose (News or
SUC).

2. P (a > b) = 0.5 if both a and b are profes-
sional prose.

3. P (a > a′) = 0.5 if 〈a, a′〉 is a pair of blog
texts from the same author.

4. P (a > b) = σ(q(a′) − q(b′)) if 〈a, a′〉 and
〈b, b′〉 are pairs of blog texts, such that 〈a, a′〉
is from one author and 〈b, b′〉 is from another.

In plain English, these could be summarized as
three general assumptions: all authors (profes-
sional or not) are consistent, professional authors
are better than blog authors, and all professional
authors are equal. Furthermore, the motivation
behind point 4 is that blog authors are not equal,
so that we can exploit the variation among them.

We initialize all model parameters, including
the embeddings, randomly (orthogonal matrices
for recurrent connections, Gaussian distributions
for all other parameters). Due to time constraints,
we did not perform hyperparameter tuning and
used conservative values that worked well for sim-
ilar tasks in the literature.

We train our model with stochastic gradient de-
scent using Adam (Kingma and Ba, 2014) for
learning rate adaptation. The system is imple-
mented with Chainer (Tokui et al., 2015). In our
experiments we use mini-batches of size 16, and
choose an equal number of examples based for
each axiom used. All text samples during train-
ing are 512 characters long. We train models for
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two configurations: one using all axioms, and one
only using 1+2. For the examples using axiom 4,
we use a two-step procedure where the model is
first use to compute σ(q(a′)−q(b′)), which is then
used as ground truth for those examples. We also
take care to sample examples for axiom 2 from
different corpora, to ensure that the model sees as
different examples as possible of the same quality,
avoiding that domain-specific vocabulary is mis-
taken for quality predictors.

2.2 Data

For model training, we use three different raw text
corpora (Blogs, News and SUC) described below.
For evaluation, we use a corpus of student essays
with human-assigned grades (Essays), and a cor-
pus of learner Swedish (ASU).

Blogs 6 billion tokens of Swedish blog posts,
crawled from the web. The available metadata in-
dicates which blog each post is sourced from, so
that we can group the posts by author (assuming
one author per blog).

News 100 million tokens of crawled Swedish
news articles and opinion pieces, crawled from the
web.

SUC 7 million tokens of published text of var-
ious genres from the Stockholm-Umeå Corpus
(Källgren, 2006). This includes news, novels and
academic texts.

Essays A corpus of Swedish high-school es-
says described in (Östling et al., 2013), containing
1,702 essays with a total of 1,1 million tokens. The
data is from Swedish high school students (around
age 17) with native or near-native command of
Swedish. Each essay has two grades assigned by
two independent human graders. While these gen-
erally have low agreement (Cohen’s κ = 0.399),
this is mainly due to a systematic bias by teach-
ers assigning higher grades to their own students.
We use the mean of the two grades in our analy-
sis. Since the grading criteria mainly focus on the
quality of the written language, we use this grade
as a proxy for text quality.

ASU The ASU corpus (Hammarberg, 2010) is a
longitudinal corpus of university-level learners of
Swedish, containing two texts per session, from
11 sessions with 10 students. The progress of stu-
dents is tracked from the absolute beginner stage

to a level acceptable for Swedish university stud-
ies, after one or two years. The total size is about
50,000 tokens.

3 Experimental Setup and Results

We train two models, as described in Section 2.1:
one using only the professional-amateur distinc-
tion (axioms 1+2) and one also using the variation
in the blog corpus (axioms 1+2+3+4). The former
turns out to be very poor at estimating text quality,
and is only briefly discussed in Section 3.2. For
the rest of this section, the 1+2+3+4 model is used
throughout.

3.1 Qualitative evaluation

To illustrate the transparency of the model, Ta-
ble 1 contains example sentences sampled from
two text corpora (Blogs and News). In general we
can see that the news examples are ranked higher
than the blog examples, which is to be expected
since the model was trained in part to distinguish
between these corpora. The only exception is the
second news sentence, whose score the visualiza-
tion indicates is pulled down by the first word,
‘domen’ (the sentence). This turns out to be a
homograph of ‘dom’, a spoken-language form of
the third person plural pronoun, which is gener-
ally avoided in written Swedish and a strong indi-
cator of either an informal style or poor command
of Swedish (since the written language makes a
case distinction which does not exist in the mod-
ern spoken language). Other low-scoring features
include smileys, frequent use of ellipsis, and in-
formal spellings such as ‘oxå’ for ‘också’ (also).
Some of these are typical for informal Internet
text, and would easily be avoided in e.g. a high-
stakes essay setting. However, rather than low
scores stemming from occasional features of poor
or informal writing, it seems that the consistent
lack of a richer vocabulary is a more important
factor.

3.2 Native language essay grades

We compute the scores for each of the 1,702 es-
says in the Essays dataset. Since the essays were
produced during a fixed-time test situation, length
is a strong predictor of grade (R2 = 0.308 for
the 4th root of essay length in characters, L0.25;
we report adjusted R2 from multiple linear regres-
sion). Controlling for length, the 1+2 model is
not a significant predictor of grade. The 1+2+3+4
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Table 1: Mean scores (left) and color-coded partial scores (right) for a sample of sentences from the blog
corpus (top) and news corpus (bottom). Red encodes low scores, blue encodes high scores. Faded colors
are used for scores near zero.

Blogs

1.475 Resten av veckan blir det jag som VAB:ar. Men det tycks inte bli så tråkigt som det låter...
0.530 Och på torsdag ska vi hem till Neos dagiskompis som oxå åkt på skiten, yeey!

-0.256 Någon mer som vill leka med oss och kanske bli smittad? Bara att hojta! :D
0.143 Spännande att få äta med sked och känna liiiite motstånd i munnen för en gång skull, haha! :D

News

2.310 Rättegången mot Geert Wilders direktsänds i holländsk tv. Det hör inte till vanligheterna.
0.613 Domen väntas i början av november.
2.428 I Storbritannien finns fem miljoner katoliker, vilket motsvarar en tolftedel av befolkningen.
2.611 Allt annat skulle betyda att det nyvunna förtroendet för Lettland går förlorat.

Figure 1: Relation between human-assigned
grades and scores from our model.

model is a moderately strong predictor of grade
(R2 = 0.127 on its own, R2 = 0.355 together
with L0.25).

The relation between essay grade and model
score is illustrated in Figure 1, where for each of
the seven possible grade means (0.0–3.0 in half-
point intervals) the mean score of all essays with
that grade is shown.

3.3 Second language learner progress

We use the ASU corpus (Hammarberg, 2010) to
investigate whether our model can estimate the
progress made by second-language learners dur-
ing their early stages of acquiring Swedish as a
second language.

Figure 2 shows how our model’s score changes
over the 11 sessions that the participants took part
in. We compute the scores by pooling the essays
from each session (20 essays, 2 each for 10 stu-
dents). There is a clear increasing trend.

Figure 2: The progress of Swedish learner essay
scores’ during 11 writing episodes. Both curves
display the same data, but averaged over writ-
ing episodes or semesters (i.e. down-sampled to
smooth the curve), respectively.

4 Conclusions

We have presented a model based on deep convo-
lutional neural networks, which is able to estimate
text quality at both the local and global scale, al-
lowing easy visualization of weak or strong points
of the text. Our method is using only unlabeled
text corpora as training data, but its predictions
align well with human-assigned grades for native-
language essays and the time progression for sec-
ond language learners. We expect this to be a
useful component in systems for automated essay
scoring and feedback.
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Abstract

Shortage of available training data is hold-
ing back progress in the area of auto-
mated error detection. This paper inves-
tigates two alternative methods for artifi-
cially generating writing errors, in order
to create additional resources. We pro-
pose treating error generation as a machine
translation task, where grammatically cor-
rect text is translated to contain errors. In
addition, we explore a system for extract-
ing textual patterns from an annotated cor-
pus, which can then be used to insert er-
rors into grammatically correct sentences.
Our experiments show that the inclusion
of artificially generated errors significantly
improves error detection accuracy on both
FCE and CoNLL 2014 datasets.

1 Introduction

Writing errors can occur in many different forms –
from relatively simple punctuation and determiner
errors, to mistakes including word tense and form,
incorrect collocations and erroneous idioms. Au-
tomatically identifying all of these errors is a chal-
lenging task, especially as the amount of avail-
able annotated data is very limited. Rei and Yan-
nakoudakis (2016) showed that while some error
detection algorithms perform better than others, it
is additional training data that has the biggest im-
pact on improving performance.

Being able to generate realistic artificial data
would allow for any grammatically correct text to
be transformed into annotated examples contain-
ing writing errors, producing large amounts of ad-
ditional training examples. Supervised error gen-
eration systems would also provide an efficient
method for anonymising the source corpus – er-
ror statistics from a private corpus can be aggre-

gated and applied to a different target text, obscur-
ing sensitive information in the original examina-
tion scripts. However, the task of creating incor-
rect data is somewhat more difficult than might
initially appear – naive methods for error genera-
tion can create data that does not resemble natural
errors, thereby making downstream systems learn
misleading or uninformative patterns.

Previous work on artificial error generation
(AEG) has focused on specific error types, such
as prepositions and determiners (Rozovskaya and
Roth, 2010, 2011), or noun number errors (Brock-
ett et al., 2006). Felice and Yuan (2014) investi-
gated the use of linguistic information when gen-
erating artificial data for error correction, but also
restricting the approach to only five error types.
There has been very limited research on gener-
ating artificial data for all types, which is impor-
tant for general-purpose error detection systems.
For example, the error types investigated by Felice
and Yuan (2014) cover only 35.74% of all errors
present in the CoNLL 2014 training dataset, pro-
viding no additional information for the majority
of errors.

In this paper, we investigate two supervised
approaches for generating all types of artificial
errors. We propose a framework for generat-
ing errors based on statistical machine translation
(SMT), training a model to translate from correct
into incorrect sentences. In addition, we describe
a method for learning error patterns from an anno-
tated corpus and transplanting them into error-free
text. We evaluate the effect of introducing artifi-
cial data on two error detection benchmarks. Our
results show that each method provides significant
improvements over using only the available train-
ing set, and a combination of both gives an abso-
lute improvement of 4.3% in F0.5, without requir-
ing any additional annotated data.
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Original We are a well-mixed class with equal numbers of boys and girls, all about 20 years old.
FY14 We am a well-mixed class with equal numbers of boys and girls, all about 20 years old.
PAT We are a well-mixed class with equal numbers of boys an girls, all about 20 year old.
MT We are a well-mixed class with equals numbers of boys and girls, all about 20 years old.

Table 1: Example artificial errors generated by three systems: the error generation method by Felice
and Yuan (2014) (FY14), our pattern-based method covering all error types (PAT), and the machine
translation approach to artificial error generation (MT).

2 Error Generation Methods

We investigate two alternative methods for AEG.
The models receive grammatically correct text as
input and modify certain tokens to produce incor-
rect sequences. The alternative versions of each
sentence are aligned using Levenshtein distance,
allowing us to identify specific words that need to
be marked as errors. While these alignments are
not always perfect, we found them to be sufficient
for practical purposes, since alternative alignments
of similar sentences often result in the same bi-
nary labeling. Future work could explore more
advanced alignment methods, such as proposed by
Felice et al. (2016).

In Section 4, this automatically labeled data is
then used for training error detection models.

2.1 Machine Translation

We treat AEG as a translation task – given a cor-
rect sentence as input, the system would learn to
translate it to contain likely errors, based on a
training corpus of parallel data. Existing SMT
approaches are already optimised for identifying
context patterns that correspond to specific out-
put sequences, which is also required for gener-
ating human-like errors. The reverse of this idea,
translating from incorrect to correct sentences, has
been shown to work well for error correction tasks
(Brockett et al., 2006; Ng et al., 2014), and round-
trip translation has also been shown to be promis-
ing for correcting grammatical errors (Madnani
et al., 2012).

Following previous work (Brockett et al., 2006;
Yuan and Felice, 2013), we build a phrase-based
SMT error generation system. During training,
error-corrected sentences in the training data are
treated as the source, and the original sentences
written by language learners as the target. Pi-
align (Neubig et al., 2011) is used to create a
phrase translation table directly from model prob-
abilities. In addition to default features, we add
character-level Levenshtein distance to each map-

ping in the phrase table, as proposed by Fe-
lice et al. (2014). Decoding is performed us-
ing Moses (Koehn et al., 2007) and the language
model used during decoding is built from the orig-
inal erroneous sentences in the learner corpus. The
IRSTLM Toolkit (Federico et al., 2008) is used for
building a 5-gram language model with modified
Kneser-Ney smoothing (Kneser and Ney, 1995).

2.2 Pattern Extraction

We also describe a method for AEG using pat-
terns over words and part-of-speech (POS) tags,
extracting known incorrect sequences from a cor-
pus of annotated corrections. This approach is
based on the best method identified by Felice and
Yuan (2014), using error type distributions; while
they covered only 5 error types, we relax this re-
striction and learn patterns for generating all types
of errors.

The original and corrected sentences in the cor-
pus are aligned and used to identify short transfor-
mation patterns in the form of (incorrect phrase,
correct phrase). The length of each pattern is the
affected phrase, plus up to one token of context
on both sides. If a word form changes between
the incorrect and correct text, it is fully saved in
the pattern, otherwise the POS tags are used for
matching.

For example, the original sentence ‘We went
shop on Saturday’ and the corrected version ‘We
went shopping on Saturday’ would produce the
following pattern:

(VVD shop VV0 II, VVD shopping VVG II)

After collecting statistics from the background
corpus, errors can be inserted into error-free text.
The learned patterns are now reversed, looking for
the correct side of the tuple in the input sentence.
We only use patterns with frequency >= 5, which
yields a total of 35,625 patterns from our training
data. For each input sentence, we first decide how
many errors will be generated (using probabilities
from the background corpus) and attempt to cre-
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ate them by sampling from the collection of appli-
cable patterns. This process is repeated until all
the required errors have been generated or the sen-
tence is exhausted. During generation, we try to
balance the distribution of error types as well as
keeping the same proportion of incorrect and cor-
rect sentences as in the background corpus (Felice,
2016). The required POS tags were generated with
RASP (Briscoe et al., 2006), using the CLAWS2
tagset.

3 Error Detection Model

We construct a neural sequence labeling model for
error detection, following the previous work (Rei
and Yannakoudakis, 2016; Rei, 2017). The model
receives a sequence of tokens as input and outputs
a prediction for each position, indicating whether
the token is correct or incorrect in the current con-
text. The tokens are first mapped to a distributed
vector space, resulting in a sequence of word em-
beddings. Next, the embeddings are given as input
to a bidirectional LSTM (Hochreiter and Schmid-
huber, 1997), in order to create context-dependent
representations for every token. The hidden states
from forward- and backward-LSTMs are concate-
nated for each word position, resulting in repre-
sentations that are conditioned on the whole se-
quence. This concatenated vector is then passed
through an additional feedforward layer, and a
softmax over the two possible labels (correct and
incorrect) is used to output a probability distribu-
tion for each token. The model is optimised by
minimising categorical cross-entropy with respect
to the correct labels. We use AdaDelta (Zeiler,
2012) for calculating an adaptive learning rate dur-
ing training, which accounts for a higher baseline
performance compared to previous results.

4 Evaluation

We trained our error generation models on the
public FCE training set (Yannakoudakis et al.,
2011) and used them to generate additional arti-
ficial training data. Grammatically correct text is
needed as the starting point for inserting artificial
errors, and we used two different sources: 1) the
corrected version of the same FCE training set on
which the system is trained (450K tokens), and
2) example sentences extracted from the English
Vocabulary Profile (270K tokens).1. While there
are other text corpora that could be used (e.g.,

1http://www.englishprofile.org/wordlists

Wikipedia and news articles), our development ex-
periments showed that keeping the writing style
and vocabulary close to the target domain gives
better results compared to simply including more
data.

We evaluated our detection models on three
benchmarks: the FCE test data (41K tokens) and
the two alternative annotations of the CoNLL
2014 Shared Task dataset (30K tokens) (Ng et al.,
2014). Each artificial error generation system was
used to generate 3 different versions of the arti-
ficial data, which were then combined with the
original annotated dataset and used for training an
error detection system. Table 1 contains example
sentences from the error generation systems, high-
lighting each of the edits that are marked as errors.

The error detection results can be seen in Table
2. We use F0.5 as the main evaluation measure,
which was established as the preferred measure
for error correction and detection by the CoNLL-
14 shared task (Ng et al., 2014). F0.5 calculates
a weighted harmonic mean of precision and re-
call, which assigns twice as much importance to
precision – this is motivated by practical appli-
cations, where accurate predictions from an er-
ror detection system are more important compared
to coverage. For comparison, we also report the
performance of the error detection system by Rei
and Yannakoudakis (2016), trained using the same
FCE dataset.

The results show that error detection perfor-
mance is substantially improved by making use
of artificially generated data, created by any of
the described methods. When comparing the er-
ror generation system by Felice and Yuan (2014)
(FY14) with our pattern-based (PAT) and machine
translation (MT) approaches, we see that the latter
methods covering all error types consistently im-
prove performance. While the added error types
tend to be less frequent and more complicated
to capture, the added coverage is indeed benefi-
cial for error detection. Combining the pattern-
based approach with the machine translation sys-
tem (Ann+PAT+MT) gave the best overall perfor-
mance on all datasets. The two frameworks learn
to generate different types of errors, and taking ad-
vantage of both leads to substantial improvements
in error detection.

We used the Approximate Randomisation Test
(Noreen, 1989; Cohen, 1995) to calculate statisti-
cal significance and found that the improvement
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FCE CoNLL-14 TEST1 CoNLL-14 TEST2
P R F0.5 P R F0.5 P R F0.5

R&Y (2016) 46.10 28.50 41.10 15.40 22.80 16.40 23.60 25.10 23.90
Annotation 53.91 26.88 44.84 16.12 18.42 16.52 25.72 20.92 24.57
Ann+FY14 58.77 25.55 46.54 20.48 14.41 18.88 33.25 16.67 27.72
Ann+PAT 62.47 24.70 47.81 21.07 15.02 19.47 34.04 17.32 28.49
Ann+MT 58.38 28.84 48.37 19.52 20.79 19.73 30.24 22.96 28.39
Ann+PAT+MT 60.67 28.08 49.11 23.28 18.01 21.87 35.28 19.42 30.13

Table 2: Error detection performance when combining manually annotated and artificial training data.

for each of the systems using artificial data was
significant over using only manual annotation. In
addition, the final combination system is also sig-
nificantly better compared to the Felice and Yuan
(2014) system, on all three datasets. While Rei
and Yannakoudakis (2016) also report separate ex-
periments that achieve even higher performance,
these models were trained on a considerably larger
proprietary corpus. In this paper we compare error
detection frameworks trained on the same publicly
available FCE dataset, thereby removing the con-
founding factor of dataset size and only focusing
on the model architectures.

The error generation methods can generate al-
ternative versions of the same input text – the
pattern-based method randomly samples the er-
ror locations, and the SMT system can provide an
n-best list of alternative translations. Therefore,
we also investigated the combination of multiple
error-generated versions of the input files when
training error detection models. Figure 1 shows
the F0.5 score on the development set, as the train-
ing data is increased by using more translations
from the n-best list of the SMT system. These re-
sults reveal that allowing the model to see multiple
alternative versions of the same file gives a dis-
tinct improvement – showing the model both cor-
rect and incorrect variations of the same sentences
likely assists in learning a discriminative model.

5 Related Work

Our work builds on prior research into AEG.
Brockett et al. (2006) constructed regular expres-
sions for transforming correct sentences to con-
tain noun number errors. Rozovskaya and Roth
(2010) learned confusion sets from an annotated
corpus in order to generate preposition errors. Fos-
ter and Andersen (2009) devised a tool for gener-
ating errors for different types using patterns pro-
vided by the user or collected automatically from
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Figure 1: F0.5 on FCE development set with in-
creasing amounts of artificial data from SMT.

an annotated corpus. However, their method uses
a limited number of edit operations and is thus
unable to generate complex errors. Cahill et al.
(2013) compared different training methodologies
and showed that artificial errors helped correct
prepositions. Felice and Yuan (2014) learned er-
ror type distributions for generating five types of
errors, and the system in Section 2.2 is an exten-
sion of this model. While previous work focused
on generating a specific subset of error types,
we explored two holistic approaches to AEG and
showed that they are able to significantly improve
error detection performance.

6 Conclusion

This paper investigated two AEG methods, in or-
der to create additional training data for error de-
tection. First, we explored a method using textual
patterns learned from an annotated corpus, which
are used for inserting errors into correct input text.
In addition, we proposed formulating error gen-
eration as an MT framework, learning to translate
from grammatically correct to incorrect sentences.

The addition of artificial data to the training pro-
cess was evaluated on three error detection anno-
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tations, using the FCE and CoNLL 2014 datasets.
Making use of artificial data provided improve-
ments for all data generation methods. By relax-
ing the type restrictions and generating all types of
errors, our pattern-based method consistently out-
performed the system by Felice and Yuan (2014).
The combination of the pattern-based method with
the machine translation approach gave further sub-
stantial improvements and the best performance
on all datasets.
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Abstract

Using methods of statistical analysis, we
investigate how semantic knowledge is ac-
quired in English as a second language and
evaluate the pace of development across
a number of predicate types and content
word combinations, as well as across the
levels of language proficiency and na-
tive languages. Our exploratory study
helps identify the most problematic areas
for language learners with different back-
grounds and at different stages of learning.

1 Introduction

Acquisition of semantic knowledge and vocabu-
lary of a second language (L2), including appro-
priate word choice and awareness of selectional
preference restrictions, are widely recognised as
important aspects of L2 learning by native speak-
ers, language teachers and learners themselves.
Previous research demonstrated strong correla-
tion between semantic knowledge and proficiency
level (Shei and Pain, 2000; Alderson, 2005), and
argued that the use of collocations makes one’s
speech more native-like (Kjellmer, 1991; Aston,
1995; Granger and Bestgen, 2014). James (1998)
noted that learners often equate L2 mastery with
mastery of L2 vocabulary, and Leacock et al.
(2014) mention an experiment in which teachers
of English ranked word choice errors among the
most serious errors in L2 writing. At the same
time, it has also been argued that acquisition of
semantic knowledge proceeds on a word-by-word
basis with each word being acquired as a separate
construct (Gyllstad et al., 2015), and acquisition of
content word combinations knowledge is slow and
uneven, presenting challenges even at high profi-
ciency levels (Bahns and Eldaw, 1993; Laufer and
Waldman, 2011; Thewissen, 2013).

Native speakers are believed to be experts in
their own language (James, 1998), and the lan-
guage norm is usually set based on their prefer-
ences (Wulff and Gries, 2011). Apart from er-
rors, learner English is often characterised by dif-
ferences in the probabilistic distribution of lexical
items which are expressed in under- or overuse of
certain constructions (De Cock, 2004; Durrant and
Schmitt, 2009; Laufer and Waldman, 2011; Wulff
and Gries, 2011). In this paper, we adopt statistical
approach and assume that native and learner lan-
guage are characterised by different distributions.
We investigate how non-native use of language de-
velops and how closely it approximates native use
at different levels of proficiency.

The native language distribution is modelled us-
ing a combination of the British National Corpus
(BNC) and ukWaC, while learner language distri-
butions are modelled using Cambridge Learner
Corpus (CLC). CLC covers various L1 back-
grounds as well as 6 language proficiency lev-
els defined by the Common European Frame-
work of Reference for Languages (CEFR) (Coun-
cil of Europe, 2011a), ranging from “basic” (A1-
A2) to “independent” (B1-B2) to “proficient” (C1-
C2). In contrast to much of previous research,
we run the experiments both on a wider scale,
using a large corpus of learner English, and to
finer level of granularity, exploring learner devel-
opment across proficiency levels. Table 1 defines
the amount and range of linguistic constructions
that the learners are expected to be familiar with at
different levels. Specifically, we explore:

(1) the pace of semantic knowledge and vocabu-
lary acquisition across levels;

(2) the influence of one’s L1 on the development
of semantic knowledge;

(3) acquisition and development of selectional
preference patterns across levels.
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Level Descriptor
A1 Has a very basic repertoire of words and simple phrases related to personal details and particular concrete

situations.
A2 Uses basic sentence patterns with memorised phrases, groups of a few words and formulae in order to

communicate limited information in simple everyday situations.
B1 Has enough language to get by, with sufficient vocabulary to express him/herself with some hesitation and

circumlocutions on topics such as family, hobbies and interests, work, travel, and current events.
B2 Has a sufficient range of language to be able to give clear descriptions, express viewpoints on most general

topics, without much conspicuous searching for words, using some complex sentence forms to do so.
C1 Has a good command of a broad range of language allowing him/her to select a formulation to express him/

herself clearly in an appropriate style on a wide range of general, academic, professional or leisure topics
without having to restrict what he/she wants to say.

C2 Shows great flexibility reformulating ideas in differing linguistic forms to convey finer shades of meaning
precisely, to give emphasis, to differentiate and to eliminate ambiguity. Also has a good command of
idiomatic expressions and colloquialisms.

Table 1: CEFR descriptors of general linguistic and vocabulary range (Council of Europe, 2011b)

2 Previous research

Within NLP, it is more typical to explore learner
language from the perspective of automated as-
sessment or error detection and correction (Lea-
cock et al., 2014) which focus on the contrast be-
tween learner and native language in terms of er-
rors in L2, rather than from a language develop-
ment perspective. The latter was studied more ex-
tensively by Second Language Acquisition (SLA)
researchers. Previous research looked into vocab-
ulary acquisition and language development as-
sessing passive, or receptive, vocabulary knowl-
edge (Gyllstad et al., 2015) and trying to esti-
mate the vocabulary that the learners might un-
derstand at different proficiency levels (Nation,
2006; Bergsma and Yarowsky, 2013). The vo-
cabulary size tests of the type proposed by Nation
(2012) were shown to not be appropriate to test
productive vocabulary knowledge as they suffer
from overestimation of the vocabulary size (Gyll-
stad et al., 2015). Using learner writing to estimate
the productive vocabulary size provides more reli-
able results, but previous studies in this area were
performed on a smaller scale, either focusing on
a limited number of proficiency levels (Gilquin
and Granger, 2011; Granger and Bestgen, 2014),
L1s (Gilquin and Granger, 2011; Granger and
Bestgen, 2014; Siyanova-Chanturia, 2015), or on
overall smaller datasets (Grant and Ginther, 2000;
Granger and Bestgen, 2014).

It is widely accepted that vocabulary develops
over time, and richer vocabulary is characteristic
of better language knowledge (Laufer and Wald-
man, 1995; Grant and Ginther, 2000). Moreover,
as students become more proficient writers, they
do not only start operating with an overall larger

vocabulary, but also become more precise in their
word choice which is reflected in the increase of
the type-token ratio (TTR) (Ferris, 1994; Engber,
1995; Frase et al., 1999; Grant and Ginther, 2000).
However, the methodology of tagging the word
choice and measuring TTR similar to that adopted
in Grant and Ginther (2000) fails taking the omis-
sions into account, while the method proposed in
this paper helps alleviate this problem.

With respect to the development of selectional
preference patterns and phraseological knowl-
edge, Siyanova-Chanturia (2015) show that L2
learners even at lower levels do not just focus
on single words acquisition but also attend to
combinatorial linguistic mechanisms. The studies
of Durrant and Schmitt (2009) and Granger and
Bestgen (2014) suggest that intermediate learners
tend to overuse high frequency collocations (such
as hard work) and underuse lower-frequency col-
locations (such as immortal souls), while as pro-
ficiency in the language increases, this balance
changes. Durrant and Schmitt (2009) argue that
learners at the lower proficiency levels seem to
over-rely on forms which are common in the lan-
guage, and Paquot and Granger (2012) note that
this might be related to the fact that learners feel
confident using such common forms.

An interesting observation concerns the pace
of semantic knowledge development: for in-
stance, Laufer and Waldman (1995) observed that
advanced learners’ vocabulary is too varied to
remain stable across different samples of writ-
ing. Laufer and Waldman (2011) and Nesselhauf
(2005) investigated the development of colloca-
tional knowledge and came to a somewhat coun-
terintuitive conclusion that more proficient learn-
ers produce more deviant collocations than their

294



less proficient counterparts. Thewissen (2008) ar-
gue that higher-level learners attempt a much
wider range of lexical phrases which are not al-
ways error-free, and produce a large number of
near-hits as compared to their lower intermediate
counterparts. Paquot and Granger (2012) conclude
that at an advanced level, learners take more risks,
try out more complex lexical phrases and as a re-
sult, produce errors, but those are of a different,
more ‘advanced’ nature than the basic errors typi-
cal of earlier stages.

A number of studies looked into L1 influence
on L2 development (Siyanova-Chanturia, 2015;
Paquot and Granger, 2012). Typically, researchers
report negative effects of L1 transfer (Lorenz,
1999; Gilquin, 2007; Nesselhauf, 2005; Laufer
and Waldman, 2011; Paquot and Granger, 2012),
but some research also suggests that the learn-
ers whose L1 belongs to the same language fam-
ily as English are more likely to make fewer
mistakes than the learners from other L1 back-
grounds (Waibel, 2008; Alejo Gonzalez, 2010;
Gilquin and Granger, 2011).

3 Experimental setup

We focus on three types of content word combina-
tions that are some of the most frequent in learner
writing and have previously been found challeng-
ing for language learners (Lorenz, 1999; Paquot
and Granger, 2012): adjective–noun (AN), verb–
direct object (VO) and subject–verb (SV). We (1)
investigate how the use of the predicating words
(adjectives and verbs) within these combinations
develops over time,1 and (2) look into how their
selectional preference patterns change across lev-
els of language proficiency. We do not focus on
collocations specifically for two reasons: firstly,
there is a lot of disagreement in defining colloca-
tions (cf. Foster (2010), Nesselhauf (2005), Hoey
(1991)), and secondly, learners have been shown
to have difficulties with all types of content word
combinations, including those that are referred to
as ‘free’ (Paquot and Granger, 2012).

3.1 Data
Learner data: We have extracted the data for our
experiments from the Cambridge Learner Corpus
(CLC), which is a 52.5 million-word corpus of

1We combine adjectives in AN and verbs in VO and SV
combinations under the term of predicating words because
we assume that they impose the selectional restrictions on the
arguments (nouns) within the corresponding combinations.

Lvl Types Tokens TTR #Preds
AN A1 7, 053 41, 502 0.1699 720

A2 12, 365 69, 161 0.1788 1, 010
B1 37, 198 179, 791 0.2069 2, 198
B2 54, 782 250, 807 0.2184 2, 699
C1 59, 965 250, 263 0.2396 2, 832
C2 63, 937 209, 984 0.3045 3, 664

VO A1 9, 690 58, 399 0.1659 761
A2 19, 413 104, 123 0.1864 1, 238
B1 45, 826 217, 100 0.2111 2, 133
B2 66, 621 288, 129 0.2312 2, 499
C1 67, 235 247, 842 0.2713 2, 607
C2 63, 223 200, 038 0.3161 2, 764

SV A1 7, 553 40, 657 0.1858 776
A2 15, 825 75, 749 0.2089 1, 323
B1 49, 282 187, 378 0.2630 2, 370
B2 75, 109 281, 490 0.2668 2, 867
C1 83, 832 293, 654 0.2855 3, 070
C2 80, 779 232, 702 0.3471 3, 283

Table 2: Overall statistics

learner English collected by Cambridge Univer-
sity Press and Cambridge English Language As-
sessment (Nicholls, 2003). It comprises essays
written during examinations in English by lan-
guage learners with over 80 L1s and represent-
ing all 6 CEFR levels (Council of Europe, 2011a).
Since the learners are not restricted in the word
choice,2 we believe that the range of vocabulary
used in the essays is representative of what is in
learners’ active lexicon and, therefore, reflects se-
mantic knowledge internalised at this point.

We have extracted the word combinations from
the full CLC parsed with the RASP (Briscoe et al.,
2006). Table 2 summarises learner data: we in-
clude the number of types (unique combinations),
tokens (overall number of combinations), type-
token ratio (TTR) as well as the number of pred-
icates for each level. Table 2 demonstrates that
the overall number of the combinations and predi-
cates as well as TTR constantly increase from A1
through to C2, with the largest increase between
levels A2 and B1,3 when the learners transfer from
beginners to intermediate and start using the vo-
cabulary beyond basic and simple, and between
levels C1 and C2, when learners are expected to
master idiomatic expressions and colloquialisms.

Native data: To estimate the general linguistic
and vocabulary range of a native speaker, we have
extracted the statistics on the use of ANs, VOs and
SVs and the predicates from a combination of the
BNC (Burnard, 2007) and ukWaC (Ferraresi et al.,

2It can be argued that vocabulary selection is restricted by
essay prompts; we address this issue in §5.

3The increase is statistically significant at 0.05 with t-test.
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2008), which together amount to more than 2 bil-
lion words. For consistency, the native data has
also been parsed with RASP (Briscoe et al., 2006).

3.2 Statistical methods
Distribution similarity: We measure the simi-
larity between two distributions using Kullback-
Leibler (KL) divergence (MacKay, 2003) which
for distributions Q and P is defined as:

DKL(P ||Q) =
∑

i

P (i)log
P (i)
Q(i)

(1)

In our experiments, P is the distribution in the
learner data and Q is the distribution in the na-
tive data. The closer the two distributions are, the
lower the value of DKL. To support the results, we
additionally measure the Pearson correlation coef-
ficient (PCC) between the predicates and content
word combinations in the learner and native data.
PCC is higher for the more similar distributions.

Argument clustering: To address the issue of
data sparsity, we estimate selectional preferences
(SP) over argument classes as well as individ-
ual arguments. We obtain SP classes using spec-
tral clustering of nouns with lexico-syntactic fea-
tures, which has been shown effective in previous
lexical classification tasks (Brew and Schulte im
Walde, 2002; Sun and Korhonen, 2009). Spec-
tral clustering partitions the data relying on a ma-
trix that records similarities between all pairs of
data points. We use Jensen-Shannon divergence
to measure the similarity between feature vectors
for nouns wi and wj as follows:

dJS(wi, wj) =
1
2
dKL(wi||m) +

1
2
dKL(wj ||m),

(2)
where dKL is the KL divergence, and m is the
average of wi and wj . We construct the similar-
ity matrix S computing similarities Sij as Sij =
exp(−dJS(wi, wj)). The matrix S encodes a sim-
ilarity graph G over the nouns, where Sij are the
adjacency weights. The clustering problem can
then be defined as identifying the optimal parti-
tion, or cut, of the graph into clusters, such that the
intra-cluster weights are high and the inter-cluster
weights are low. We cluster 2, 000 most frequent
nouns in the BNC, using their grammatical rela-
tions as features. The features consist of verb lem-
mas occurring in the subject, direct object and in-
direct object relations with the given nouns in the
RASP-parsed BNC. The feature vectors are con-
structed from the corpus counts and normalized by

the sum of the feature values.
Selectional preference model: Once the SP

classes are obtained, we quantify the strength of
association between a given predicate and each of
the classes. We adopt an information theoretic
measure proposed by Resnik (1993) for this pur-
pose. Resnik first measures selectional preference
strength (SPS) of a predicate in terms of KL diver-
gence between the distribution of noun classes oc-
curring as arguments of the predicate, p(c|v), and
the prior distribution of the noun classes, p(c):

SPSR(v) =
∑

c

p(c|v) log
p(c|v)
p(c)

, (3)

where R is the grammatical relation for which SPs
are computed. SPS measures how strongly the
predicate constrains its arguments. Selectional as-
sociation with a particular argument class is then
defined as a relative contribution of that argument
class to the overall SPS of the predicate:

AssR(v, c) =
1

SPSR(v)
p(c|v) log

p(c|v)
p(c)

(4)

We extract VO and SV relations, map the argument
heads to SP classes and quantify selectional asso-
ciation of a given predicate with each SP class.

4 Experimental results

We run a series of experiments to test the aspects
of semantic knowledge acquisition outlined in §1.

4.1 Pace of semantic knowledge acquisition
Table 2 shows that at the lower levels learners op-
erate with quite a small vocabulary. Many pre-
vious studies argued that learners at lower lev-
els tend to overuse high frequency lexical items,
whereas over time they expand their vocabulary
with less frequent lexical items. It has also been
argued that semantic knowledge acquisition is an
unsteady process (see §2). First, we explore how
exactly the semantic knowledge develops across
proficiency levels, and investigate whether content
word choice error rates – the proportion of word
combinations where the predicate in chosen inap-
propriately as, for example, in *choose decision
instead of make decision, or *actual room instead
of current room – decrease over time.

For that, we identify 10 frequency bands for
predicating words within each combination type
using native English data. Each band covers from
363 (within band 1 of the most frequent predi-
cates) up to 7, 672 (within band 10 of the least
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frequent ones) unique adjectives in ANs, and sim-
ilarly from 281 to 3, 676 verbs in VOs, and 297
to 3, 367 verbs in SVs. For instance, band 1 con-
tains such adjectives as big and good, and verbs
give, go and see, while band 10 contains adjectives
behaviouristic and decipherable, and verbs factor,
garnish and mesmerise. It is reasonable to expect
that learners are familiar with the “simpler” words
from band 1 even at the lower proficiency levels,
while they might find words from band 10 much
more challenging. In order to quantitatively assess
this, we measure the proportion of new predicating
words used at each level and map it to the identi-
fied frequency bands. Next, we estimate the error
rates for each level and for each frequency band.

Figure 1 shows the distribution of the new vo-
cabulary acquired at each level mapped against
the frequency bands, as well as the distribution
of the error rates across the frequency bands at
each level.4 While we observe that, as expected,
learners expand their vocabulary acquiring words
from lower frequency bands, the following trends
are worth noting: most of the verb predicates in
VOs and SVs that the learners know at level A1 are
covered by frequency band 1. At A2 and B1 they
still expand their vocabulary with some verbs from
band 1, but starting with level B2 none of the new
vocabulary comes from this band. Most new verbs
in VOs at level C2 are covered by band 10, and in
SVs by band 4. For adjectives, most new vocabu-
lary at A1 and A2 comes from band 1, at B1 – band
3, at B2 – band 5, at C1 – band 8 and at C2 – band
10. Predictably, the error rates decrease towards
the higher proficiency levels and within the higher
frequency bands. The highest error rates are ob-
served on the bands covering less frequent words:
for example, even though the error rates are over-
all lower for C2 level, the highest error rate for C2
is associated with band 10 for all three types of
combinations which confirms that semantic acqui-
sition is challenging even at advanced levels.

While these results corroborate previous find-
ings and show quantitatively how semantic knowl-
edge develops across levels, we look further into
how it approximates native English. In particular,
it is reasonable to assume that the variety of En-
glish used by language learners at the lower pro-
ficiency levels is more dissimilar to the native En-
glish both for predicates and content word com-

4More detailed description is available at www.cl.cam.
ac.uk/˜ek358/vocab-acquisition.html.

Lvl PCCpred KLpred PCCcomb KLcomb

AN A1 0.3497 2.8737 0.1052 4.2909
A2 0.4338 2.5073 0.1382 3.6463
B1 0.7036 1.3101 0.2785 2.6212
B2 0.7968 0.9408 0.4627 2.2058
C1 0.8482 0.7959 0.4896 2.1183
C2 0.8188 0.7990 0.4817 2.0451

VO A1 0.6226 1.8469 0.0975 4.5220
A2 0.7811 1.3115 0.1973 3.5465
B1 0.8749 0.9080 0.3339 2.5350
B2 0.9270 0.5965 0.5454 1.9129
C1 0.9395 0.5541 0.6082 1.7994
C2 0.9262 0.6106 0.5736 1.8145

SV A1 0.9669 1.2729 0.1660 4.2648
A2 0.9716 1.0038 0.2336 3.3381
B1 0.9824 0.6898 0.4758 2.3194
B2 0.9859 0.5623 0.6306 1.9506
C1 0.9873 0.5141 0.6637 1.8733
C2 0.9870 0.5230 0.5954 1.9079

Table 3: Predicates (pred) and combinations (comb)
distributions

binations, while it approximates native language
distributions at upper levels. To test that, we cal-
culate PCC and KL (see §3.2) and expect that to-
wards C2 level PCC increases and approximates
1.0, while KL decreases and approximates 0.0.

Table 3 presents the PCC and KL values for
the distribution of the adjectives and verbs in
columns marked with pred for predicating words,
and for combinations in columns marked with
comb. These values show that PCC steadily in-
creases while KL steadily decreases from level
A1 through to level C1, with the biggest “jump”
between levels A2 and B1 for the adjectives and
verbs in SVs, and A1 and A2 for the verbs in
VOs. However, we note that at level C2 predicating
words distribution is less similar to native English
distribution than at level C1 for all types of com-
binations – we mark these values in the table in
bold. We hypothesise that at level C2 the learners
are already familiar with the basic vocabulary and
start experimenting with the use of novel construc-
tions which might result in a quite distinct variety
of English (see Thewissen (2008) and Paquot and
Granger (2012) for similar hypotheses). To inves-
tigate this further, we identify 10 predicates per
combination type such that after removing them
from the list of predicates, KL between the learner
and native distribution improves (see Table 4).

What makes the use of these predicates by
learners different from native use? Column “#B”
in Table 4 presents the mean of the frequency
bands and shows that most of these predicates
come from the first two frequency bands, so they
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Figure 1: Predicates acquisition and error rate distribution across levels.

represent frequent words that are overused by the
learners. We calculate the average error rates for
the combinations with these predicates (column
“ErR”) and compare them to the average error rate
over all predicates for each level (in parentheses).
For adjectives and verbs in VOs the error rates are
comparable or below the average error rate at the
lower levels, and higher than the average at the
upper levels. Verbs in SVs demonstrate an oppo-
site trend: at the lower levels error rates associated
with the use of these predicates are higher than av-
erage, while at the upper levels they are compara-
ble or lower. We conclude that the differences in
the distributions at the lower levels are caused by
the overuse of the basic vocabulary, while towards
the upper levels it is due to occasionally incorrect
use of more diverse vocabulary.

The rightmost columns of Table 3 also compare
the distribution of the ANs, VOs and SVs in the
learner data to those in the native English data. We

note that, similarly to the distribution of the pred-
icates, the use of the content word combinations
becomes more similar to native use towards higher
levels of language proficiency, and to further con-
firm our hypothesis about the peculiar use of lan-
guage at C2, we observe a disruption of this trend
at C2 level for VOs and SVs. We also note that
the development goes at quicker pace between A1
through to B2, and slows down at the upper levels.

4.2 L1 effects

L1 influence on the word choice has been ex-
tensively studied by SLA researchers (Siyanova-
Chanturia, 2015; Paquot and Granger, 2012). It
seems reasonable to expect that the similarity be-
tween one’s L1 and L2 should facilitate semantic
acquisition in L2: for example, if L1 and L2 be-
long to the same language group, they can be ex-
pected to bear considerable semantic similarities
that might help learners acquire semantic knowl-

298



Lvl Predicates #B ErR
adj A1 dear, mobile, favorite, other, national, 1.5 0.15

blue, nice, pink, international, young (0.16)
A2 dear, mobile, favorite, local, national, 1.5 0.14

nice, social, blue, pink, young (0.16)
B1 dear, best, nice, national, wealthy, 1.4 0.15

beautiful, big, good, english, funny (0.17)
B2 dear, good, british, nice, wealthy, 1.3 0.15

best, national, wonderful, important, big (0.16)
C1 dear, national, upward, wealthy, british, 1.8 0.17

english, negative, bad, full, important (0.15)
C2 wealthy, national, dear, full, british, 1.4 0.15

important, further, current, serial, european (0.13)
v A1 buy, paint, like, watch, go, 1.1 0.28

V O wear, bring, play, provide, make (0.28)
A2 buy, paint, provide, like, go, 1.2 0.26

watch, attend, wear, book, confirm (0.27)
B1 buy, watch, include, provide, like, 1.2 0.22

go, spend, offer, film, love (0.27)
B2 include, provide, spend, rent, support, 1.1 0.26

contain, follow, raise, create, cover (0.24)
C1 include, excel, improve, concern, provide, 1.4 0.21

solve, show, reach, spend, allow (0.22)
C2 spend, broaden, offer, earn, solve, 1.3 0.21

allow, require, cover, use, enable (0.19)
v A1 cost, make, use, park, have, 1.1 0.31

SV show, find, say, wish, take (0.25)
A2 cost, use, include, make, provide, 1.1 0.27

park, say, attend, find, show (0.22)
B1 include, like, wish, watch, provide, 1.4 0.22

require, spend, set, decrease, amaze (0.23)
B2 increase, like, include, reward, decrease, 1.4 0.20

interest, spend, provide, require, involve (0.20)
C1 increase, decrease, include, spend, like, 1.2 0.20

change, say, show, improve, apply (0.19)
C2 include, increase, spend, frame, live, 1.3 0.16

like, require, provide, set, base (0.16)

Table 4: Top 10 predicates contributing to the differ-
ence between learner and native language distribution

edge in L2, while one may expect to observe
slower learning pace for speakers of more distant
L1s (Gilquin and Granger, 2011).

To test to what extent L1 exerts influence on
L2 semantic knowledge acquisition, we consider
three language groups – Germanic L1s (GE) that
belong to the same group as English (EN), Ro-
mance L1s (RM) that represent a different group
within the same family of the Indo-European lan-
guages, and Asian L1s (AS) representing a group
of languages most distant from English among the
three.5 We measure KL divergence for the three
pairs, GE–EN, RM–EN and AS–EN, on the distribu-
tion of the predicates.

The results reported in Table 5 contradict our
original assumption as we observe that the vari-
ety of English used by speakers of Romance L1s
is closer to native English than the variety used by
speakers of Germanic L1s. Furthermore, the vari-
ety of English used by speakers of Asian L1s, es-
pecially at the lower levels, is more similar to na-
tive English than the variety used by Germanic L1

5GE include Danish, Dutch, German, Norwegian and
Swedish; RM include French, Italian, Portuguese, Romanian
and Spanish; AS include Thai, Vietnamese and different vari-
eties of Chinese.

Lvl GE RM AS

adj A1 4.3318 3.5133 3.8219
A2 3.3723 3.2955 3.2837
B1 2.3309 2.3874 1.7002
B2 1.4971 1.4109 1.3849
C1 1.1840 1.1088 1.2562
C2 1.2880 1.0543 1.3716

vV O A1 2.1994 2.0347 2.0446
A2 1.6371 1.6478 1.6204
B1 1.3751 1.2139 0.9772
B2 0.9280 0.7363 0.8622
C1 0.9389 0.7050 0.8164
C2 0.9806 0.7512 0.9465

vSV A1 2.2841 1.3059 1.3300
A2 1.6275 1.1930 1.2918
B1 1.1583 0.9629 0.8604
B2 0.8576 0.6862 0.8636
C1 0.8631 0.6326 0.8158
C2 0.8818 0.7098 0.9283

Table 5: Predicate distributions per language
groups (KL)

speakers. We hypothesise that since Asian L1s are
very different from English, the speakers of these
languages may prefer to use prefabricated phrases
more often than speakers of Germanic L1s, which
makes their language more native-like. Similar
hypotheses have been formulated earlier: for ex-
ample, Gilquin and Granger (2011) noted that
learners, especially at the lower levels, are likely to
repeat expressions that are familiar to them and ap-
pear to be safe, and Hulstijn and Marchena (1989)
noted that learners tend to rely on “play-it-safe”
strategy rather than experiment unless they are
confident in their vocabulary knowledge. We as-
sume that speakers of Germanic L1s might feel
more confident in their semantic knowledge and
as a result be more “adventurous” in their use of
English than speakers of Asian L1s. Our exper-
iments on the individual L1s within each group
show same trends as observed for L1 groups.

4.3 Selectional preference patterns

Finally, we investigate how selectional prefer-
ence patterns develop across proficiency levels and
whether they approximate native English patterns.
For each predicate in learner and native data, we
form argument clusters using the methodology de-
scribed in §3.2, estimate SP strength for the predi-
cates at each level using eq. 3, and then apply KL
divergence and PCC to measure the difference.

Table 6 overviews the similarity between the
SP models in learner and native data for the ar-
guments and argument clusters (see columns with
cl). As before, we observe that the SP models in
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Lvl PCC KL PCCcl KLcl

AN A1 0.1661 0.1481 0.2835 0.1980
A2 0.4375 0.0843 0.5449 0.1149
B1 0.5808 0.0494 0.5597 0.0897
B2 0.6133 0.0395 0.5940 0.0765
C1 0.6526 0.0372 0.6408 0.0729
C2 0.6428 0.0364 0.5866 0.0762

VO A1 0.4959 0.0966 0.5976 0.1533
A2 0.3893 0.0917 0.5414 0.1430
B1 0.6181 0.0579 0.7429 0.0810
B2 0.6759 0.0412 0.6987 0.0749
C1 0.7172 0.0354 0.7576 0.0634
C2 0.7168 0.0379 0.7609 0.0645

SV A1 0.6069 0.1254 0.4475 0.1722
A2 0.6061 0.0956 0.4934 0.1604
B1 0.6053 0.0837 0.5008 0.1538
B2 0.6500 0.0612 0.4248 0.1515
C1 0.6539 0.0553 0.4972 0.1306
C2 0.6599 0.0595 0.5164 0.1418

Table 6: Selectional preference distribution

Predicate Learner language Native language
AN additional worker, teacher, staff information, item, detail

kind girl, woman, person consent, permission, approval
VO reserve bathroom, hall, room privilege, right, status

stipulate price, rent, salary rule, need, norm
SV bind treaty, contract, deal gene, tissue, cell

reflect gear, clothes, mask rise, change, improvement

Table 7: Examples of the most strongly associated
arguments

learner data become more similar to those in native
language towards upper levels. Both ANs and VOs
show the biggest improvements between A2 and
B1, and we observe the disruption in this trend at
the levels A2 and C2 (we mark those in bold).

Next, we look into the set of predicates that have
the most different SP patterns in the learner and
native language, and using eq. 4, identify the argu-
ment cluster that is most strongly associated with
each of these predicates in the learner and native
data. For the sake of space, in Table 7 we present
only some illustrative examples from different lev-
els and combination types.6 The experiments sug-
gest that the difference between the learner and na-
tive SP models might be due to the learners’ use
of concrete nouns with the adjectives and verbs
where native speakers prefer abstract nouns.

To further investigate this hypothesis, we iden-
tify 10 predicates per combination type and profi-
ciency level with the most distinct selectional pref-
erence patterns. Using the MRC Psycholinguistic
Database (Wilson, 1988), we calculate the aver-
age concreteness score for the arguments clusters
in learner and native data. Our results show that

6Full lists are available at www.cl.cam.ac.uk/
˜ek358/vocab-acquisition.html.

at the lower levels learners use more concrete ar-
guments than native speakers, with the difference
statistically significant at 0.05 with t-test, while
the difference becomes less pronounced towards
C1-C2 levels. Our results for productive vocabu-
lary knowledge corroborate previous findings on
the relation between receptive vocabulary knowl-
edge and acquisition of abstract concepts (Tanaka
et al., 2013; Vajjala and Meurers, 2014).

The results show that the difference in selec-
tional preference patterns between the learner and
native language is due to the concreteness of the
selected arguments. This may reflect (1) the dif-
ficulty in acquiring semantics of abstract concepts
in L2, or, alternatively, (2) L1-based instructional
practices that may focus first on teaching concrete
concepts before abstract concepts. The awareness
of this discrepancy can serve as further guidance
for language instructors and learners, and help
make one’s language use more native-like.

5 Discussion and conclusions

This paper reports the results of a large-
scale corpus-based exploratory study of semantic
knowledge acquisition by L2 learners. In contrast
to previous work, we ran experiments on a wider
scale, using a large learner corpus, and at finer
granularity, investigating L2 development across
6 CEFR proficiency levels. We show that (1) the
learners tend to overuse highly frequent English
words across all proficiency levels, although to-
wards the higher levels the lexical distributions in
learner and in native language become more sim-
ilar; (2) the two peaks of vocabulary acquisition
are associated with the transition between begin-
ner and intermediate levels (A2-B1), and between
the two proficient levels (C1-C2); (3) lexical distri-
bution at upper proficient level (C2) is less similar
to native distribution than at lower proficient level
(C1) which may be due to the more creative lan-
guage use at C2; (4) the variety of English used by
speakers of more distant L1s at lower levels of pro-
ficiency is closer to native English than the variety
used by speakers of closer L1s, which might be an
effect of “play-it-safe” strategy adopted by learn-
ers; (5) concrete nouns tend to be more strongly
associated with the predicates in learner language
than abstract nouns. The methodology presented
in this paper can help identify the gaps in learner
vocabulary knowledge and tailor vocabulary ac-
quisition exercises to the needs of learners at dif-
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ferent proficiency levels.
We admit that potential topic and genre bias of

learner exams data is a limitation of our corpus-
based approach. We believe that corpus-based
studies of the type presented in this paper will fa-
cilitate further research into semantic knowledge
development, although it is possible that learner
corpora provide only limited access to productive
learner vocabulary. As Siyanova-Chanturia (2015)
notes “in an ideal world, one would use the same
topic across and within all tested levels, but in a
language classroom, this is hardly possible”. The
future work will investigate possible solutions for
this problem such as (1) augmentation of the data
with other learner corpora, (2) use of fill-in-the-
gaps exercises that test vocabulary knowledge di-
rectly, and (3) sampling of the native data to more
closely reflect the selection of topics in the learner
data.
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Abstract

Ontologies provide a structured represen-
tation of concepts and the relationships
which connect them. This work investi-
gates how a pre-existing educational Biol-
ogy ontology can be used to generate use-
ful practice questions for students by using
the connectivity structure in a novel way.
It also introduces a novel way to generate
multiple-choice distractors from the ontol-
ogy, and compares this to a baseline of us-
ing embedding representations of nodes.

An assessment by an experienced science
teacher shows a significant advantage over
a baseline when using the ontology for
distractor generation. A subsequent study
with three science teachers on the results
of a modified question generation algo-
rithm finds significant improvements. An
in-depth analysis of the teachers’ com-
ments yields useful insights for any re-
searcher working on automated question
generation for educational applications.

1 Introduction

An important educational application of NLP is
the generation of study questions to help students
practice and study a topic, as a step toward mastery
learning (Polozov et al., 2015). Although much re-
search exists in automated question generation the
techniques needed for educational applications re-
quire a level of precision that is not always present
in these approaches.

Ontologies have the potential to be uniquely
beneficial for educational question generation be-
cause they allow concepts to be connected in non-
traditional ways. Questions can be generated
about different concepts’ properties which span

different areas of a textbook or even different edu-
cational resources.

However, ontologies are not commonly used in
NLP approaches to generate complex, multi-part
questions. This may be due to concern about on-
tology’s incompleteness and the fact that they are
usually structured for other purposes.

In this work, we describe a novel method for
generating complex multiple choice questions us-
ing an ontology, with the aim of testing a stu-
dent’s understanding of the bigger picture of how
concepts interact, beyond just a definition ques-
tion. This technique generates questions that
help achieve understanding at the second level of
Bloom’s taxonomy (Bloom et al., 1956). We also
generate multiple choice distractors using several
ontology- and embedding-based approaches.

We report on two different studies. The first
assesses both the questions and the question dis-
tractors with one domain expert, a middle school
science teacher. This finds evidence that the
ontology-based approach generates novel and use-
ful practice questions. Based on the findings from
that study, we adjust the question generation al-
gorithm and report on a subsequent evaluation in
which three experts quantitatively rank and qual-
itatively comment on a larger selection of ques-
tions. The results are strong, with more than 60
questions out of 90 receiving positive ratings from
two of the judges. Additionally, we categorize and
provide in-depth analysis of qualitative feedback
and use this to inform multiple future directions to
improve educational practice question generation.

2 Related Work

Prior work has explored both automatically gener-
ating educational ontologies from text and utiliz-
ing expert-created ontologies for other tasks. For
instance, Olney et al. (2011) explored extracting
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nodes and relationships from text to build a con-
cept map ontology automatically from textbooks.
Other work has also attempted to build ontolo-
gies from non-educational texts (Benafia et al.,
2015; Szulman et al., 2010) and has explored uti-
lizing crowd-sourcing to build an ontology from
text (Getman and Karasiuk, 2014).

Prior approaches to question generation from
ontologies have involved hand-crafted rules to
transform a relationship into a question (Olney
et al., 2012b; Papasalouros et al., 2008; Ou et al.,
2008). However, these approaches mainly gener-
ate questions for a single fact and do not combine
multiple pieces of information together to create
more complex questions. There is the potential
to explore other, more complex, types of ques-
tion generation procedures from the ontology. Ap-
proaches have also utilized online questions for
ontology-driven generation, but this is less gener-
alizable (Abacha et al., 2016).

Prior work aimed at generating educational
practice questions has generated questions directly
from text using a series of manual translations and
a ranking procedure to determine quality (Heilman
and Smith, 2010, 2009; Heilman, 2011).

Other work has focused on question genera-
tion, independent of an educational context. A
large-scale question generation task posed to the
community prompted a focus on factual question
generation from texts and knowledge bases (Rus
et al., 2008; Graesser et al., 2012). Approaches
have included factual generation directly from text
(Brown et al., 2005; Mannem et al., 2010; Mazidi
and Tarau, 2016; Yao et al., 2012) as well as gener-
ation from knowledge bases (Olney et al., 2012a).

Recent advances in text generation have used
neural generative models to create interestingly
worded questions (Serban et al., 2016; Indurthi
et al., 2017). However, because we are using a hu-
man created ontology and lack specialized training
data, we utilize hand-crafted rules for generation.

3 Question Generation

We utilize an educational Biology ontology to
generate multiple choice questions, which consist
of the text of a question, the correct answer, and
three distractor multiple choice candidates.

3.1 Dataset

We use an expert-curated ontology documenting
K-12 Biology concepts (Fisher, 2010) designed

Figure 1: Selected part of the Biology ontology.

for educational applications. While more re-
sources could be used to accomplish this task, we
only utilize the ontology to explore the efficacy
of this question generation approach. By utilizing
an expert-curated ontology instead of an automati-
cally generated one, we operate under the assump-
tion that the ontology is correct and complete.
Future work can explore utilizing this method in
conjunction with other educational resources and
techniques.

The ontology contains 1,260 unique concept
nodes and 227 unique relationship types with a to-
tal of 3,873 node-relationship-node triples. The
average outgoing degree is 7. Figure 1 shows a
small sample.

3.2 Using The Structure of the Ontology

The novel aspect of our approach is the manner in
which we use an ontology to go beyond simple
factoid question generation. Rather than gener-
ating a question from a node-relation-node triple,
this algorithm makes use of the graph structure of
the ontology to create complex questions that link
different concepts, with the aim of challenging the
student to piece together different concepts.

The goal of this evaluation was to determine if
this novel way of combining concepts would be
judged as creating useful, coherent questions for
testing students.

To create these novel structured questions, the
algorithm chooses a node to act as the answer, and
from three randomly-chosen outgoing links it gen-
erates a question. The relations of the outgoing
links and the nodes on the other ends are used
to form the question words. For instance, from
the node “Water” emanates the links (DissolvesIn,
“salt”), (HasProperty, “cohesion”), and (InputTo,
“evaporation”) from which is generated the ques-
tion “What dissolves salt, has cohesion, and is an
input to evaporation? (Water)”

A total of 992,926 questions can be generated
via this method from the ontology. These ques-
tions are distributed over 426 nodes, with the av-
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erage number of questions that can be generated
per node being 2,330. While 834 nodes do not
have three outgoing links to generate a question
from, these nodes can be chosen as properties to
commpose other questions.

3.3 Generating Distractors

Good multiple choice questions should have dis-
tractors (alternative answers to distract the student
from the correct answer). These should not be
synonymous with the correct answer, but should
be a plausible answer which should not be so far-
fetched as to be obviously incorrect.

We experimented with several different ways
of generating multiple choice distractors using the
structure of the ontology, and compared these with
two embedding based methods. In each case, if
the text of a distractor overlaps with the correct
answer, we do not use it.

3.4 Ontology Distractor Generation

We experimented with 5 different ontology-based
distractor methods. For each distractor generation
method, the correct answer node, n is connected
to three property nodes n1, n2, and n3 via rela-
tionships r1, r2, and r3 respectively. In order to
ensure that distractor node m does not correctly
answer the question, we make sure at least one of
n1, n2, or n3 does not connect to m. The follow-
ing methods are illustrated in Figure 2.

Two Matching Relationships: This method
chooses m such that m is connected to n1 via r1
and m is connected to n2 via r2.

One Matching and One New Relationship:
This method chooses m such that m is connected
to n1 via r1 and m is connected to n2 via a differ-
ent relationship, r4 6= r2.

Two New Relationships: This method chooses
m such that m is connected to n1 via a different
relationship type r4 6= r2 and m is connected to
n2 via a different relationship, r5 6= r3.

One Matching Relationship: This method
chooses m such that m is connected to n1 via r1.

We also examined an additional question-
independent ontology-grounded approach.

Node Structure: This approach rates pairs of
nodes by similarity, where similarity is determined
by their tendency to link to similar relation types
and to link to the same intermediate nodes. More
formally, let cn denote the set of nodes which are
connected to any node n and let ln,r denote the

number of connections that n has of type r. The
similarity between n and m is computed as:

sn,m = count(cn ∩ cm)−
∑

r

|ln,r − lm,r|

3.5 Embedding Distractors

We implemented two methods to generate dis-
tractors grounded in the embeddings of the
nodes. Both utilize pre-trained word embeddings
(Mikolov et al., 2013). A given node n consists
of a series of words, w1, w2, ..., wn. We create a
multi-word embedding by distributing weight and
placing more emphasis on the last word in a se-
quence, which we assume to be the head word.
The similarity s between the two embedded nodes
en and em is determined by cosine similarity.

Correct Answer Embeddings: are generated
by comparing the correct answer, n with the most
similar node in the graph G:

distractor = arg max
m∈G

sen,em

Question Component Embeddings: are gen-
erated by finding the most similar node to the
question components n1, n2, and n3. The above
equation is computed for each component.

3.6 Ontology Coverage

Each of these methods is applicable to a subset of
nodes in the ontology. From a randomly sampled
selection of 10,000 questions, 15.6% met require-
ments for Two Matching Relationship Distractors,
16.2% met requirements for One Matching, One
New Distractors, 29.1% met requirements for Two
New Relationship Distractors, and 25.6% met re-
quirements for One Matching Relationship Dis-
tractors. Node Structure, Correct Answer Embed-
dings, and Question Component Embeddings all
had complete coverage due to the nature of the
methods.

3.7 Pedagogical Motivation

This question generated method is similar to an in-
verse of the “Feature Specification” questions de-
scribed by Graessner et al (1992) in which stu-
dents are asked to describe properties of a con-
cept. An example format of this type of question is
“Which qualitative attributes does entity X have?”
(Graesser et al., 1992). Instead of prompting stu-
dents to list properties of a concept, we provide
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Two Matching Relationships: “What is a type of organic
molecule, is a class of compound in living things, and is
composed of phosphorous atoms?”

One Matching, One New Relationship: “What has struc-
ture spindle fibers, has organelle cell wall, and has organelle
cytoplasm?”

Two New Relationships: “What can be protist cell, can be
animal cell, and is a part of a Eukaryote?”

One Matching Relationship: “What is required in dissolv-
ing, can be table sugar, and dissolves in water?”

Figure 2: Question-specific distractor generation methods. Correct answer nodes are leftmost in each
graph, and chosen distractor nodes are rightmost.

three features of concepts and ask the students to
choose the correct concept given the features.

Through these questions, we aim to challenge
students to connect different features of a concept
while working within the constraints that the ques-
tions and corresponding answers be able to be gen-
erated via the ontology. The type of questions that
arise are intended for mastery learning, in which
students learn simpler facts about a concept before
tackling more difficult conceptual problems (Polo-
zov et al., 2015). While the questions are not crit-
ical thinking ones, they are designed to be more
complex than a simple definition question and to
be a gateway to more difficult questions.

Another potential application of these questions
is preparation for extracurricular trivia competi-
tions, such as Quiz Bowl1. One type of ques-
tion asked at these competitions is one which lists
many characteristics of a concept and challenges
students to quickly identify the concept. Connect-
ing multiple facets of a concept are essential to an-
swer these questions.

3.8 Generating the Text
Because the purpose of this study was to examine
the feasibility of the ontology structure for ques-
tion generation, we use hand-crafted rules to pro-
duce the question text. The human-generated on-
tology has nodes and relationships that are worded

1https://www.naqt.com/about-quiz-bowl.html

Relationship Rule
Has -
Characteristic

If n = verb→ “n.”
If n = noun→ “has n. ”
If n = adjective→ “is n.”

HasProcess “has a process called n.”
CanBe “can be a/an n.”

Table 1: Common relationship types and rule-
methods used to generate the question segment.

somewhat naturally, which helped this process.
We devised simple relationship-to-text transla-
tions rules; examples are shown in Table 1.

4 Study 1

4.1 Method

We conducted a study to assess the quality of
the questions and distractors. We asked a middle
school science teacher with 20 years of experience
to rate the quality of 20 complex questions on a
scale of 1-7. The scale was explained such that 1
was “Poor,” 4 was “OK,” and 7 was “Excellent.”
To create the test set, we randomly selected nodes
and generated questions about them 2.

We also asked the teacher to rate distractors on a
scale of 1-5 (a narrower scale was chosen as it was
thought these would be more difficult to differen-

2Full text of questions evaluated in both studies can be
found in an appendix in the supplementary materials.
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tiate than the questions). Each distractor method
was tested with 10 different questions (each with
3 distractors). Questions were randomly chosen
from all possible questions that could be gener-
ated from the ontology, and were disregarded if
a given distractor method was not able to gener-
ate three valid distractors. For both processes de-
scribed above, the teacher was prompted to enter
optional comments about the question or distrac-
tors.

4.2 Results
Quantitative distractor generation results can be
seen in Table 2. The difference in ontology-
generated distractors compared to embedding-
generated distractors was significant using a t-test
with p value < 0.001. Comparing the highest-
performing ontology and embedding methods
(One Matching, One New Relationship and Cor-
rect Answer Embedding) is also significant under
the t-test with p < 0.05. This indicates that while
the overall feedback was critical, there is promise
in using ontology over embedding distractors.

The questions’ ratings averaged 2.25 out of 7.
After analyzing the qualitative comments, this can
be attributed primarily to the unnatural wording
of the questions. Qualitative comments about the
questions are categorized in Table 3.

4.3 Discussion
All ontology distractor methods except for One
Matching Relationship received explicit com-
ments pointing out that the distractors were
“good,” while no embedding approach received
these comments. This indicates that the combi-
nation of different methods have strengths that
contribute to a good set of distractors. The
Node Structure method provides broad distractors,
while the other methods provide question-specific
ones. For example, the distractors “cell wall,”
“chloroplast,” and “central vacuole” for the ques-
tion “What is an organelle of eukaryotic cell, is an
organelle of animal cell, and is an organelle of fun-
gal cell? (Golgi body)” are plausible but incorrect.

However, the teacher also commented that some
distractors of both embedding and ontology meth-
ods were “poor.” Examining the “poor” distrac-
tors for embedding questions shows that the dis-
tractors can come from concept areas unrelated to
the question. For instance, for the question “What
contains chromosome, is an organelle of eukary-
otic cell, and is a type of organelle? (nucleus),”

Distractor Type Avg
Two Matching Relationships 2.37
One Matching, One New Relationship 2.78
Two New Relationships 2.03
One Matching Relationship 2.07
Node Structure 2.63
Correct Answer Embedding 2.10
Question Component Embedding 1.60

Table 2: Averaged distractor scores.

Type of Comment Count
Unnatural Wording of Question 31
Good question 24
OK question 17
Unnatural Grouping of Characteristics 2
Text of Node was Confusing 2
Imprecise Relationship 1
Not Middle School Level 1

Table 3: Categorization of qualitative feedback for
questions. Feedback was included for all ques-
tions, including those in the distractor section.

the Question Component Embeddings generated
“new genetic recombinations” as a distractor.

By contrast, the ontology-generated distractors
were marked “poor” when the question included
one unique property. For example, for the ques-
tion “What eats mice, eats deer, and is a type of
predator? (mountain lion),” the improbable dis-
tractor “vole” was chosen because it eats mice and
is a predator. This suggests the necessity of more
formal reasoning and real world knowledge cou-
pled with the ontology information.

There were also instances in which the pro-
posed distractors were unintentionally correct an-
swers. For the embedding-generated distractors,
this happened because the method favors distrac-
tors that are more similar to the correct answer.
For the ontology-generated distractors, this oc-
curred where the ontology was incomplete.

While the distractor evaluation is quite prelim-
inary as it only involves one expert evaluating 10
sets of distractors per generation method, these re-
sults suggest the potential to explore an ontology
method of distractor generation in future work.

5 Study 2

Based on these initial results, we extended the
work in several ways. First, based on the results
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of Study 1, we found that the teacher was sensi-
tive to any flaws of the wording of the questions,
so we modified the assessment with questions that
were manually touched up to remove grammati-
cal errors. Second, although we had evidence that
the ontology-based method was producing high-
quality questions, we noticed that the target an-
swers of many of the questions were quite general
(e.g. “solids”, “water”). Therefore, we modified
the algorithm to take out-degree and relation com-
monality into account. We also decided to investi-
gate questions composed of only two relations as
well as three relations. Finally, we wanted to im-
prove the evaluation in two ways: (i) by assessing
more questions, and (ii) by having more indepen-
dent judges per question. We accomplished this by
finding assessors with appropriate backgrounds on
an expert-oriented crowdwork site. Each of these
modifications is described in detail below, along
with results of this second evaluation.

5.1 Modifications to Generation Algorithm

We wanted to assess if the ontology generation
method worked well, but were wondering if per-
haps including three relations made the questions
too complex or unusual. For this reason, we de-
cided to include questions with only two relations
in Study 2.

After adapting the question generation method
to generate questions with two properties as op-
posed to three, given that the node “Evaporation”
is connected to the two relations (Outputs, “wa-
ter vapor”) and (OppositeOf, “condensation”), the
question generated from these two properties is:
“What yields water vapor and is the opposite of
condensation? (evaporation).”

Improving diversity of questions and coverage
of the ontology were priorities in this study. We
modified our question generation algorithm to pri-
oritize these goals. We placed restrictions on the
number of outgoing connections of a node connn

such that 5 < connn < 30.
In addition, for two-property questions, we im-

posed the constraint that the collection of cho-
sen properties yields exactly one unique correct
answer. This added an additional check that the
question generated was not about general proper-
ties that multiple nodes in the ontology fulfill.

For a random selection of 45 questions, we do
not allow the algorithm to generate more than 2
questions about the same concept, to evaluate a

more diverse set of questions. We also do not al-
low a node to be asked as a property involved in
a question more than 5 times. This procedure was
used for the selection of questions for the study
below.

5.2 Manual Adjustments of Question
Expression

The first experiment showed that the grammatical
errors were distracting and affected the evaluation
of the content of the questions. Therefore, we ad-
justed the grammatical correction rules as well as
made minor edits by hand to ensure grammatical
correctness. Some minor grammatical errors still
exist, but major ones which obscure the meaning
of the question were manually corrected. So, for
instance, we fixed errors in the specification of ar-
ticles, as seen in the removal of a and addition of
s when transforming the question “What yields a
RNA and is contained in chromosome? (gene)”
to “What yields RNA and is contained in chromo-
somes? (gene).” These changes were made to a
total of 16 questions. When a question was mod-
ified, the average number of changed characters
was 3.3.

5.3 Evaluation of Question Quality
Three middle school science teachers, each with
at least 10 years of experience, were recruited
to evaluate the generated questions via Upwork3,
an expert-oriented freelance work matching site.
Each teacher evaluated 90 questions (45 two-
property and 45 three-property) both quantita-
tively on a scale from 1 to 7 and qualitatively via
open-ended comments.

The title shown to the assessors was “Middle
School Science Practice Question Evaluation” and
the instructions for the assessment were:

Below are shown some automatically
generated biology questions, intended
for practice studying. Please rate the
quality of these questions for these pur-
poses. Use the rating 1 to 7 where 1 =
Poor, 4 = OK, and 7 = Excellent.

Please ignore grammatical errors. For
each question, please briefly explain
your rating in one sentence.

We recognize that by informing teachers that
the questions were generated automatically, they

3http://www.upwork.com
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Figure 3: Distribution of judges’ quantitative score
over the 90 evaluated questions.

Evaluator 2R Questions 3R Questions
Evaluator 1 5.76 5.94
Evaluator 2 5.33 4.63
Evaluator 3 1.36 1.13
Average Score 4.15 3.89

Table 4: Quantitative feedback of question quality
from the second study, scored on a scale from 1
to 7. 2R Questions are created from two relation-
ships, 3R from three relationships.

could potentially be biased (either positively or
negatively) when evaluating. However, because
the generated questions are a new type of multiple-
choice question, there is no naturally-arising
human-generated baseline.

5.4 Results

Quantitative results from the second study can be
viewed in Table 4. Both 2R and 3R questions
achieved similar rankings, with no significant dif-
ferences between the two (t-test, p=0.37). A his-
togram with judges’ score distribution can be seen
in Figure 3.

The qualitative results were analyzed and cate-
gorized in Table 5 and are discussed in the next
subsection.

5.5 Discussion

Compared to the previous study, the fixing of
grammatical errors allowed us to better determine
the quality of the content of questions. While the
evaluators did comment on the grammar of the
questions and suggested corrections a total of 37
times, the quality of the content was able to be

evaluated.
On the positive side, 77 questions were praised

as being clear and easy to understand (see Table 5).
We believe this is due to a combination of the two
changes we made in response to the first study–
improving the syntax and orienting the questions
towards more specific answers.

Additionally, one teacher commented that 10
questions had particularly good properties. Two
examples are: “What has a deoxyribose and oc-
curs at the mitochondria? (DNA)” and “What in-
cludes carbon, is a part of organic molecule, and
includes oxygen? (CHNOPS).” The updated algo-
rithm ensured that the chosen properties were less
vague and also not too specific.

In some cases, the evaluators had an explicit
positive response to questions’ logically grouping
properties within questions. One teacher specifi-
cally pointed out that certain questions contained
valuable properties which guide the students to the
correct answer, as in: “What contrasts with plant
cell and has an organelle called rough ER? (ani-
mal cell)”. This provides positive support for the
goal of this style of generating questions by in-
clude multiple pieces of information from the on-
tology.

The descriptive vocabulary of 8 questions was
also pointed out by one evaluator, such as “What
includes glucose, includes deoxyribose, and is a
type of sugar? (monosaccharide).” Since we uti-
lize a human-created ontology to generate ques-
tions, the nodes and relationships are often de-
scriptive. Our generation method leverages this to
create questions. Given an ontology with descrip-
tive, precisely-worded relationships and nodes,
questions generate via our method will reflect the
diverse vocabulary.

On the negative side, one teacher was particu-
larly skeptical of the ability of this method of ques-
tions to prepare students for standardized testing.
She pointed out that this factual question style did
not challenge students to think critically. While
this is true, this is not the main focus of this work.
We aim to over-generate simple practice questions
to ensure students have adequate materials to prac-
tice and study with, before they have mastered a
concept.

Two teachers specifically mentioned that the
style of questions were repetitive. The lack of
diversity of questions is something which can be
addressed in future work. However, these stud-
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Qualitative Feedback Evaluator 1 Evaluator 2 Evaluator 3 Total
Clear and easy to understand 13 64 – 77
Simple to answer 20 – – 20
Poor wording – 3 16 19
Does not prepare for standardized test – – 19 19
Too many “What“ questions 17 – – 17
Vague/Broad – 2 15 17
Confusing/Poor properties chosen 1 4 10 15
Too many options in question 9 1 1 11
Good chosen properties 10 – – 10
Small rewording suggestion – 8 2 10
Ontology flaw pointed out – 5 4 9
More precise rewording suggestion – 3 6 9
Descriptive vocab 8 – – 8
Detailed question 7 – – 7
“Trivia” question – – 6 6
Simple vocab 4 – – 4
Too specific – – 4 4
Not a critical thinking question – – 4 4
Visual diagram needed – – 4 4
Good intermediate steps to guide to correct answer 4 – – 4
Alternate phrasing for ontology node – 2 1 3
Academic language 2 – – 2
Redundant concepts chosen 2 – – 2
Poor format of multiple choice – – 2 2
Too many similar questions 1 – – 1
OK questions 1 – – 1
Confusing property represented in the ontology – 1 – 1
Should be a higher Bloom’s Taxonomy question – – 1 1

Table 5: Qualitative feedback from evaluators, categorized by type of comment.

ies show promise for using an ontology to inform
factual question generation, and future work can
extend this method to other question types.

Two of the teachers also pointed out parts of the
generated questions that were scientifically incor-
rect. Examining these questions shows that the on-
tology contains incorrect information. This points
to the necessity of validating and updating created
ontologies. Our method, while generalizable to
other ontologies, assumes the correctness of the
information represented. Future work can exam-
ine verifying ontologies, via methods such as dia-
logue, parsing educational materials, or direct val-
idation from experts.

In nine of the comments, the wording of ques-
tions was stated as being imprecise. For instance,
solid is linked to (CharacteristicOf, ”Solvent”). It
was pointed out that while most solvents are solid,
some can be liquids or gases. This underscores the

finding of the first study that errors in the ontology
can lead to errors in the questions.

It also seems that the selection of nodes to form
questions can be improved. Certain questions
were pointed out to have poor groupings of proper-
ties. For instance, “What is produced by an ovary
and via fertilization creates an embryo? (egg)”was
thought not to be a good question, perhaps because
to know either portions of the question one must
know what an egg is.

6 Conclusion

We presented a novel way of generating complex
multiple choice questions and distractors from an
educational ontology. We showed significant im-
provement when the ontology was used to gen-
erate distractors compared to an embedding ap-
proach. Insights gained from evaluation indicate
a necessity of ontology augmentation and a more
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advanced reasoning model.
We also showed in a subsequent study that ques-

tion content, when adapted to account for poten-
tially vague questions, has promising results. Fu-
ture work may benefit from incorporating more
knowledge rich approaches such as Berant et al.’s
(2014) work on deep analysis of biology texts.

Our algorithm for choosing properties to in-
clude in questions and generating distractors is
generalizable to other ontologies, although our
method assumes a near-complete ontology, as dis-
tractors are generated via assumptions that the
absence of a link implies the absence of a rela-
tionship. Changing the text-generating rules may
be necessary to generalize our approach as these
are tied to the specific relationships of our on-
tology. Our ontology contains many naturally-
worded relationships, which aided this process.
Other text generation methods can be explored in
future work, as well, to rectify this.

Insights gained from the teachers’ qualitative
feedback are applicable to other question genera-
tion methods as well. Future work should focus on
generating increasingly more complex questions
which focus on higher levels of Bloom’s taxon-
omy. External knowledge not represented in the
ontology can be used to both increase the diffi-
culty of the questions as well as improve simpler
methods of question generation. Finally, verify-
ing the completeness and accuracy of ontologies
as well as wording questions diversely and pre-
cisely should be a focus going forward.
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Abstract

The paper presents first results of an on-
going project on text simplification focus-
ing on linguistic metaphors. Based on
an analysis of a parallel corpus of news
text professionally simplified for different
grade levels, we identify six types of sim-
plification choices falling into two broad
categories: preserving metaphors or drop-
ping them. An annotation study on al-
most 300 source sentences with metaphors
(grade level 12) and their simplified coun-
terparts (grade 4) is conducted. The re-
sults show that most metaphors are pre-
served and when they are dropped, the se-
mantic content tends to be preserved rather
than dropped, however, it is reworded
without metaphorical language. In gen-
eral, some of the expected tendencies in
complexity reduction, measured with psy-
cholinguistic variables linked to metaphor
comprehension, are observed, suggesting
good prospect for machine learning-based
metaphor simplification.

1 Motivation and problem statement

Text simplification is the process of meaning pre-
serving reduction of discourse complexity whose
purpose is to adapt text for specific populations of
readers, for instance, children or language learn-
ers. The idea has been around since “My Weekly
Reader” in the 1920s and Palmer’s work (1932)
and over the past 20 years has attracted attention of
the computational linguistics community. While
broadly interpreted “lexical simplification” – in
general understood as substitution of “difficult”
words with “simpler” ones – is a common compo-
nent of automated simplification systems (see, for
instance, (Siddharthan, 2014)), studies of text sim-

plification dedicated to specific lexis-related se-
mantic phenomena are lacking. One class of such
understudied phenomena are those related to fig-
urative language; a surprising gap in the simpli-
fication research considering that metaphors have
been shown to cause difficulties in text compre-
hension and that developing metaphor interpreta-
tion competence is a complex developmental pro-
cess (for an overview, see, for instance, (Winner,
1997)). Since automated systems are trained on
corpora of simplified text, understanding patterns
of metaphor simplification based on corpus data
could help improve simplification models.

In this paper we present a study that is our first
step in this direction. We analyze linguis-
tic metaphors in a corpus of news texts pro-
fessionally simplified for different grade levels.
While editors’ guidelines instructed to avoid vivid
metaphors, such as “paint into a corner”, our goal
was to find out whether, and if so, how, linguis-
tic metaphors in general are simplified by pro-
fessional editors. Since ultimately we want to
build automated metaphor simplification models,
the purpose of this study is to investigate whether
metaphors in a corpus of professionally simpli-
fied text, that is, potential training data, are sim-
plified in systematic ways. Specifically, we were
interested in two questions: 1) What types of
discourse modifications do editors perform when
simplifying metaphorical language? (in other
words, whether a well-defined set of classes for
the metaphor simplification task can be specified).
2) Do professional editors simplify metaphor phe-
nomena in systematic ways? (if not, training sim-
plification models using machine learning based
on corpus data may not be promising).

The paper’s structure follows the data-driven
methodology adopted for this study: We first de-
fine the criteria used to identify the phenomenon
in question: linguistic metaphor. Next, we present
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the setup of an annotation study and a typology of
simplification choices derived based on an analy-
sis of a corpus of simplified news text. Finally, we
present results of an exploratory analysis of the an-
notated data.

2 Data

2.1 The source corpus

Our data comes from Newsela,1 a company pro-
ducing professionally simplified news articles in
English and Spanish intended for classroom use.
Each Newsela article is available at 5 reading lev-
els spanning grades 2 through 12 of the US school
system (elementary school (grades K-4), middle
school (grades 5-8), and high school (grades 9-
12)). Two levels were used for this first study:
the source articles (we will refer to this version
as V0) and the most simplified version (V4), since
between these versions we expect to see most dif-
ferences.2

Documents were sampled from a subset of
Newsela compiled by Xu et al. This is a parallel
corpus of 1130 documents from the English por-
tion of Newsela where each article has been auto-
matically aligned sentence-wise with the four sim-
plified versions using Jaccard similarity; for de-
tails on the aligned corpus see (Xu et al., 2015).

2.2 Sample selection

The sample of V0 (source) and V4 (simplified)
sentences was drawn from the Xu et al.’s corpus as
follows: As shown in Figure 1, different Newsela
versions span multiple unevenly distributed grade
levels. In order to avoid effects due to differences
between grade levels within versions, from V0
only articles at grade level 12 were used and from
V4 only articles at grade level 4 (the largest sub-
sets). One sentence from each V0 document was
selected with its corresponding V4 sentence(s);
only sentences that were not identical between V0
and V4 were included in the sample. Sampling
was randomized across all documents to avoid ef-
fects due to specific editors’ decisions. This re-
sulted in 582 V0 sentences. Automatic sentence
alignments between the versions were manually
checked and corrected where necessary; for in-
stance, unaligned V4 sentences were linked appro-
priately, as in the following example (“i” marks

1https://newsela.com
2Analysis of metaphor simplification across other levels

is planned as further work.
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Figure 1: Distribution of grade levels by version
in the (Xu et al., 2015) corpus3

the inserted segment):

V0 Parts of the nation experienced severe but not unprece-
dented drought during the study, the researchers noted,
which might have reduced the amount of rain sustain-
ing their wetlands and ponds

V4-i Parts of the nation had very little snow or rain while the
study was going on.

V4 That might have meant that there was less water in the
wetlands and ponds where amphibians live.

The resulting corpus comprises 582 V0 sen-
tences and their V4 counterparts correctly aligned;
267 alignments have been manually corrected.

2.3 Metaphor identification

We identify linguistic metaphors using Steen
et al.’s (2010) refined Metaphor Identification
Procedure known as MIPVU.4 MIPVU pro-
vides guidelines for annotation of potentially
metaphorical words, where “words” are linguis-
tic units which receive a separate part-of-speech
tag. Phrasal verbs, compounds, and proper names
(multiword expressions) can be treated as lexical
units as exceptions. For the simplification study
we focus on the most common classes of content
words: nouns and verbs.

In MIPVU, a lexical unit is considered to be
metaphorically used when its meaning in a given
context can be contrasted as well as understood
in comparison with a more basic meaning that it
can have in other contexts. MIPVU strives not
to determine the most basic meaning of a word,

3Both plots were created using R’s (R Core Team, 2017)
ggplot2 package (Wickham, 2009)

4“VU” stands for Vrije Universiteit Amsterdam where the
authors of the procedure are based.
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Simplification Source sentence Simplified sentence
Pr

es
er

ve
d

same
metaphor

. . . like the magnetized nails, unable to resist a
powerful magnetic force in the galactic bulge . . .

Like the magnetized nails, they would have been un-
able to resist a powerful magnetic force in the galactic
bulge . . .

other
metaphor

Obama also has grappled publicly with recon-
ciling King’s teachings on nonviolence . . .

Obama has wrestled publicly with living up to King’s
teachings on nonviolence . . .

phrase with
metaphor(s)

But now she’s struggling to obtain documents
required by the new law.

But now she’s having a hard time getting the papers
that the new law requires.

D
ro

pp
ed

content
dropped

Our goal is to provide Internet service to people
in areas that can’t afford to throw down fiber
lines . . .

Our goal is to provide Internet service to people in ar-
eas that can’t afford Ø usual Internet lines . . .

changed to
non-metaphor

In exchange for a 4 percent piece of their com-
panies, entrepreneurs in the program will gain
access . . .

. . . people in the program will give up a 4 percent share
of their companies. In exchange they will get . . .

phrase without
metaphor(s)

Utah officials say that since 2008, highway
crashes have dropped annually on stretches of
rural Interstate . . .

They say there have been fewer accidents where the
speed limit was raised.

Table 1: Metaphor simplification types.

but rather a meaning that is more basic that the one
in the given context. A more basic sense is defined
as a “more concrete, specific, and human-oriented
sense in the contemporary language use” (Steen
et al., 2010, p. 35). A corpus-based dictionary,
here: the Macmillan English Dictionary for Ad-
vanced Learners,5 is consulted for the basic and
the contextual senses of lexical units. Two senses
of one lexical unit are considered significantly dis-
tinct if they are listed under separate numbers in
the dictionary. MIPVU defines three metaphor
types: indirect (example (1)), direct (2) and im-
plicit (3):

Indirect metaphors occur when contrast as well
as comparison exists between the contextual and a
more basic meaning:

(1) Political cartoons engage and enrage more than arti-
cles do because they are visual and transcend language
barriers.

Direct metaphors display no contrast between the
contextual and a more basic meaning. In this case
contextual meaning is the basic meaning and com-
parison is expressed explicitly, for instance, by the
so-called metaphor flags (words such as like, as,
so-called, -shaped):

(2) Like the magnetized nails, they would have been un-
able to resist a powerful magnetic force in the galactic
bulge . . .

Implicit metaphors represent words pointing back
to recoverable metaphorical material:

(3) . . . unable to resist a powerful magnetic force in the
galactic bulge around when it was forming stars
around 8-13 billion years ago.

5http://www.macmillandictionary.com

Measure Count
No. of sentences containing metaphors 272
No. of metaphor occurrences 416

Verbs 267
Nouns 149

Mean No. of metaphors per sentence 1.53
No. of unique lexemes 314

Table 2: Quantitative information on the anno-
tated metaphor set

In the present study we focus on indirect
metaphors (the prevalent type; see (Steen et al.,
2010)) and identify metaphorical uses of all nouns
and verbs in the sampled original sentences (V0).

Metaphor annotation proceeded as follows:
Identification of candidate metaphor occurrences
was carried out by one of the authors. All unclear
cases were marked and discussed by both authors
until agreement was reached. If agreement could
not be reached, the case was excluded from further
analysis. The final set of metaphorical word uses
comprises only clear cases as per MIPVU.6

Quantitative information on the annotated
metaphors is summarized in Table 2.

6As one of the reviewers pointed out, MIPVU is not an
easy protocol to apply. It it precisely for this reason that,
since the focus of the present study was not on the metaphor
identification task, but on simplification types, we opted to
select only clear cases of metaphors in V0, as per agreement
on metaphor status by both authors. Because this agreement
was reached though a discussion in all cases, inter-annotator
agreement on metaphor annotation was not calculated. We
are planning to conduct a separate metaphor identification
study as part of further work.
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3 Simplification types

Identification and annotation of simplification
types proceeded as follows: Both authors ini-
tially analyzed and discussed smaller subsets of
the metaphor-annotated corpus (20-30 instances).
Once the set of types stabilized to the final set (be-
low) one author annotated all the remaining in-
stances and the other author 99 instances in total
(1 erroneous instance had to be excluded). Both
annotators are non-native, but fluent, speakers of
English. Inter-annotator agreement on the com-
mon subset of 99 instances was 0.93 proportion
agreement (kappa=0.87) and was deemed reliable.
The 7 disagreement cases in the common subset
were discussed and resolved for the analysis.7

A typology of editors’ simplification choices
was derived in a data-driven fashion starting off of
two basic options: a metaphor can be preserved in
the simplified version or dropped. Corpus anal-
ysis revealed three subtypes of metaphor-related
discourse modifications within each of these high-
level categories: A metaphorically used word can
be preserved unchanged (same metaphor), re-
placed with another single word used metaphori-
cally (other metaphor), or reworded using multi-
word phrasing containing metaphor(s) (phrase
with metaphor(s)). It can be dropped by replac-
ing it with a single different word in a more basic
sense (changed to non-metaphor), with multi-
word phrasing not containing metaphors (phrase
without metaphor(s)), or the meaning portion ex-
pressed by the metaphor can be omitted altogether
(content dropped). Table 1 provides a summary
of the simplification types with examples.

4 Corpus analysis

Analysis of the annotated simplification types is
split into two parts: We start with a high-level
overview of the distribution of the simplifica-
tion types. Then, we perform an exploratory
analysis to investigate how four psycholinguistic
variables – age of acquisition (AoA), familiar-
ity, concreteness, and imageability –, previously
linked to metaphor comprehension (see, for in-
stance, (Paivio et al., 1968; Paivio and Walsh,
1993; Gibbs, 2006; Ureña and Faber, 2010)) and
also used in simplification models (e.g. (Cross-

7Further annotation will be conducted and inter-annotator
agreement recalculated for categories other than the prevalent
Preserved.same in order to reduce class imbalance and to add
instances of the smaller classes.

Simplification type Count
Preserved 288

same metaphor 240
other metaphor 34
phrase with metaphor(s) 14

Dropped 128
changed to non-metaphor 81
content dropped 37
phrase without metaphor 10

Table 3: Distribution of simplification types

ley et al., 2007; Jauhar and Specia, 2012; Cross-
ley et al., 2012; Vajjala and Meurers, 2014)), be-
have across simplification categories. The scores
have been extracted from the MRC Psycholin-
guistic Database (Wilson, 1988) and the Bristol
Norms (Kuperman et al., 2012).

Distribution of simplification types is shown
in Table 3. Most metaphors, 69%, are preserved
in V4, the majority with the same wording. Where
metaphorical words are omitted, they tend to be
replaced with their literal counterparts. Reword-
ing consisting of longer phrases is dispreferred.

Distributions of psycholinguistic variables are
shown in Figure 2. Since for the automated clas-
sification task the class imbalance (see Table 3)
will need to be countered, we reduce the class
imbalance already for distributions visualization
by randomly downsampling the largest class (Pre-
served.same) to 80 instances such that the two
basic classes, Preserved and Dropped, are of the
same size; Preserved.same mean was estimated by
randomly resampling the 80 instances 20 times.
Dependent variables are ordered by complexity
of intervention into the source semantics that the
manipulation they denote involves; for the Pre-
served class: preserving same meaning at one end
vs. paraphrasing by adding lexical material at the
other and for the Dropped class: merely replacing
the metaphorical lexeme with a non-metaphorical
one vs. omitting content altogether.

Within the Preserved type, low-AoA metaphors
tend to be preserved and high-AoA are rephrased.
In the Dropped class, low-AoA metaphors are
rephrased and high are dropped; also on aver-
age, as expected, lower AoA metaphors are pre-
served and higher dropped. Explicable pattern
of Imageability can be observed: within both ba-
sic types, the higher the score, the more radical
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Figure 2: Distribution of psycholinguistic variables by simplification type (legend labels shortened for
space reasons; the red dots indicate Preserved and Dropped group means (20 resamplings of P.same))

the modification (rephrasing and dropping con-
tent, respectively); aggregated means display the
same pattern. This is consistent with the guideline
on avoiding vivid metaphors. The pattern of Con-
creteness measure is unclear. Familiarity scores
are the least discriminating.

5 Discussion and further work

Overall, some of the psycholinguistic variables
do exhibit patterns confirming systematicity of
professional simplification and good prospect for
training machine learning models based on pro-
fessionally simplified data; Xu et al. (2015) argue
likewise. AoA and Imageability exhibit a consis-
tent explicable pattern within and between the two
basic types suggesting they can be used as predic-
tors. This is not the case with the Familiarity mea-
sure. Interestingly, in the Preserved class, lexical
elaboration (Preserved.other) is performed within
narrow ranges of 3 of the variables, which could
be exploited. The high prevalence of the Preserved
class is surprising. On the one hand, it provides a
safe default for a basic automated system, on the
other hand, sets a high majority-based baseline.

Future work will involve investigating further
linguistically and cognitively-motivated variables
for metaphor simplification. Likewise, interac-
tions between psycholinguistic variables and their

relation to syntactic complexity variables require
further study. We also plan to annotate further
data, also at other grade levels, and train models
(2-way classification, Preserve vs. Drop, in the
first instance). Finally, the categorical approach
to metaphor simplification might be entirely re-
considered in view of recent studies showing ev-
idence that the literal-metaphorical distinction is
a graded (scalar) phenomenon ((Cameron et al.,
2009; Müller and Tag, 2010; Dunn, 2014), among
others). Simplification might be thus seen as con-
tinuous “reduction of metaphoricity”.8
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Abstract

Knowledge of the association between as-
sessment questions and the skills required
to solve them is necessary for analysis of
student learning. This association, often
represented as a Q-matrix, is either hand-
labeled by domain experts or learned as
latent variables given a large student re-
sponse data set. As a means of automat-
ing the match to formal standards, this pa-
per uses neural text classification meth-
ods, leveraging the language in the stan-
dards documents to identify online text for
a proxy training task. Experiments involve
identifying the topic and crosscutting con-
cepts of middle school science questions
leveraging multi-task training. Results
show that it is possible to automatically
build a Q-matrix without student response
data and using a modest number of hand-
labeled questions.

1 Introduction

In both traditional and online contexts, fine grain
diagnostic information can play a crucial role in
employing formative assessment to improve stu-
dent learning outcomes as observed by National
Research Council (2012), and for creating scal-
able systems that provide individualized instruc-
tion (Barnes, 2005). A key requirement for this
inference is association of each of the assessment
tasks, which we will refer to as questions, with at-
tributes, which are the skills (knowledge, concepts
and/or strategies) needed to solve the tasks. The
association of skills to questions is represented as
a Q-matrix (Tatsuoka, 1983).

Hand crafted Q-matrices are created by domain
experts who label each assessment task with the
required skill(s). While this provides an inter-

pretable matrix for educators, in the sense that the
skills are associated with a documented standard
or cognitive model, the question annotation pro-
cess is time consuming and not scalable. When
standards change, the old question annotation is
no longer useful. The cost of question annotation
is a key issue with the domain models in intelli-
gent tutoring systems (ITS), which are created by
experts for each subject area and grade level, lim-
iting reusability (Burns et al., 2014).

As an alternative, there has been work on au-
tomated discovery of an association of (latent)
skills to questions using student response data
(Lan et al., 2014; Barnes, 2005; Desmarais, 2010).
While these unsupervised automated methods can
provide a good fit for the student response data,
they are limited by the requirement of a large data
set of student scores on a given test, which is
not available for individual classroom assessments
and hard to obtain for standardized testing. In ad-
dition, the latent skills offer limited interpretabil-
ity for teachers. The results cannot easily be used
to identify practice questions to help a student im-
prove in areas of weakness.

It was observed in a report by National Research
Council (2001) that fine grained diagnostic models
are not widely used due to scalability, reusability
and/or interpretability issues, which is still a prob-
lem today as stated by National Research Council
(2012).

This work aims to develop interpretable and au-
tomatic methods for mapping science assessment
tasks to underlying skills by using text classifica-
tion methods that leverage the language in stan-
dards documents and teacher training materials.
The experiments here use the Framework for K-
12 Science education laid out in the framework by
National Research Council (2012), but the method
is designed to work for any well documented stan-
dard and the questions used in this study are not
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explicitly designed for that standard.
Specifically, we look at the core disciplinary

ideas (topics) and crosscutting concepts described
in the standard as the attributes needed to respond
to assessment tasks. A multi-task convolutional
neural network is designed to jointly label topics
and concepts. The greater challenge is in recog-
nizing concepts, for which there is no annotated
data available. A key contribution is in the use of
standards documentation to automate training an-
notation and obtain online text for use as a proxy
task in an intermediate training stage.

The rest of the paper is organized as follows.
Sec. 2 provides a detailed task description, which
is followed in Sec. 3 by an overview of prior text
classification work that we build on. Experiment
details are provided in Sec. 4 with results in Sec.
5. Related work leveraging question text in latent
skill learning is discussed in Sec. 6. Findings and
open questions are summarized in Sec. 7.

2 Task

From the perspective of formal standards, student
learning is measured along specified content areas
and concepts. The goal of both classroom teach-
ing and online instruction systems is to ultimately
increase proficiency in these areas. This work con-
siders the Framework for K-12 science education
presented by National Research Council (2012),
and the associated Next Generation Science Stan-
dard (NGSS Lead States, 2013). The framework
measures student learning along three dimensions:
i) disciplinary core areas, ii) crosscutting concepts,
and iii) science and engineering practices. For this
work, we aim to identify the core content areas
(topics) and crosscutting concepts associated with
a question. The dimension of science and engi-
neering practices is reflected more in the text of
student response, hence we do not consider it here.

NGSS provides content and learning progres-
sion descriptions for each dimension. The stan-
dard specifies a hierarchy of disciplinary core
ideas from physical sciences (PS), life sciences
(LS), earth and space sciences (ESS), and engi-
neering, technology and application of sciences
(ETS).1 Our study operates at the middle level of
the hierarchy, with 12 topics, focusing on the mid-
dle school level. Seven crosscutting concepts are

1https://www.nextgenscience.org/
get-to-know, Appendices E and J

described.2 Examples of descriptions in the stan-
dard are given below.

Topic: ESS3 Earth and human activity - Human
activities have altered the biosphere, sometimes
damaging it, although changes to ...

Concept: Energy and Matter Tracking energy
and matter flows, into, out of, and within systems
helps one understand their systems behavior.

The specific task addressed in this work is:
given a question, identify the topic and concepts
associated with that question. For example, the
question:

What happens to the sun’s energy in the
greenhouse effect?

would be be associated with the topic ESS3 and
the concept “Energy and Matter.” Topic labeling
corresponds to a multi-class decision (which one
of 12 topics), and concept labeling involves 7 bi-
nary decisions. It is possible for a question to in-
volve none of the concepts in the inventory.

More examples of topic and concept descrip-
tions with sample questions are provided in sup-
plementary materials.

3 Text Classification

Text classification is an established problem, with
many different techniques available, including
naive Bayes, support vector classifiers, decision
trees and k nearest neighbors, which are summa-
rized in (Ikonomakis et al., 2005). For longer doc-
uments, a bag-of-words approach is often used,
but sequence models can be more useful for clas-
sifying sentences or short documents. A variety of
neural techniques have been proposed, including
(Wiener et al., 1995; Ruiz and Srinivasan, 1998;
Nam et al., 2014; Lai et al., 2015). In our study, we
build on the convolutional neural network (CNN)
presented in (Kim, 2014), which achieves high ac-
curacy for short texts. We briefly describe the
model below.

The model takes a sequence of pre-trained word
embeddings as input: each word xi is represented
by a k dimensional embedding vector, xi ∈ Rk. A
sequence of n word embeddings are concatenated
to form a n×k matrix that is input to the network.

The concatenated sequence is convolved with
filters that span the entire embedding and h words.

2https://www.nextgenscience.org/
get-to-know, Appendix G
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A h× k filter wl is convolved with a concatenated
sequence of h words, generating an n−h+1 length
output sequence, where the ith element of the se-
quence is given by

ci(l) = f(wl ◦ xi:i+h−1 + bl). (1)

where ◦ indicates a Hadamard product, and f is
a non-linear or piece-wise linear function such as
a rectified linear unit (ReLU). Using max-pooling
over time results in one feature produced by one
filter:

ĉ(l) = max{c1(l), c2(l), ..., cn−h+1(l)} (2)

The output from max-pooling for each filter is
concatenated into a feature set, resulting in an m
dimensional feature vector for m filters.

z = [ĉ(1), ĉ(2), ..., ĉ(m)] (3)

The output used to predict the label is given by

y = g(Y z + b) (4)

where g is a non-linear function, e.g. softmax for
multi-class problems.

4 Methods

This section first describes the different data sets
used in training and testing, and then the modifi-
cations to the above CNN for identifying question
attributes.

4.1 Data
For our work we consider three sets of resources:
science questions, Wikipedia science and math-
ematics articles, and standard related resources.
Middle school science questions are the main
training and testing data. Wikipedia articles pro-
vide a supplemental source of data for pre-training
and for a proxy task for concepts. Standard re-
lated resources include descriptions of disciplinary
core ideas and crosscutting concepts laid out in
the standard, and question templates developed to
aid teachers in assessing crosscutting concept pro-
ficiency.

The main data consists of 14,985 middle school
science questions (Kembhavi et al., 2017), with
questions divided into 629 generic science mod-
ules. This data represents a generic set of middle
school science questions, and is not aligned with
the dimensions of NGSS. For our study, the mod-
ules were hand-labeled as belonging to one of the

12 topics using NGSS descriptions, and topic la-
bels for questions were determined based on the
module label. All questions have module labels.
The test data consists of 750 questions (5% of
the total data); the rest is for training and valida-
tion. Only the test data is hand-labeled with cross-
cutting concepts.

In order to obtain concept labels for the train-
ing data, we used question templates that have
been developed for each of the seven concepts,3

which were designed to aid teachers in implement-
ing these concepts into their own assessments. For
example, one of the templates for the Patterns
concept is:

What patterns do you observe in the
data presented above in the chart?

We pick keywords from each of the templates
(e.g. “patterns”, “presented”, “observe”, “data”
and “chart” in the above question), and search for
questions in the training data that contain at least
two keywords associated with a concept. This re-
sults in labels for 890 questions, approximately
6% of the training set, of which 44 questions are
assigned multiple concept labels. Keyword match-
ing returned few matches since the questions have
not been developed to test for crosscutting con-
cepts specifically. Twenty percent of the results
from the keyword search were randomly sampled
and hand checked to ensure they matched the as-
signed concepts, and found to be correct.

The distribution of topics and counts of con-
cepts in the question training and test sets are
shown in tables 1 and 2, respectively. Both ta-
bles indicate that the class distributions are not bal-
anced. This is expected, since the topics and con-
cepts are designed for all grades (K-12), and some
skills are more applicable to high school science
curriculum.

Since only 6% of the training data has con-
cept labels, we use external data to create an ad-
ditional proxy training task for concepts. Using
phrases from the concept descriptions from NGSS
and the STEM Teaching Tools templates, we hand
selected 122 Wikipedia science articles associated
with the seven concepts, with 8 of these articles
spanning multiple concepts. Sample article titles
include:

3STEM teaching tools 2014-2017: http:
//stemteachingtools.org/
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Topic Train Test
Matter and its interactions 12.0% 10.7%
From molecules to organisms 30.2% 31.2%
Engineering design 2.0% 2.4%
Heredity 1.1% 0.9%
Earth’s place in the universe 13.7% 13.1%
Motion and stability 5.0% 4.3%
Earth and human activity 7.1% 6.7%
Waves and energy transfer 5.6% 5.6%
Earths systems 17.0% 18.6%
Energy 2.4% 2.0%
Ecosystems 3.1% 3.6%
Evolution 0.8% 0.9%

Table 1: Topic distribution in train and test sets

Concept Train Test
Stability & change (S&C) 46 5
Scale, proportion & quantity
(SP&Q)

150 77

Patterns (P) 166 93
Structure & function (S&F) 24 9
Systems & system models (Sys) 88 27
Cause & effect (C&E) 97 41
Energy & matter (E&M) 365 116

Table 2: Concept counts in train and test sets

Patterns: Patterns in nature, Taxonomy, Correla-
tion and dependence

System and system models: System, Systems
modeling, System design

The articles are split into smaller “documents”
based on linebreaks, yielding a set of 16,892 docu-
ments with concept labels. These documents cor-
respond to paragraphs, section heads, related links
and references, so they are not a good match to the
style of a science question but they provide train-
ing examples of important keywords and phrases.

In addition to these sources, we use a pool of
40,000 general Wikipedia science and mathemat-
ics articles for pre-training word embeddings.

In summary, four data sources are used in train-
ing: questions labeled with both topic and con-
cept DTC , questions labeled with topic DT (a su-
perset of DTC), concept-labeled Wikipedia para-
graphs DC , and unlabeled Wikipedia articles DW ,
as shown in table 3.

Data Number of Samples
DTC 890 questions
DT 14,235 questions
DC 16,892 documents
DW 40,000 articles
Test set 750 questions with topic and

concept labels

Table 3: Data

4.2 Multi-task Topic-Concept Classification

Our use of the CNN for text classification involves
multiple outputs:

yt = gt(Ytz + bt) (5)

yc = gc(Ycz + bc) (6)

where z is the output of the max-pooling layer,
Yt ∈ Rm×nt , bt ∈ Rnt , Yc ∈ Rm×nc , and bc ∈
Rnc . For topics, gt is a softmax layer, giving the
per-class probabilities yti, from which the topic is
chosen according to argmaxi(yti). For detect-
ing multi-label concepts, gc is a sigmoid, which
outputs the concept probability without assuming
that concepts are mutually exclusive. The labels
are decided by thresholding the sigmoid output,
ci = {1yci(k)>thr}nc for k = 1, . . . , nc. As noted
earlier, there are 12 topics (nt = 12) and 7 con-
cepts (nc = 7). The CNN for multi-task training
is shown in figure 1.

The training loss function is multi-class cross-
entropy for the topic output and binary cross-
entropy for each of the concept outputs. Multi-
task training uses a sum of topic and concept loss.
10% of the training data was used for validation at
a time, using ten fold cross validation. This was
used to tune drop out, set number of filters and fil-
ter sizes. The entire labeled data set was then used
for training.

Training was done with both pre-trained and
randomly initialized word embeddings. We used
128 dimensional word embeddings, and a vocab-
ulary size of 75, 000. The filter lengths used were
[1, 3, 4, 5], with 64 filters for each size. Drop out
of 50% was used for regularization. For concept
classification, a threshold of 0.2 was set for posi-
tive label detection. This was empirically chosen
on the training data.

Experiments are conducted to compare: i) ran-
dom initialization vs. pre-training, ii) independent
vs. multi-task training, and iii) different methods
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Figure 1: CNN for Multi-task Classification

of using the labeled training sets. Pre-training is
based on DW for both multi-task and independent
classifiers.

For independent classifier training, DT is used
for topics, and DTC is used for concepts. In ad-
dition, we explored a two-stage approach to train-
ing the concept model, using DC in a first pass of
training, followed by DTC for fine tuning (C →
TC).

For multi-task training, three alternatives are ex-
plored:

• Stage 1: run single task training (with DT ).
Stage 2: run multi-task training with DTC .
Do not use DC . (T → TC)

• Stage 1: alternate between batches of single
task training (with DT and DC), starting with
DT . Stage 2: run multi-task training with
DTC . (T/C → TC)

• Alternate between batches of the different la-
beled sets, starting with DT and ending with
DTC . (T/C/TC)

All multi-task models are pre-trained using DW .

5 Results and Discussion

Results for the different training schemes are
shown in table 4. The first four rows correspond to
systems with topic and concept classifiers trained
separately, and the last three involve multi-task
training. The first row indicates baseline perfor-
mance using n-gram features in an SVM. Com-
paring the next two rows in the table shows that

pre-training word embeddings with the unlabeled
Wikipedia articles benefits both topic and con-
cept classifiers, so it was used in all subsequent
experiments with multi-task training. The fourth
row uses the two-stage concept training, which
slightly hurts performance. All the different op-
tions for multi-task training (rows 5-7) improve
over learning independent classifiers (row 3 for
the case with pre-training). Unlike the indepen-
dent training case, the proxy concepts represented
by the Wikipedia article paragraphs benefit both
topic and concept labeling when used in multi-task
training.

The precision, recall and F1 scores for crosscut-
ting concepts are shown in table 5. As expected,
the best performance is observed for the class that
dominates the training data. The topic confusion
matrix also shows that topics which are well repre-
sented in the training data tend to be more reliably
identified.

In order to ensure that the independent CNN
classifiers provided a strong baseline, we also ran
experiments with other approaches using the same
training data. Specifically, we implemented an
SVM with n-gram features (n = 1, 2, 3) and a
k-nearest neighbor classifier using a vector space
representation of questions based on latent seman-
tic analysis (LSA). Two independent SVMs were
trained, one using DT for topic classification, and
one using DTC for concept classification. Perfor-
mance on topic classification was slightly worse
than the CNN result, but results for concept recog-
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Training Initialize Topic Concept
SVM - 73.4 14.2
Separate T, TC Random 81.3 34.7
Separate T, TC Pre-train 84.1 38.2
C → TC Pre-train - 35.8
T → TC Pre-train 84.5 41.2
T/C/TC Pre-train 84.5 44.4
T/C → TC Pre-train 86.2 57.7

Table 4: Classifier Performance: Topic (accuracy)
and concept (macro F1 score)

nition with the best macro F1 being 14.2 with an
SVM. The LSA-based model gave much worse re-
sults when trained using DTC and tested for con-
cept accuracy; presumably topic factors dominate
this unsupervised representation.

An additional factor that impacts performance
for concept labeling is ignoring the data in figures
accompanying the questions. Generally, for cross-
cutting concepts, some information is presented
graphically, which we are not using in the current
work. Hand annotating 200 questions from the test
set, we find that roughly a quarter of the questions
have associated images. Not all crosscutting con-
cepts are impacted by the presence of an accom-
panying image. The categories that do worse are
scale proportion and quantity, where questions are
accompanied by graphs, energy and matter flows,
with questions related to water, carbon and nitro-
gen cycles, and system and system models, which
have associated block diagrams. It would be pos-
sible to achieve higher accuracy by combining in-
formation from the text and features from associ-
ated figures, since using text alone is not always
enough to identify the correct concept. Consider
the following question: ”Which gas is represented
by letter F?” Without the accompanying figure
that depicts the carbon cycle, it is not possible to
identify the underlying concept of matter and en-
ergy flow.

6 Related Work

As noted earlier, automated discovery of latent
skills to question mapping provide a good fit to
student response data, but the skills are abstract
and cannot be easily used by teachers. In (Barnes,
2005; Lan et al., 2014), this problem is addressed
by hand-labeling questions with topics and associ-
ating the latent concepts learned the different top-
ics that are most frequently represented in the cor-

Concept F1
Score

Precision Recall

S&C 54.54 50.00 60.00
SP&Q 55.62 51.08 61.03
P 60.96 60.63 61.29
S&F 66.67 66.67 66.67
Sys 43.47 52.63 37.03
C&E 50.57 47.82 61.03
E&M 72.16 60.00 90.51

Table 5: Per-Concept Classification Performance

responding data. Interpretation of the latent fac-
tors is in terms of these topic combinations. This
requires hand labeling of training data. The re-
sults may generalize to other data, but this was not
evaluated. In related work, (Lan et al., 2013) uses
multi-objective optimization to learn both skill-
to-item and student-to-skill proficiency mappings,
as well finding a list of keywords associated with
each estimated skill. While both solutions add to
the interpretability of the model, the skills are not
aligned with formal standards or cognitive models.

Non-negative matrix factorization is used by
(Desmarais, 2010) to associate questions with
skills using student response data. The data sets
consist of 4 subject (mathematics, biology, world
history and French). The number of latent skills
are 4, the hypothesis is that matrix factorization
should separate student proficiency in the four
subjects. This work does not provide fine grained
proficiency within individual subjects. The model
achieves 72% accuracy on all four subjects, and
96% on only mathematics and French, which are
the most separable. Results on a set of trivia ques-
tions are also reported, where latent skill to topic
matching achieves an accuracy of 35% for 4 top-
ics.

7 Conclusion

In summary, this work provides a method for iden-
tifying skills required to solve specific science
questions based on the text of the question, where
skills associated with documented standards are
characterized with a relatively small amount of
manual annotation. We use state-of-the-art text
classification methods that are made more effec-
tive by: i) leveraging standards documentation to
harvest and automatically annotate training data,
and ii) applying multi-task learning to jointly clas-
sify both topics and concepts. The best case mod-
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els achieve 86% topic accuracy and 57.7 concept
F1 score. Compared to current data driven mod-
els that are unsupervised and do not provide an
explicit connection to standards, our approach is
interpretable. In addition, it does not require stu-
dent response data and can be used with any ques-
tion set. Compared to frameworks that require hu-
man experts to align questions with attributes, our
approach is scalable to large question sets. It en-
ables teachers to leverage a variety of assessment
materials and provide more individualized feed-
back to students. While the experiments described
here are based on NGSS documentation, the meth-
ods are general and can be used with any well-
documented standard or cognitive model.

The ability to automatically build a Q-matrix is
promising for student learning evaluation and sta-
tistical models for online systems, particularly in-
telligent tutoring systems. Aligning the Q-matrix
to elements of learning outcomes specified in stan-
dards gives the ability to automatically adapt exist-
ing material to new standards and curricula with-
out extensive input from domain experts, improv-
ing reusability of tutoring system material. It
can also provide new tools for educators analyz-
ing learning across larger populations. In partic-
ular, the concept annotation work can help edu-
cators study learning progression along crosscut-
ting concepts, which is largely undocumented at
this point as stated in the report by National Re-
search Council (2012). It can also provide a com-
plementary tool that may be useful for interpret-
ing unsupervised analyses based on large student
response data sets. For example, it may be in-
teresting to look for factors that are predictive of
question difficulty based on classifier predictions
or confidence of different skills.

Whether the level of accuracy is sufficient for
downstream tasks is an open question, since good-
ness of fit is generally evaluated using student
response data, which is not used in the current
work. However, there are multiple opportunities
for improvement, particularly for concept classi-
fication. For example, semantic similarity can be
leveraged in using question templates to select ar-
ticles associated with concepts, and the data could
be filtered to exclude sections that are not well
matched to questions. Semi-supervised training
could increase the number of actual questions used
in training. In addition, the use of information in
tables and figures represents an important direc-

tion for future work. Neural classifiers are well
suited to integrating features from different modal-
ities, and we expect that significant gains may be
possible with this approach.
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Abstract

We build a grammatical error correction
(GEC) system primarily based on the
state-of-the-art statistical machine transla-
tion (SMT) approach, using task-specific
features and tuning, and further enhance
it with the modeling power of neural net-
work joint models. The SMT-based sys-
tem is weak in generalizing beyond pat-
terns seen during training and lacks gran-
ularity below the word level. To address
this issue, we incorporate a character-level
SMT component targeting the misspelled
words that the original SMT-based sys-
tem fails to correct. Our final system
achieves 53.14% F0.5 score on the bench-
mark CoNLL-2014 test set, an improve-
ment of 3.62% F0.5 over the best previous
published score.

1 Introduction

Grammatical error correction (GEC) is the
task of correcting various textual errors includ-
ing spelling, grammar, and collocation errors.
The phrase-based statistical machine translation
(SMT) approach is able to achieve state-of-the-
art performance on GEC (Junczys-Dowmunt and
Grundkiewicz, 2016). In this approach, error cor-
rection is treated as a machine translation task
from the language of “bad English” to the lan-
guage of “good English”. SMT-based systems do
not rely on language-specific tools and hence they
can be trained for any language with adequate par-
allel data (i.e., erroneous and corrected sentence
pairs). They are also capable of correcting com-
plex errors which are difficult for classifier sys-
tems that target specific error types. The gen-
eralization of SMT-based GEC systems has been

shown to improve further by adding neural net-
work models (Chollampatt et al., 2016b).

Though SMT provides a strong framework for
GEC, the traditional word-level SMT is weak in
generalizing beyond patterns seen in the train-
ing data (Susanto et al., 2014; Rozovskaya and
Roth, 2016). This effect is particularly evident for
spelling errors, since a large number of misspelled
words produced by learners are not observed in the
training data. We propose improving the SMT ap-
proach by adding a character-level SMT compo-
nent to a word-level SMT-based GEC system, with
the aim of correcting misspelled words.

Our word-level SMT-based GEC system uti-
lizes task-specific features described in (Junczys-
Dowmunt and Grundkiewicz, 2016). We show
in this paper that performance continues to im-
prove further after adding neural network joint
models (NNJMs), as introduced in (Chollampatt
et al., 2016b). NNJMs can leverage the contin-
uous space representation of words and phrases
and can capture a larger context from the source
sentence, which enables them to make better pre-
dictions than traditional language models (Devlin
et al., 2014). The NNJM is further improved us-
ing the regularized adaptive training method de-
scribed in (Chollampatt et al., 2016a) on a higher
quality training dataset, which has a higher error-
per-sentence ratio. In addition, we add a character-
level SMT component to generate candidate cor-
rections for misspelled words. These candidate
corrections are rescored with n-gram language
model features to prune away non-word candi-
dates and select the candidate that best fits the con-
text. Our final system outperforms the best prior
published system when evaluated on the bench-
mark CoNLL-2014 test set. For better replica-
bility, we release our source code and model files
publicly at https://github.com/nusnlp/
smtgec2017.
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2 Related Work

GEC has gained popularity since the CoNLL-2014
(Ng et al., 2014) shared task was organized. Un-
like previous shared tasks (Dale and Kilgarriff,
2011; Dale et al., 2012; Ng et al., 2013) that fo-
cused only on a few error types, the CoNLL-2014
shared task dealt with correction of all kinds of
textual errors. The SMT approach, which was
first used for correcting countability errors of mass
nouns (Brockett et al., 2006), became popular dur-
ing the CoNLL-2014 shared task. Two of the top
three teams used this approach in their systems. It
later became the most widely used approach and
was used in state-of-the-art GEC systems (Susanto
et al., 2014; Chollampatt et al., 2016b; Junczys-
Dowmunt and Grundkiewicz, 2016; Rozovskaya
and Roth, 2016). Neural machine translation ap-
proaches have also showed some promise (Xie
et al., 2016; Yuan and Briscoe, 2016).

A number of papers on GEC were published
in 2016. Chollampatt et al. (2016b) showed
that using neural network translation models in
phrase-based SMT decoding improves perfor-
mance. Other works focused on re-ranking and
combination of the n-best hypotheses produced by
an SMT system using classifiers to generate bet-
ter corrections (Mizumoto and Matsumoto, 2016;
Yuan et al., 2016; Hoang et al., 2016). Rozovskaya
and Roth (2016) compared the SMT and classi-
fier approaches by performing error analysis of
outputs and described a pipeline system using
classifier-based error type-specific components, a
context sensitive spelling correction system (Flor
and Futagi, 2012), punctuation and casing cor-
rection systems, and SMT. Junczys-Dowmunt and
Grundkiewicz (2016) described a state-of-the-art
SMT-based GEC system using task-specific fea-
tures, better language models, and task-specific
tuning of the SMT system. Their system achieved
the best published score to date on the CoNLL-
2014 test set. We use the features proposed in
their work to enhance the SMT component in our
system as well. Additionally, we use neural net-
work joint models (Devlin et al., 2014) introduced
in (Chollampatt et al., 2016b) and a character-level
SMT component.

Character-level SMT systems are used in
transliteration and machine translation (Tiede-
mann, 2009; Nakov and Tiedemann, 2012; Dur-
rani et al., 2014). It has been previously used
for spelling correction in Arabic (Bougares and

Bouamor, 2015) and for pre-processing noisy in-
put to an SMT system (Formiga and Fonollosa,
2012).

3 Statistical Machine Translation

We use the popular phrase-based SMT toolkit
Moses (Koehn et al., 2007), which employs a log-
linear model for combination of features. We
use the task-specific tuning and features proposed
in (Junczys-Dowmunt and Grundkiewicz, 2016)
to further improve the system. The features in-
clude edit operation counts, a word class lan-
guage model (WCLM), the Operation Sequence
Model (OSM) (Durrani et al., 2013), and sparse
edit operations. Moreover, Junczys-Dowmunt
and Grundkiewicz (2016) trained a web-scale lan-
guage model (LM) using large corpora from the
Common Crawl data (Buck et al., 2014). We train
an LM of similar size from the same corpora and
use it to improve our GEC performance.

4 Neural Network Joint Models and
Adaptation

Following Chollampatt et al. (2016b), we add a
neural network joint model (NNJM) feature to fur-
ther improve the SMT component. We train the
neural networks on GPUs using log-likelihood ob-
jective function with self-normalization, follow-
ing (Devlin et al., 2014). Training of the neu-
ral network joint model is done using a Theano-
based (Theano Development Team, 2016) imple-
mentation, CoreLM1. Chollampatt et al. (2016a)
proposed adapting SMT-based GEC based on the
native language of writers, by adaptive training
of a pre-trained NNJM on in-domain data (writ-
ten by authors sharing the same native language)
using a regularized loss function. We follow this
adaptation method and perform subsequent adap-
tive training of the NNJM, but on a subset of train-
ing data with better annotation quality and a higher
error-per-sentence ratio, favoring more corrections
and thus increasing recall.

5 Spelling Error Correction using SMT

Due to the inherent weakness of SMT-based GEC
systems in correcting unknown words (mainly
consisting of misspelled words), we add a
character-level SMT component for spelling er-
ror correction. A character in this character-level

1https://github.com/nusnlp/corelm

328



SMT

OSM

NNJM WORD
LM

CHARACInput OutputSpelling
SMT

WCLM

CHAR
LM

Figure 1: Architecture of our complete SMT-
based system.

SMT component is equivalent to a word in word-
level SMT, and a sequence of characters (i.e., a
word) in the former is equivalent to a sequence of
words (i.e., a sentence) in the latter. Input to our
character-level SMT component is a sequence of
characters that make up the unknown (misspelled)
word and output is a list of correction candidates
(words). Note that unknown words are words un-
seen in the source side of the parallel training data
used to train the translation model. For training
the character-level SMT component, alignments
are computed based on a Levenshtein matrix, in-
stead of using GIZA++ (Och and Ney, 2003).
Our character-level SMT is tuned using the M2

metric (Dahlmeier and Ng, 2012) on characters,
with character-level edit operation features and a
5-gram character LM. For each unknown word,
character-level SMT produces 100 candidates that
are then rescored to select the best candidate based
on the context. This rescoring is done following
Durrani et al. (2014) and uses word-level n-gram
LM features: LM probability and the LM OOV
(out-of-vocabulary) count denoting the number of
words in the sentence that are not in the LM’s vo-
cabulary. The architecture of our final system is
shown in Figure 1.

6 Experiments

6.1 Data and Evaluation
The parallel data for training our word-level SMT
system consist of two corpora: the NUS Corpus
of Learner English (NUCLE) (Dahlmeier et al.,
2013) and Lang-8 Learner Corpora v2 (Lang-8)
(Mizumoto et al., 2011). From NUCLE, we ex-
tract sentences with at least one annotation (edit)
in a sentence. We use one-fourth of these sen-
tences as our development data (5,458 sentences
with 141,978 source tokens). The remainder of
NUCLE, including sentences without annotations

(i.e., error-free sentences), are used for train-
ing. We extract the English portion of Lang-8
by selecting sentences written by English learn-
ers via filtering using a language identification
tool, langid.py (Lui and Baldwin, 2012). This
filtered data set and the training portion of NU-
CLE are combined to form the training set, con-
sisting of 2.21M sentences (26.77M source tokens
and 30.87M target tokens). We use two corpora
to train the LMs: Wikipedia texts (1.78B tokens)
and a subset of the Common Crawl corpus (94B
tokens). To train the character-level SMT com-
ponent, we obtain a corpus of misspelled words
and their corrections2, of which the misspelling-
correction pairs from Holbrook are used as the
development set and the remaining pairs together
with the unique words in the NUCLE training data
(replicated on the source side to get parallel data)
are used for training.

We evaluate our system on the official CoNLL-
2014 test set, using the MaxMatch (Dahlmeier and
Ng, 2012) scorer v3.2 which computes the F0.5
score, as well as on the JFLEG corpus (Napoles
et al., 2017), an error-corrected subset of the GUG
corpus (Heilman et al., 2014), using the F0.5 and
GLEU (Napoles et al., 2015) metrics.

6.2 SMT-Based GEC System

Our SMT-based GEC system uses a phrase ta-
ble trained on the complete parallel data. In
our word-level SMT system, we use two 5-gram
LMs, one of them trained on the target side of
the parallel training data and the other trained
on Wikipedia texts (Wiki LM). We add all the
dense features proposed in (Junczys-Dowmunt
and Grundkiewicz, 2016) and sparse edit features
on words (with one word context). We further im-
prove the system by replacing Wiki LM with a 5-
gram LM trained on Common Crawl data (94BCC
LM). NNJM is trained on the complete paral-
lel data. We further adapt the NNJM following
the adaptation method proposed by Chollampatt
et al. (2016a) on sentences from the training por-
tion of NUCLE that contain at least one error an-
notation (edit) in a sentence. We use the same
hyper-parameters as (Chollampatt et al., 2016a).
The SMT-based GEC system with all the features,
94BCC LM, and adapted NNJM, is referred to as
“Word SMT-GEC”.

2http://www.dcs.bbk.ac.uk/∼ROGER/corpora.html
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System CoNLL-2014
Prec. Recall F0.5

SMT-GEC 55.96 22.54 43.16
+ dense + sparse features 58.24 24.84 45.90
– Wiki LM + 94BCC LM 61.02 27.80 49.25
+ NNJM 61.65 29.11 50.39
+ adaptation 62.14 30.92 51.70

[Word SMT-GEC]
+ Spelling SMT 62.74 32.96 53.14
[Word&Char SMT-GEC]

Table 1: Results of incremental addition of fea-
tures and components.

6.3 SMT for Spelling Error Correction
The character-level SMT component that gener-
ates candidates for misspelled words uses a 5-
gram character-level LM trained on the target side
of the spelling corpora. 5-gram Wiki LM is used
during rescoring. The final system is referred to as
“Word&Char SMT-GEC”.

7 Results and Discussions

Table 1 shows the results of incrementally adding
features and components to the SMT-GEC system,
measuring performance on the official CoNLL-
2014 test set. All SMT systems are tuned five
times and the feature weights are averaged in order
to account for optimizer instability. The improve-
ment obtained for each incremental modification
is statistically significant (p < 0.01) over its pre-
vious system.

The addition of NNJM improves by 1.14% F0.5
on top of a high-performing SMT-based GEC sys-
tem with task-specific features and a web-scale
LM. Adaptation of NNJM on a subset of NUCLE
improves the results by a notable margin (1.31%
F0.5). The NUCLE data set is manually annotated
by experts and is of higher quality than Lang-8
data. Also, choosing sentences with a higher error
rate encourages NNJM to favor more corrections.

Adding the SMT component for spelling error
correction (“Spelling SMT”) further improves F0.5
to 53.14%. We use Wiki LM to rescore the can-
didates, since using 94BCC LM yielded slightly
worse results (53.06% F0.5). 94BCC LM, trained
on noisy web texts, includes many misspellings
in its vocabulary and hence misspelled translation
candidates are not effectively pruned away by the
OOV feature compared to using Wiki LM.

7.1 Comparison to the State of the Art
Table 2 shows the comparison of our systems to
other top-performing systems: Junczys-Dowmunt

System
Official Bryant and Ng (2015)

Test 10 ann. SvH Ratio
(F0.5) (F0.5) (F0.5) (%)

Word SMT-GEC 51.70 68.38 67.51 93.02
Word&Char SMT-GEC 53.14 69.12 68.29 94.09
J&G (2016) 49.52 66.83 65.90 90.79
R&R (2016) 47.40 62.45 61.50 84.73
CoNLL-2014 Top System
Felice et al. (2014) 37.33 54.30 53.47 73.67

Table 2: Comparison on the CoNLL-2014 test set.

System Dev Test
F0.5 GLEU F0.5 GLEU

Word SMT-GEC 58.17 48.17 60.95 53.18
Word&Char SMT-GEC 61.51 51.01 64.25 56.78
Yuan and Briscoe (2016) 50.8 47.20 – 52.05
Chollampatt et al. (2016a) 52.7 46.27 – 50.13

Table 3: Results on the JFLEG corpus.

and Grundkiewicz (2016) (J&G) and Rozovskaya
and Roth (2016) (R&R)3. “Word SMT-GEC” is
better than the previous best system (J&G) by
a margin of 2.18% F0.5. This improvement is
without using any additional datasets compared to
J&G. “Word&Char SMT-GEC”, which addition-
ally uses “Spelling SMT” trained using spelling
corpora, increases the margin of improvement to
3.62% F0.5 and becomes the new state of the art.

We also evaluate using 10 sets of human an-
notations of the CoNLL-2014 test set released by
Bryant and Ng (2015) (“10 ann.”). We measure
a system’s performance compared to human us-
ing the ratio metric (“Ratio”), which is the aver-
age system-vs-human score (“SvH”) divided by
average human-vs-human score (F0.5 of 72.58%).
“SvH” is computed by removing one set of hu-
man annotations at a time and evaluating the sys-
tem against the remaining 9 sets, and finally av-
eraging over all 10 repetitions. The results show
that “Word&Char SMT-GEC” achieves 94.09% of
the human-level performance, substantially clos-
ing the gap between system and human perfor-
mance for this task by 36%.

To ascertain the generalizability of our results,
we also evaluate our system on the JFLEG de-
velopment and test sets without re-tuning. Table
3 compares our systems with top-performing sys-
tems4. Our systems outperform the previous best
systems by large margins.

3We re-run the official scorer (v3.2) on the released out-
puts of these systems against the official test set as well as the
annotations released by Bryant and Ng (2015).

4Results are obtained from (Napoles et al., 2017) and
https://github.com/keisks/jfleg
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Figure 2: Per-error-type F0.5 on CoNLL-2014 test
set.

7.2 Error Type Analysis

We analyze the performance of our final system
and the top systems on specific error types on
the CoNLL-2014 test set. To do this, we com-
pare the per-error-type F0.5 using the ERRANT
toolkit (Bryant et al., 2017). ERRANT uses a
rule-based framework primarily relying on part-
of-speech (POS) tags to classify the error types.
The error type classification has been shown to
achieve 95% acceptance by human raters.

We analyze the performance on six common
error types, namely, noun number (Nn), verb
tense (Vt), determiner (Det), punctuation (Punct),
subject-verb agreement (SVA), and preposition
(Prep) errors. The results are shown in Figure
2. Our system outperforms the other systems on
four of these six error types, and achieves com-
parable performance on the determiner errors. It
is interesting to note that R&R outperforms our
system and J&G on subject-verb agreement errors
by a notable margin. This is because R&R uses a
classification-based system for subject-verb agree-
ment errors that uses rich linguistic features in-
cluding syntactic and dependency parse informa-
tion. SMT-based systems are weaker in correcting
such errors as they do not explicitly identify and
model the relationship between a verb and its sub-
ject.

7.3 Performance on Spelling Errors

We perform comparative analysis on spelling er-
ror correction on the CoNLL-2014 test set using
ERRANT. The results are summarized in Table
4. Our final system with the character-level SMT

System Precision Recall F0.5
J&G (2016) 82.35 46.15 71.19
R&R (2016) 74.19 85.98 76.29
Word SMT-GEC 76.36 46.67 67.74
Word SMT-GEC + Hunspell 58.94 86.41 62.94
Word&Char SMT-GEC 75.40 91.35 78.12

Table 4: Performance on spelling error correction.

component, “Word&Char SMT-GEC”, achieves
the highest recall (91.35) and F0.5 (78.12) com-
pared to the other systems. J&G and ‘Word
SMT-GEC” rely solely on misspelling-correction
patterns seen during training for spelling correc-
tion. These two systems achieve the highest pre-
cision values (82.35 and 76.36, respectively) but
have very low recall values (46.15 and 46.67, re-
spectively) as they do not generalize to unseen
misspellings. R&R, on the other hand, uses a
specialized context-sensitive spelling error correc-
tion component, ConSpel (Flor and Futagi, 2012).
ConSpel is a proprietary non-word spell checker
that has been shown to outperform off-the-shelf
spell checkers such as MS Word and Aspell. De-
spite using ConSpel, R&R achieves a lower preci-
sion (74.19 vs. 75.40) and recall (85.98 vs. 91.35)
compared to our final system. We also com-
pare against a baseline where our spelling cor-
rection component is replaced by an off-the-shelf
spell checker Hunspell (“Word SMT-GEC + Hun-
spell”). Using Hunspell causes a drastic drop in
precision due to a large number of spurious cor-
rections that it proposes and results in a lower F0.5
score.

8 Conclusion

We have improved a state-of-the-art SMT-based
GEC system by incorporating and adapting neu-
ral network joint models. The weakness of SMT-
based GEC in correcting misspellings is addressed
by adding a character-level SMT component. Our
final best system achieves 53.14% F0.5 on the
CoNLL-2014 test set, outperforming the previous
best system by 3.62%, and achieves 94% of human
performance on this task.
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Abstract

In Foreign Language Teaching and Learn-
ing (FLTL), questions are systematically
used to assess the learner’s understanding
of a text. Computational linguistic (CL)
approaches have been developed to gen-
erate such questions automatically given a
text (e.g., Heilman, 2011). In this paper,
we want to broaden the perspective on the
different functions questions can play in
FLTL and discuss how automatic question
generation can support the different uses.

Complementing the focus on meaning and
comprehension, we want to highlight the
fact that questions can also be used to
make learners notice form aspects of the
linguistic system and their interpretation.
Automatically generating questions that
target linguistic forms and grammatical
categories in a text in essence supports in-
cidental focus-on-form (Loewen, 2005) in
a meaning-focused reading task. We dis-
cuss two types of questions serving this
purpose, how they can be generated au-
tomatically; and we report on a crowd-
sourcing evaluation comparing automati-
cally generated to manually written ques-
tions targeting particle verbs, a challeng-
ing linguistic form for learners of English.

1 Introduction

“Learning is goal-oriented . . . Teaching therefore
becomes an active thinking and decision-making
process in which the teacher is constantly assess-
ing what students already know, what they need to
know, and how to provide for successful learning.”
(O’Malley and Chamot, 1990)

One of the most common ways to find out what
students do and do not know is to ask questions.

In communicative and task-based language teach-
ing, where the meaning and function of language
drives the pedagogy, questions are asked to sup-
port the task at hand. Relatedly, when dealing with
written language material, recall or comprehen-
sion questions can spell out typical goals for read-
ing a text: searching for specific information or
more comprehensively integrating the information
provided in the text into the reader’s background
knowledge to draw inferences on that basis.

An increasing body of CL research supports the
automatic generation of questions in order to as-
sist teachers in constructing practice exercises and
tests. For example, Heilman (2011) is a promi-
nent approach for the generation of factual, low-
level questions suitable for beginner or interme-
diate students. His goal is to assess the reader’s
knowledge of the information in the text, which is
relevant for both content and language teaching.

At the same time, Second Language Acquisi-
tion (SLA) research since the 90s has emphasized
that language input and meaning-based tasks alone
are not sufficient to ensure successful language
acquisition. Learners must also notice linguis-
tic forms and grammatical categories (Schmidt,
1990) and teaching can facilitate such noticing
through so-called focus on form (Doughty and
Williams, 1998). Focus on form is designed to
draw the learner’s attention to relevant linguistic
features of the language as they arise, while keep-
ing the overriding focus on meaning (Long, 1991,
pp. 45f). For written language, input enhance-
ment (Sharwood Smith, 1993) has been proposed
to make relevant forms more salient in the input,
e.g., by coloring or font choices. Such visual in-
put enhancement has also been automated using
CL methods (Meurers et al., 2010), as part of a
system also generating in-text exercises.

One problem with form-based visual input en-
hancement is that coloring a form or otherwise

334



making it visually more salient neither ensures that
it is noticed and cognitively processed more thor-
oughly nor do we know which aspect of that form
the reader will notice and how it is interpreted.
For example, coloring the form has been raining
in a text may draw the reader’s attention to any
aspect of those forms (e.g., number or length of
the words, or the -ing suffix of the last word), and
noticing the form does not necessarily map it to its
present perfect continuous interpretation.

In this paper, we propose another option for pro-
viding input enhancement, functionally-driven in-
put enhancement. Concretely, we propose to gen-
erate two types of questions creating a functional
need to process the targeted linguistic features.
The first type of questions we generate are con-
tent questions about the clause containing the tar-
geted form. So these questions are like Heilman’s
factual questions, but they are targeting sentences
containing particular linguistic features to be ac-
quired. To answer such questions, the learner must
process form and meaning of the clause, ensuring
increased activation of the targeted form. The goal
of these questions is to ensure more exposure to
the forms, so we will refer to them as form expo-
sure questions.

The second type of functionally-driven input
enhancement is designed to also ensure interpre-
tation of the targeted form. For this, the nature
of the question that is generated must be changed
from asking about the content of the text to asking
about the interpretation of the form being targeted.
In the spirit of the concept questions of Workman
(2008), we will refer to such questions as gram-
mar concept questions.

The goal of this paper is to combine insights
from SLA research with CL techniques to explore
new options for question generation in support of
language learning. In section 2, we first charac-
terize the overall spectrum of questions we con-
sider to be of relevance to FLTL, from supporting
communication via ensuring texts are read to sup-
porting learning of linguistic forms and their func-
tion. Section 3.1 then surveys the computational
linguistic work on automatic question generation,
which has focused on the content-side of the spec-
trum. Section 3.2 spells out the SLA background
needed to motivate our research on question gen-
eration targeting linguistic forms and their inter-
pretation. In section 4 we then present the ques-
tion generation approach we developed, mostly

concentrating on the two new types of questions
designed to provide functionally-driven input en-
hancement. For such questions to be effective,
they must be reasonably well-formed and answer-
able, so in section 5 we present the results from a
crowd sourcing experiment we conducted to eval-
uate whether the automatically generated form ex-
posure questions are comparable to manually writ-
ten questions in those two respects. Finally, sec-
tion 6 provides a conclusion and outlook.

2 A spectrum of questions for FLTL

In an FLTL context, questions can be asked to
serve a broad range of different goals:

1. We can ask about the learner’s experience or
general knowledge (e.g., “What do you know
about Japan?”), which can serve a commu-
nicative goal.

2. Comprehension or recall questions can be
asked to check whether the learner has un-
derstood a text or read it at all.

3. Questions can also be asked with the goal
of eliciting a linguistic form from the learner
(e.g., the question “What would you do if you
won in a lottery?” requires the learner to pro-
duce conditionals.)

4. As introduced in the previous section, we can
use questions to provide functionally-driven
input enhancement drawing the learner’s at-
tention to the linguistic forms used in a given
text. Form exposure questions ensure that
the sentence containing the targeted forms
are read and generally understood. Answer-
ing grammar-concept questions in addition
requires an understanding of the interpreta-
tion of the targeted form.

5. Finally, there also are meta-linguistic ques-
tions checking the learner’s explicit knowl-
edge of the language system (e.g., “From
which verb is the noun decision derived?” or
“What is the synonym of staff ?”).

The aforementioned goals are presented in a
particular order, from more communicative to
more formal ones. In the work presented in
this paper, we primarily focus on the idea of
functionally-driven input enhancement captured
by the fourth type: questions drawing the learner’s
attention to particular linguistic forms in the read-
ing material and their interpretation. To contex-

335



tualize our approach, we first provide some back-
ground on automatic question generation and the
SLA concepts grounding our proposal.

3 Background

3.1 Automatic Question Generation

A typical text-based Question Generation (QG)
system consists of three components: target se-
lection (sentences and words), generation of ques-
tions (and answers), and the generation of distrac-
tors, which is applicable for a multiple choice an-
swer setup. Most of work on target selection fol-
lows a top-down perspective on the text: First, a
set of suitable sentences is selected based on dif-
ferent criteria (e.g., Pino et al., 2008; Pilán et al.,
2013). Then the target words or linguistic forms
are selected within the set of suitable sentences
(e.g., Becker et al., 2012). Given our focus on in-
put enhancement for language learning, we instead
pursue a bottom-up approach: Given one or more
target linguistic forms (e.g., the passive voice, or
the present perfect tense), we automatically select
all the candidate sentences in a text containing the
target forms, apply basic constraints to filter out
unsuitable sentences (such as those containing un-
resolvable pronouns), and then generate questions
to the remaining ones.

Once the target sentence has been selected, it
can be used to generate questions targeting par-
ticular linguistic forms contained in the sentence.
Heilman (2011) discusses the generation of fac-
tual, low-level questions suitable for beginner or
intermediate students and gives a comprehensive
overview of QG methods. Among the most promi-
nent ones are: replacing the target form with a gap
(Agarwal et al., 2011; Becker et al., 2012), apply-
ing transformation rules (Mitkov et al., 2006), fill-
ing templates (Curto et al., 2012), and generating
all possible questions to a sentence and ranking
them afterwards using a supervised learning algo-
rithm (Heilman and Smith, 2009). Finally, QG is
not an exception to the wave of neural networks,
and Du et al. (2017) have recently approached
automatic generation of reading comprehension
questions on that basis. All of the mentioned QG
systems either assess vocabulary or target reading
comprehension, which contrasts with the focus of
our work on functionally supporting focus on form
in language learning.

Distractor generation is a separate complex
task that has received some attention in the QG

community. It supports the provision of answers
in a multiple-choice setup, and the choice of dis-
tractors is closely tied to what is intended to be
assessed by the question. Traditionally, distrac-
tors are selected among words that are semanti-
cally related to the correct answer (Mitkov et al.,
2006; Araki et al., 2016). Brown et al. (2005) se-
lect the distractors among the most frequent words
that have the same part of speech as the correct an-
swer. Pino and Eskenazi (2009) inform the distrac-
tor generation component by the wrong answers
provided by the users of their system. Given that
we do not focus on the multiple choice answer
format here, distractor generation is not discussed
further in this paper.

3.2 Relevant SLA concepts

Attention, input, and form-meaning mapping are
key SLA concepts that are directly related to our
work. We already saw in our introduction in sec-
tion 1 that both meaning and form play important
roles in SLA. Pushing this discussion one step fur-
ther, work in the Input Processing paradigm (Van-
Patten and Cadierno, 1993), based on Krashen’s
(1977) input hypothesis, provides several relevant
studies showing that “learners process input for
meaning before they process it for form” (VanPat-
ten, 1990; Wong, 2001). However, Norris and Or-
tega (2000) argued that simultaneously directing
the learner’s attention to form and meaning in the
input does not hinder L2 development or reading
comprehension. Leow et al. (2008) came to the
same conclusion after revisiting the methodology
used in the replication studies mentioned above
and conducting a new study. Their results did
not show any statistically significant differences
in comprehension between different intervention
groups. Finally, a study by Morgan-Short et al.
(2012) demonstrated that learners who attended
to and processed linguistic forms while reading
for meaning scored higher on comprehension than
those only reading for meaning.

In line with the Noticing Hypothesis (Schmidt,
1990), the most straightforward way to draw the
learner’s attention to particular linguistic forms in
a text is to increase their salience. As the meta-
analysis of Lee and Huang (2008) shows, results
on the isolated effect of visual input enhancement
on L2 development has been mixed. One option
for pushing this research further is to investigate
other types of input enhancement and the combi-
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nation of visual input enhancement with other in-
put activities.

The Input Processing approach to SLA has
given rise to a pedagogical intervention called pro-
cessing instruction (VanPatten, 2004). Its goal is
to ensure that learners make form-meaning con-
nections during reading. This goes beyond textual
enhancement, which only ensures noticing (Be-
nati, 2016). One of the components of process-
ing instruction, structured input practice, has been
identified as particularly effective in fostering L2
development (VanPatten and Oikkenon, 1996; Be-
nati, 2004; Wong, 2004). Structured input is “in-
put that is manipulated in particular ways to push
learners to become dependent on form and struc-
ture to get meaning” (Lee and VanPatten, 1995).

Structured input activities can be seen as an um-
brella term for a wide range of language teaching
techniques. They provide the learners with en-
riched input and prompt them to process and even-
tually produce the target linguistic forms. While
in the original approach, the input enrichment and
development of structured input activities is done
manually, CL methods can support this process.
We have developed a system for automatic in-
put enrichment, FLAIR (Chinkina and Meurers,
2016), which supports retrieval of documents con-
taining targeted linguistic features. The linguistic
features covered by the system include the full set
of grammatical constructions spelled out in the of-
ficial English language curriculum of schools in
Baden-Württemberg (Germany). On this enriched
input basis, automating the generation of ques-
tions as structured input activities is the logical
next step. In the next section, we spell out the dif-
ferent types of questions that we are able to gen-
erate automatically and discuss the algorithms and
challenges behind their generation.

4 Generating questions for FLTL

As mentioned in section 3.1, most of the work
on QG has dealt with vocabulary (Brown et al.,
2005) and comprehension questions (Mostow
et al., 2004), not on linguistic form and grammar.
For approaches automatically generating exercises
that facilitate grammar acquisition and practice,
cloze sentences are the most ubiquitous type. They
are generated by substituting the target linguistic
form with a gap, and the challenge usually lies in
the selection of good sentences and gaps (Becker
et al., 2012; Niraula and Rus, 2015).

(1) The advisory group had a list of all
the different territorial arrangements in the
EU. (draw up)

Metalinguistic questions, which are designed to
test learners’ explicit knowledge of the language
system, have not received much attention in the
QG community. The reason probably lies in the
fact that they require the use of a limited number
of templates and only a minimal amount of NLP.
Their frequent use by teachers is also widely crit-
icized by educators and researchers alike, mainly
because they do not serve a communicative goal.
For example, in order to generate question (2), one
would only need a POS-tagger and the WordNet
database (Miller, 1995).

(2) From which verb is the noun generation de-
rived?

To cover the whole spectrum of exercises facili-
tating the acquisition and practice of grammar, we
also generate cloze and metalinguistic questions.
However, the focus of the paper is on questions
providing functionally-driven input enhancement,
so we limit the discussion to those two types for
space reasons.

4.1 Form Exposure Questions
Form exposure questions focus on a particular lin-
guistic form, which can either be part of the ques-
tion or be expected in the learner’s production.
They can take the form of a wh-, yes/no, or an al-
ternative question. For example, when asking a
question about the source text (3), one can think
of different linguistic targets: relative clauses, past
forms of irregular and regular verbs, etc. Question
(3a) is asked about the subject and targets the par-
ticle verb brought in.

(3) Indeed, Semel and the media executives he
brought in by all accounts turned a scrappy
young internet startup into a highly profitable
company that brought old-line advertising to
a new medium.
a. Who turned a scrappy young internet

startup into a highly profitable com-
pany? Semel and the media executives
he .

Generation We generate form exposure ques-
tions to subjects, objects, and predicates. The
main linguistic form we focus on is the grammat-
ical tense, so our form exposure questions target
verbs and verb phrases.
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We use the Java implementation of Stanford
CoreNLP 3.7.0 for part-of-speech tagging, pars-
ing, and resolving coreferences (Manning et al.,
2014). After extracting a sentence or a clause con-
taining the target form, we perform the follow-
ing steps: adjust and normalize the auxiliaries, re-
solve pronouns and other referential expressions,
and detect quotation sources, if any. Then the al-
gorithm proceeds to detect specific syntactic com-
ponents of the sentence, to modify them if neces-
sary, and finally transformation rules are used to
turn a sentence into a question. Let us inspect the
algorithm for generating questions to predicates.

A. Active
(e.g., What have Chinese retailers done?)

1) Insert the question word “What” at the
beginning of the sentence.

2) Identify or generate an auxiliary verb.
• If there is an auxiliary verb modify-

ing the main verb, identify it.
• Otherwise, identify the grammatical

tense of the main verb and generate
an appropriate auxiliary verb.

3) Move the auxiliary verb to right after
“What”.

4) Identify the grammatical form of the
main verb and replace the rest of the sen-
tence with the same form of the verb do.

B. Passive
(e.g., What happened to the staff?)

1) Insert the question word “What” at the
beginning of the sentence.

2) Identify the grammatical tense of the
main verb and replace the whole pred-
icate with the same form of the verb
happen (including the auxiliary verb, if
any).

3) Insert the preposition to left of the sub-
ject.

4) Remove the rest of the sentence.

In addition to generating questions, we also gen-
erate gap sentences (e.g., for particle verbs, Chi-
nese retailers have staff.). These question
items can be used as fill-in-the-blanks or multiple
choice exercises. In the latter case, one can ensure
a deeper level of processing of the target linguis-
tic form by having its synonym as the solution and
semantically related words as distractors.

Challenges There is a two-stage process iden-
tifying the main syntactic components, POS- and
dependency-based, and both of these are obliga-
tory for the system to be able to generate a ques-
tion. If there is an error, a syntactic component
may not be detected. For instance, in example
(4), Skype was identified as a verb by the statisti-
cal parser. Consequently, no subject was detected,
and it was not possible to generate a question.

(4) Skype was snapped up by eBay Inc.

The most challenging case that results in gener-
ating ungrammatical questions is when the parser
incorrectly identifies secondary parts of speech,
which does not prevent the system from generat-
ing a question. Given the source text (5) below, the
question (5a) was generated. The parse tree of the
source includes the noun phrase (NP (VBG mean-
ing) (NNS fans)), which was then identified as the
subject of the sentence.

(5) Internet access in the Communist-ruled is-
land is restricted, meaning fans can not easily
look up series and mangas on the web.
a. What can meaning fans not do? Meaning

fans can not series and mangas
on the web.

Another type of error occurs when the corefer-
ence resolution component maps a referring ex-
pression to the wrong noun phrase. Given the
source sentence (6), the program generated the
question in (6a). The manager is resolved incor-
rectly as Dean Saunders instead of Chris Coleman.

(6) Former Wales striker Dean Saunders says his
country will struggle to hang on to Chris
Coleman after their startling run to the Euro
2016 semi-finals and believes the manager
could be tempted away soon.
a. According to the article, what could hap-

pen to former Wales striker Dean Saun-
ders? Former Wales striker Dean Saun-
ders could be soon.

In questions to subjects and objects, coreference
resolution was originally used to determine the
question word, Who or What. However, the error
rate was high for rare names that occasionally oc-
cur in news articles at the beginning of sentences.
Thus, we now combine the two question words in
one question phrase Who or what. The English
teachers we consulted preferred this solution over
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erroneously generated question words. To further
minimize the effect of errors caused by corefer-
ence resolution, we do not substitute the subject of
a gap sentence with a pronoun, which often leads
to repetition of subject noun phrases.

4.2 Grammar-concept Questions
When it comes to grammar, questions can either
focus the reader’s attention on the form or the
meaning of linguistic forms. In addition to test-
ing the learner’s understanding of text, meaning-
driven questions also help raise the learner’s
(meta-)linguistic awareness and read and learn the
language in a focused way. Rephrasing and form
manipulation is one example of such meaning-
driven grammar questions. The passive voice, for
instance, is normally substituted with the active
voice (or vice versa) to make the learner make in-
ferences based on its semantics.

Similarly, grammar-concept questions make the
learner infer information by isolating defining se-
mantic characteristics of linguistic forms. Once
the grammatical concept of a linguistic form is
broken down into a series of semantic statements,
yes/no or alternative questions can be asked about
each of these statements. Consider the following
example by Workman (2008):
Sentence: He used to play football.
Concept: Used to expresses a discontinued past
habit. It highlights the fact that the person does
not do this anymore in the present.
Concept questions:

1. Does he play football now? (No)

2. Did he play football in the past? (Yes)

3. Did he play once or often? (Often)

One important application of grammar-concept
questions is scaffolding feedback. The ques-
tions can incrementally guide the learner towards
task completion by scaffolding the use of correct
forms. Grammar-concept questions then not only
make the learners aware of the form but also guide
them towards production.

Generation Depending on the linguistic form,
we use different templates to generate the
grammar-concept questions, and we transform the
target verb into the appropriate tense form.1

Let us take a closer look at the case of the
present perfect tense. Its two key characteristics

1For this step, we make use of the Java library https:
//github.com/simplenlg/simplenlg.

are (i) the finished state of the action and (ii) the ir-
relevance of the exact time in the past when the ac-
tion took place. The templates (7) and (8) are used
for generating grammar-concept questions about
these aspects.

(7) Be-form subject still verbing
(particle) (dir-obj) (indir-obj)?

e.g., Are Chinese retailers still cutting staff?

(8) Is it more important when exactly subject
verb-past (particle) (dir-obj)
(indir-obj) or that verbing (dir-obj)
(indir-obj) took place at all?

e.g., Is it more important when exactly
Chinese retailers cut staff or that cutting
staff took place at all?

Since the correct answers are known for each
template, they can be hard-coded there. As the
templates show, a target sentence should always
contain a subject and a verb. The particle element
is there for the case of particle verbs, and the ob-
ject elements are optional.

Challenges One limitation of the current imple-
mentation of grammar-concept questions is that
without identifying the specific interpretation of a
grammatical tense, we can only specify rather gen-
eral templates, one or two per grammatical tense.
The task of tense sense disambiguation (Reichart
and Rappoport, 2010) is very relevant to our work
and can facilitate the creation of more fine-grained
templates. For example, in case of the past sim-
ple tense, one could also ask about the repetitive
versus single occurrence of an action in the past;
in case of the present perfect continuous tense, a
question about the (in)completeness of an action
would be plausible.

5 Comparing computer-generated and
human-written questions

For questions to be effective in real-life FLTL,
they must be reasonably well-formed and answer-
able. We therefore conducted a crowdsourcing
study2 to determine how automatically generated
questions and manually written questions are per-
ceived in those two respects.

We started with a corpus of 40 news articles and
96 questions written by Simón Ruiz, an English

2For this study, we used the CrowdFlower platform:
https://crowdflower.com
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teacher and SLA researcher, to test the learner’s
knowledge of particle verbs. We used the ques-
tion generation approach introduced in section 4
and generated 69 form exposure questions to par-
ticle verbs. To obtain an equal number of ques-
tions for the experiment, we randomly selected 69
questions from the manually created ones.

The crowd workers were selected among pro-
ficient speakers of English. This requirement was
enforced by a website functionality restricting par-
ticipating countries, three so-called test questions
asking the participants about their level of English
and self-perceived reliability of their judgements,
and other test questions assessing their proficiency
in English, which we now turn to.

In a crowdsourcing experiment, test questions
are crucial because they limit the set of workers to
those satisfying the requirements and make it pos-
sible to verify they are paying attention and follow
the instructions. To create test questions assessing
the workers’ proficiency in English, we first cre-
ated eight ungrammatical or unanswerable ques-
tion items as follows: We edited four out of the 27
human-written questions not used in the study and
four automatically generated questions to make
them either ungrammatical or unanswerable. To
obtain test questions on the clearly grammatical
and answerable side of the spectrum, we ran a pi-
lot study and selected sentences rated high with
a high agreement among the contributors. Four
human-written and four computer-generated ones
were chosen as good examples of well-formed and
answerable test questions. In order for the crowd
workers to be eligible to start judging non-test
questions, they had to pass through the so-called
quiz mode and achieve 70% accuracy on five ran-
domly selected test question items.

We investigated whether computer-generated
questions are on a par with human-written ones
based on two criteria, well-formedness and an-
swerability. In other words, whether the ques-
tion is written in acceptable English and whether
it can be answered given the information in the
source text. In addition, we asked the crowd work-
ers whether they thought the question was writ-
ten by an English teacher or generated automat-
ically by a computer. Concretely, each task pre-
sented to the crowd workers consisted of an ex-
cerpt from the source news text and the human-
written or automatically-generated question. The
workers were asked to answer four questions:

1. How well-formed is this question item? Is
it written in good English? (5-point Likert
scale)

2. Can this question item be completed with the
information from the source text? (5-point
Likert scale)

3. Please, answer this question – in your words,
in as few words as possible – based on the
information from the source text. (free input)

4. Do you think this question was written by an
English teacher or generated by a computer?
(binary choice)

There also was an optional comment field.
Below you can find an example for a news ex-

cerpt (9) and the questions which were written
manually (9a) and automatically-generated (9b).

(9) “Scotland is a part of the UK,” a spokesman
for the European Commission said. “All
parts of the UK should sort out what they
want to do,” he added, calling the options
“speculation”.
a. What did a spokesman for the Euro-

pean Commission say about the UK?
He said that all parts of the UK should

what they want to do.
b. According to a spokesman for the Euro-

pean Commission, what should all parts
of the UK do? All parts of the UK should

what they want to do.

We received 1,384 judgements by 364 crowd
workers classified as reliable, who identified as
proficient English speakers and passed the quiz
mode with the test questions. On the well-
formedness scale, the means were 4.53 for human-
written and 4.40 for computer-generated ques-
tions. On the answerability scale, the means were
4.44 and 4.47, respectively. We calculated the
intra-class correlation (ICC) for the contributors
and got 0.08 and 0.09 for well-formedness and an-
swerability, respectively. The low contributor ICC
(< .1) implies that the contributors provided dif-
ferent ratings for different question items, so we
can ignore the dependencies among the observa-
tions and did not need a multi-level analysis.

To find out whether the difference in rat-
ings between computer-generated and human-
written questions is statistically significant, we ran
Welch’s t-test. On the well-formedness scale, the
results turned out to be statistically significant, but
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the effect size was small: t(913) = 2.06, p = .03,
Cohen’s d = 0.13. On the answerability scale,
the results were non-significant: t(944) = -0.42,
p ≥ .1, Cohen’s d = 0.02.

However, the absence of evidence does not im-
ply the evidence of absence. To test whether
the computer-generated and human-written ques-
tions are equivalent in quality (well-formedness
and answerability), we used Schuirmann’s (1987)
two one-sided test (TOST). The TOST is com-
monly used in medical research to determine if
one treatment is as effective as another one. To
prove our alternative hypothesis that computer-
generated and human-written questions are com-
parable in quality, we needed to reject two parts of
the null hypothesis:

H01: Computer-generated questions are inferior
in quality to human-written ones.

H02: Computer-generated questions are superior
in quality to human-written ones.

In statistical terms, the null hypothesis is that
there is a true effect larger than a Smallest Ef-
fect Size of Interest (SESOS) between the two
samples (Lakens, 2014). For this task, we opted
for an SESOS of 0.5, a medium effect size ac-
cording to Cohen (1977), and an alpha level of
.05 (Lakens, 2017). We used the R package
TOSTER3 to conduct TOST testing for equiva-
lence of the samples. All results were statistically
significant on both scales (p ≤ .001), so we could
reject the null hypothesis (for more details, see
Table 1).

Scale t1 t2 p1 and p2 90% CI

well-formed 9.81 -5.68 ≤.001 [0.02;0.22]

answerable 7.32 -8.17 ≤.001 [-0.13;0.08]

Table 1: Results of Schuirmann’s TOST for equiv-
alence of computer-generated and human-written
questions. Effect size d = 0.5; alpha = 0.05.

The results indicate that any difference in the
ratings for well-formedness and answerability of
the human-written and computer-generated ques-
tions is of an effect size smaller than the SESOS.
In line with this finding, the contributors’ answers
guessing whether a question was written by an

3https://cran.r-project.org/web/
packages/TOSTER/

English teacher or generated by a computer were
similar for both question classes: 74% of human-
written and 67% of computer-generated questions
were thought to be written by an English teacher.
Our goal at this stage was to identify whether the
questions as generated can effectively be used on
a par with manually written questions – which in-
deed seems to be the case.

6 Conclusion and Outlook

We discussed question generation for FLTL and
proposed that, in addition to the typical fo-
cus of such work on meaning and understand-
ing, questions can also play an important role
for functionally-driven input enhancement. In
line with the focus-on-form perspective in Sec-
ond Language Acquisition research and the no-
tion of structured input activities, such questions
help the learner in processing relevant forms and
draw form-meaning connections while engaging
in a meaning-based activity.

We proposed two types of questions designed
to provide functionally-driven input enhancement
of a text. Form exposure questions serve to en-
gage a learner in more thoroughly processing a
sentence containing a targeted form. Grammar-
concept questions require the learner to interpret
the targeted form in addition to processing it. We
discussed the transformation- and template-based
question generation approach we implemented for
this purpose and exemplified the approach for
particular tenses and verb classes. To evaluate
whether the automatically generated form expo-
sure questions are up to real-life use, we com-
pared the well-formedness and answerability of
automatically generated questions targeting parti-
cle verbs to human-written questions of the same
type. The crowd sourcing results suggest that
the automatic question generation can meaning-
fully be put to real-life use in a system, thereby
paving the way for an external evaluation in terms
of the learning outcomes that can be achieved by a
functionally-driven input enhancement approach.

Using NLP technology integrated in web-based
tools to support the intervention, a large-scale ran-
domized controlled field study can be set up and
run over an entire semester or school year, which is
significantly longer than typical interventions, but
it is the time span in which real-life foreign lan-
guage learning takes place. Crucially, such a setup
can also include collection of measures of individ-
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ual differences and other relevant factors. For ex-
ample, grammar-concept questions may be partic-
ularly valuable when the learner’s first language
does not have a particular linguistic form, as sug-
gested by Workman (2008). The data from such
an NLP-supported intervention study will stand
to showcase the synergy that can result at the in-
tersection of SLA and CL research (Meurers and
Dickinson, 2017). In addition to empirically test-
ing and advancing SLA hypotheses, the insights
could further improve CL applications by integrat-
ing a learner model to parametrize the generation
of questions for those target forms that are partic-
ularly relevant for a given user.

From the CL perspective, the task of generat-
ing such questions is feasible yet challenging and
is interestingly intertwined with other NLP tasks.
For instance, the tasks of named entity recognition
and coreference resolution can be used to make
questions more precise. However, there often is a
trade-off between allowing for somewhat general
phrases (“who or what” as a question phrase) and
using a coreference resolution component with a
suboptimal accuracy. We intend to explore this
trade-off further in the future. In a similar vein,
we also intend to develop filters to further reduce
the number of generated questions that are sub-
optimal in terms of well-formedness, typically re-
sulting from errors in parsing the sentence to be
questioned.

In terms of conceptual outlook, there also are
some issues we intend to pursue. When grammar-
concept questions are asked, they may or may not
draw the reader’s attention to the target linguistic
form, especially if semantic redundancy is present.
The issue is exemplified by (10).

(10) John used to play football, but since moving
back to Tuvalu doesn’t do so anymore.
a. Does John still play football?

As the semantics of used to implies a discon-
tinued past habit, the grammar-concept question
shown in (10a) could be generated. However, the
clause doesn’t do so anymore has exactly the same
implication, which can interfere with the learner
noticing and processing the target linguistic form
used to. This issue is reminiscent of VanPatten’s
Preference for Non-redundancy Principle (VanPat-
ten, 2004). Short of changing the text as such, one
option for ensure noticing of the relevant target
is to combine the function-driven input enhance-
ment with visual input enhancement. In practice,

automatic question generation here can be com-
bined with automatic visual input enhancement
(Meurers et al., 2010) by both asking a question
about the semantics of a targeted linguistic form
and highlighting it. Arguably, both types of input
enhancement should be preceded by a text selec-
tion step that ensures a rich representation of the
form to be targeted in the text. A linguistically-
aware search engine, such as FLAIR (Chinkina
and Meurers, 2016), can provide automatic input
enrichment to support teachers and learners in text
selection.

In terms of practical plans, we plan to integrate
automatic visual and function-driven input en-
hancement into the FLAIR system. Going further
towards activity generation, it could also be attrac-
tive to provide an interface from input enrichment
and enhancement tools to applications supporting
activity generation, such as the Language Muse
Activity Palette (Burstein et al., 2017).

Acknowledgments

This research was supported by the LEAD Grad-
uate School & Research Network [GSC1028], a
project of the Excellence Initiative of the German
federal and state governments. Maria Chinkina is
a doctoral student at the LEAD Graduate School
& Research Network.

We would like to thank our LEAD colleagues
Michael Grosz and Johann Jacoby for sharing their
expertise and insights in the field of statistical
analysis.

The crowd sourcing experiment was made pos-
sible by the manual gold-standard questions tar-
geting English particle verbs, which are a part of
the PhD research of Simón Ruiz. We are grate-
ful to him for providing us with the questions and
allowing us to use them in the experiment.

Finally, we would like to thank the anony-
mous reviewers and the organizers whose feed-
back helped us improve the paper.

References
Manish Agarwal, Rakshit Shah, and Prashanth Man-

nem. 2011. Automatic question generation using
discourse cues. In Proceedings of the 6th Work-
shop on Innovative Use of NLP for Building Ed-
ucational Applications. Portland, OR, pages 1–9.
http://aclweb.org/anthology/W11-1401.

Jun Araki, Dheeraj Rajagopal, Sreecharan Sankara-
narayanan, Susan Holm, Yukari Yamakawa, and

342



Teruko Mitamura. 2016. Generating questions
and multiple-choice answers using semantic anal-
ysis of texts. In COLING. pages 1125–1136.
http://aclweb.org/anthology/C16-1107.

Lee Becker, Sumit Basu, and Lucy Vanderwende.
2012. Mind the gap: learning to choose gaps
for question generation. In Proceedings of the
2012 Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics: Human Language Technologies. Associa-
tion for Computational Linguistics, pages 742–751.
http://aclweb.org/anthology/N12-1092.

Alessandro Benati. 2004. The effects of structured in-
put activities and explicit information on the acqui-
sition of the italian future tense. Processing instruc-
tion: Theory, research, and commentary pages 207–
225.

Alessandro Benati. 2016. Input manipulation, en-
hancement and processing: Theoretical views
and empirical research. Studies in Second
Language Learning and Teaching 6(1):65–88.
https://doi.org/10.14746/ssllt.2016.6.1.4.

Jonathan Brown, Gwen Frishkoff, and Maxine Es-
kenazi. 2005. Automatic question generation for
vocabulary assessment. In Proceedings of Hu-
man Language Technology Conference and Confer-
ence on Empirical Methods in Natural Language
Processing. Vancouver, British Columbia, Canada,
pages 819–826. http://aclweb.org/anthology/H05-
1103.

Jill Burstein, Nitin Madnani, John Sabatini, Dan
McCaffrey, Kietha Biggers, and Kelsey Dreier.
2017. Generating language activities in real-time
for english learners using language muse. In
Proceedings of the Fourth (2017) ACM Con-
ference on Learning @ Scale. ACM, New
York, NY, USA, L@S ’17, pages 213–215.
https://doi.org/10.1145/3051457.3053988.

Maria Chinkina and Detmar Meurers. 2016.
Linguistically-aware information retrieval: Pro-
viding input enrichment for second language
learners. In Proceedings of the 11th Workshop on
Innovative Use of NLP for Building Educational
Applications. San Diego, CA, pages 188–198.
http://aclweb.org/anthology/W16-0521.pdf.

Jacob Cohen. 1977. Statistical power analysis for the
behavioral sciences. Academic Press, New York.

Sérgio Curto, Ana Cristina Mendes, and Luı́sa
Coheur. 2012. Question generation based
on lexico-syntactic patterns learned from the
web. Dialogue & Discourse 3(2):147–175.
https://doi.org/10.5087/dad.2012.207.

Catherine Doughty and John Williams, editors. 1998.
Focus on form in classroom second language acqui-
sition. Cambridge University Press, Cambridge.

Xinya Du, Junru Shao, and Claire Cardie. 2017.
Learning to ask: Neural question generation
for reading comprehension. arXiv preprint
https://arxiv.org/pdf/1705.00106.

Michael Heilman. 2011. Automatic factual question
generation from text. Ph.D. thesis, Carnegie Mellon
University.

Michael Heilman and Noah A. Smith. 2009. Ques-
tion generation via overgenerating transformations
and ranking. Technical report, DTIC Document.

Stephen Krashen. 1977. Some issues relating to the
monitor model. On Tesol 77(144-158).
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Abstract

In this work we adapt machine transla-
tion (MT) to grammatical error correction,
identifying how components of the statis-
tical MT pipeline can be modified for this
task and analyzing how each modification
impacts system performance. We evaluate
the contribution of each of these compo-
nents with standard evaluation metrics and
automatically characterize the morpholog-
ical and lexical transformations made in
system output. Our model rivals the cur-
rent state of the art using a fraction of the
training data.

1 Introduction

This work presents a systematic investigation for
automatic grammatical error correction (GEC) in-
spired by machine translation (MT). The task of
grammatical error correction can be viewed as
a noisy channel model, and therefore a MT ap-
proach makes sense, and has been applied to the
task since Brockett et al. (2006). Currently, the
best GEC systems all use machine translation in
some form, whether statistical MT (SMT) as a
component of a larger pipeline (Rozovskaya and
Roth, 2016) or neural MT (Yuan and Briscoe,
2016). These approaches make use of a great
deal of resources, and in this work we propose a
lighter-weight approach to GEC by methodically
examining different aspects of the SMT pipeline,
identifying and applying modifications tailored for
GEC, introducing artificial data, and evaluating
how each of these specializations contributes to
the overall performance.

Specifically, we demonstrate that

• Artificially generated rules improve perfor-
mance by nearly 10%.

• Custom features describing morphological
and lexical changes provide a small perfor-
mance gain.
• Tuning to a specialized GEC metric is

slightly better than tuning to a traditional MT
metric.
• Larger training data leads to better perfor-

mance, but there is no conclusive difference
between training on a clean corpus with min-
imal corrections and a noisy corpus with po-
tential sentence rewrites.

We have developed and will release a tool to au-
tomatically characterize the types of transforma-
tions made in a corrected text, which are used as
features in our model. The features identify gen-
eral changes such as insertions, substitutions, and
deletions, and the number of each of these opera-
tions by part of speech. Substitutions are further
classified by whether the substitution contains a
different inflected form of the original word, such
as change in verb tense or noun number; if substi-
tution has the same part of speech as the original;
and if it is a spelling correction. We additionally
use these features to analyze the outputs generated
by different systems and characterize their perfor-
mance with the types of transformations it makes
and how they compare to manually written correc-
tions in addition to automatic metric evaluation.

Our approach, Specialized Machine translation
for Error Correction (SMEC), represents a sin-
gle model that handles morphological changes,
spelling corrections, and phrasal substitutions, and
it rivals the performance of the state-of-the-art
neural MT system (Yuan and Briscoe, 2016),
which uses twice the amount of training data, most
of which is not publicly available. The analy-
sis provided in this work will help improve fu-
ture efforts in GEC, and can be used to inform ap-
proaches rooted in both neural and statistical MT.
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2 Related work

Earlier approaches to grammatical error correc-
tion developed rule-based systems or classifiers
targeting specific error types such as prepositions
or determiners, (e.g., Eeg-Olofsson and Knutsson,
2003; Tetreault and Chodorow, 2008; Rozovskaya
et al., 2014), and few approaches were rooted in
machine translation, though some exceptions ex-
ist (Brockett et al., 2006; Park and Levy, 2011,
e.g.,). The 2012 and 2013 shared tasks in GEC
both targeted only certain error types (Dale et al.,
2012; Ng et al., 2013), to which classification
was appropriately suited. However, the goal of
the 2014 CoNLL Shared Task was correcting all
28 types of grammatical errors, encouraging sev-
eral MT-based approaches to GEC, (e.g., Felice
et al., 2014; Junczys-Dowmunt and Grundkiewicz,
2014). Two of the best CoNLL 2014 systems
used MT as a black box, reranking output (Felice
et al., 2014), and customizing the tuning algorithm
and using lexical features (Junczys-Dowmunt and
Grundkiewicz, 2014). The other leading system
was classification-based and only targeted certain
error types (Rozovskaya et al., 2014). Perform-
ing less well, Wang et al. (2014) used factored
SMT, representing words as factored units to more
adeptly handle morphological changes. Shortly
after the shared task, a system combining classi-
fiers and SMT with no further customizations re-
ported better performance than all competing sys-
tems (Susanto et al., 2014)

The current leading GEC systems all use MT
in some form, including hybrid approaches that
use the output of error-type classifiers as MT in-
put (Rozovskaya and Roth, 2016) or include a
neural model of learner text as a feature in SMT
(Chollampatt et al., 2016); phrase-based MT with
sparse features tuned to a GEC metric (Junczys-
Dowmunt and Grundkiewicz, 2016); and neural
MT (Yuan and Briscoe, 2016). Three of these
model have been evaluated on a separate test cor-
pus and, while the PBMT system reported the
highest scores on the CoNLL-14 test set, it was
outperformed by the systems with neural compo-
nents on the new test set (Napoles et al., 2017).

2.1 GEC corpora

There are two broad categories of parallel data for
GEC. The first is error-coded text, in which an-
notators have coded spans of learner text contain-
ing an error, and which includes the NUS Cor-

pus of Learner English (NUCLE; 57k sentence
pairs) (Dahlmeier et al., 2013), the Cambridge
Learner Corpus (CLC; 1.9M pairs per Yuan and
Briscoe (2016)) (Nicholls, 2003), and a subset of
the CLC, the First Certificate in English (FCE;
34k pairs) (Yannakoudakis et al., 2011). MT sys-
tems are trained on parallel text, which can be
extracted from error-coded corpora by applying
the annotated corrections, resulting a clean cor-
pus with nearly-perfect word and sentence align-
ments.1 These corpora are small by MT train-
ing standards and constrained by the coding ap-
proach, leading to minimal changes that may re-
sult in ungrammatical or awkward-sounding text
(Sakaguchi et al., 2016).

The second class of GEC corpora are paral-
lel datasets, which contain the original text and
a corrected version of the text, without explic-
itly coded error corrections. These corpora need
to be aligned by sentences and tokens, and auto-
matic alignment introduces noise. However, these
datasets are cheaper to collect, significantly larger
than the error-coded corpora, and may contain
more extensive rewrites. Additionally, corrections
of sentences made without error coding are per-
ceived to be more grammatical. Two corpora of
this type are the Automatic Evaluation of Scien-
tific Writing corpus, with more than 1 million sen-
tences of scientific writing corrected by profes-
sional proofreaders (Daudaravicius et al., 2016),
and the Lang-8 Corpus of Learner English, which
contains 1 million sentence pairs scraped from an
online forum for language learners, which were
corrected by other members of the lang-8.com
online community (Tajiri et al., 2012). Twice that
many English sentence pairs can be extracted from
version 2 of the Lang-8 Learner Corpora (Tomoya
et al., 2011).

We will include both types of corpora in our ex-
periments in Section 4.

2.2 Evaluation

GEC systems are automatically evaluated by com-
paring their output on sentences that have been
manually annotated corpora. The Max-Match
metric (M2) is the most widely used, and calcu-
lates the F0.5 over phrasal edits (Dahlmeier and
Ng, 2012). Napoles et al. (2015) proposed a

1Alignment mistakes may occur when sentences are split
or joined, or when errors and corrections span multiple to-
kens, in which the automatic alignment within that span may
err.
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new metric, GLEU, which has stronger correlation
with human judgments. GLEU is based on BLEU
and therefore is well-suited for MT. It calculates
the n-gram overlap, rewarding n-grams that sys-
tems correctly changed and penalizing n-grams
that were incorrectly left unchanged. Unlike M2, it
does not require token-aligned input and therefore
is able to evaluate sentential rewrites instead of
minimal error spans. Since both metrics are com-
monly used, we will report the scores of both met-
rics in our results. A new test set for GEC was re-
cently released, JFLEG (Napoles et al., 2017), Un-
like the CoNLL 2014 test set, which is a part of the
NUCLE corpus, JFLEG contains fluency-based
edits instead of error-coded corrections. Like the
Lang-8 and AESW corpora, fluency edits allow
full sentence rewrites and do not constrain cor-
rections to be error coded, and humans perceive
sentences corrected with fluency edits to be more
grammatical than those corrected with error-coded
edits alone (Sakaguchi et al., 2016). Four leading
systems were evaluated on JFLEG, and the best
system by both automatic metric and human evalu-
ation is the neural MT system of Yuan and Briscoe
(2016) (henceforth referred to as YB16).

3 Customizing statistical machine
translation

Statistical MT contains various components, in-
cluding the training data, feature functions, and an
optimization metric. This section describes how
we customized each of these components.

3.1 Training data

A translation grammar is extracted from the train-
ing data, which is a large parallel corpus of un-
grammatical and corrected sentences. Each rule is
of the form

left-hand side (LHS)→ right-hand side (RHS)

and has a feature vector, the weights of which are
set to optimize an objective function, which in MT
is metric like BLEU. A limiting factor on MT-
based GEC is the available training data, which
is small when compared to the data available for
bilingual MT, which commonly uses 100s of thou-
sands or millions of aligned sentence pairs. We hy-
pothesize that artificially generating transforma-
tion rules may overcome the limit imposed by lack
of sufficiently large training data and improve per-
formance. Particularly, the prevalence of spelling

errors is amplified in sparse data due to the poten-
tially infinite possible misspellings and large num-
ber of OOVs. Previous work has approached this
issue by including spelling correction as a step in
a pipeline (Rozovskaya and Roth, 2016).

Our solution is to artificially generate grammar
rules for spelling corrections and morphological
changes. For each word in the input, we query
the Aspell dictionary with PyEnchant2 for spelling
suggestions and create new rules for each correc-
tion, e.g. publically→ public ally

publically→ publicly

Additionally, sparsity in morphological variations
may arise in datasets. Wang et al. (2014) ap-
proached this issue with factored MT, which trans-
lates at the sub-word level. Instead, we also gener-
ate artificial translation rules representing morpho-
logical transformations using RASP’s morpholog-
ical generator, morphg (Minnen et al., 2001). We
perform POS tagging with the Stanford POS tag-
ger (Toutanova et al., 2003) and create rules to
switch the plurality of nouns (e.g., singular ↔
plural). For verbs, we generate rules that change
that verb to every other inflected form, specifically
the base form, third-person singular, past tense,
past participle, and progressive tense (e.g., wake,
wakes, woke, woken, waking). Generated words
that did not appear in the PyEnchant dictionary
were excluded.

3.2 Features
Each grammar rule has scores assigned by several
feature functions ~ϕ = {ϕ1...ϕN} that are com-
bined in a log-linear model as that rule’s weight,
with parameters ~λ set during tuning.

w = −
N∑

i=1

λi logϕi

In SMT, these features typically include a phrase
penalty, lexical and phrase translation probabil-
ities, a language model probability, binary in-
dicators for purely lexical and monotonic rules,
and counters of unaligned words and rule length.
Previous work in other monolingual “translation”
tasks has achieved success in using features tai-
lored to that task, such as a measure of the rel-
ative lengths for sentence compression (Ganitke-
vitch et al., 2011) or lexical complexity for sen-
tence simplification (Xu et al., 2016). For GEC,

2https://pythonhosted.org/pyenchant/
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Junczys-Dowmunt and Grundkiewicz (2016) used
a large number of sparse features for a phrase-
based MT system that achieved state of the art per-
formance on the CoNLL-2014 test set. Unlike that
work, which uses a potentially infinite amount of
sparse features, we choose to use a discrete set of
feature functions that are informed by this task.
Our feature extraction relies on a variety of pre-
existing tools, including fast-align for word align-
ment (Dyer et al., 2013), trained over the parallel
FCE, Lang-8, and NUCLE corpora; PyEnchant for
detecting spelling changes; the Stanford POS tag-
ger; the RASP morphological analyzer, morpha
(Minnen et al., 2001); and the NLTK WordNet
lemmatizer (Bird et al., 2009).

Given a grammatical rule and an alignment be-
tween tokens on the LHS and RHS, we tag the to-
kens with their part of speech and label the lemma
and inflection of nouns and verbs with morpha
and the lemma of each adjective and adverb with
the WordNet lemmatizer. We then collect count-
based features for individual operations and rule-
level qualities. An operation is defined as a dele-
tion, insertion, or substitution of a pair of aligned
tokens (or a token aligned with ε). An aligned to-
ken pair is represented as (li, rj), where li is a to-
ken on the LHS at index i, and similarly rj for
the RHS. The operation features, below, are cal-
culated for each (un)aligned token and summed to
attain the value for a given rule.

• All operations
– CLASS-error(li) for deletions and sub-

stitutions
– CLASS-error(rj) for insertions

CLASS refers to the broad word class of a
token, such as noun or verb.
• Deletions

– is-deleted(li)
– TAG-deleted(li)

TAG is the PTB part-of-speech tag of a token
(e.g., NN, NNS, NNP, etc.),
• Insertions

– is-inserted(rj)
– TAG-inserted(rj)

• Substitutions
– is-substituted(rj)
– TAG-substituted(rj)
– TAG-substituted-with-TAG(li, rj)

Morphological features:
– inflection-change-same-lemma(li, rj)
– inflection-and-lemma-change(li, rj)

– lemma-change-same-inflection(li, rj)
Spelling features:

– not-in-dictionary(li)
– spelling-correction(li, rj)

Counts of spelling corrections are weighted
by the probability of rj in an English Giga-
word language model.

We also calculate the following rule-level features:

– character Levenshtein distance(LHS, RHS)
– token Levenshtein distance(LHS, RHS)

–
# tokens(RHS)
# tokens(LHS)

–
# characters(RHS)
# characters(LHS)

In total, we use 24 classes and 45 tags. The to-
tal number of features 2,214 but only 266 were
seen in training (due to unseen TAG-TAG sub-
stitutions). We additionally include 19 MT fea-
tures calculated during grammar extraction.3 Pre-
vious MT approaches to GEC, have included Lev-
enshtein distance as a feature for tuning (Felice
et al., 2014; Junczys-Dowmunt and Grundkiewicz,
2014, 2016), and Junczys-Dowmunt and Grund-
kiewicz (2016) also used counts of deletions, in-
sertions, and substitutions by word class. They ad-
ditionally had sparse features with counts of each
lexicalized operation, e.g. substitute(run, ran),
which we avoid by abstracting away from the lem-
mas and instead counting the operations by part
of speech and indicating if the lemmas matched or
differed for substitutions. An example rule with its
feature values is found in Table 1. For artificially
generated rules, the MT features are all assigned
a 0-value rather than estimating what that value
should be, since the artificial rules are unseen in
the training data.

3.3 Metric
The decoder identifies the most probable deriva-
tion of an input sentence from the translation
grammar. Derivations are scored by a combination
of a language model score and weighted feature
functions, and the weights are optimized to a spe-
cific metric during the tuning phase. Recent work
has shown that MT metrics like BLEU are not suf-
ficient for evaluating GEC (Grundkiewicz et al.,
2015; Napoles et al., 2015) or tuning MT systems
for GEC (Junczys-Dowmunt and Grundkiewicz,

3More details about the features can be found at https:
//github.com/cnap/smt-for-gec.
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Rule
argued that→ may argue that

Alignment
(ε, may), (argued, argue), (that, that)

Feature Value
Verb error 2
Substituted 1
Inserted 1
MD inserted 1
VB is substituted 1
VBD substituted with VB 1
Inflection change, same lemma 1
Token LD 2
Character LD 5

Table 1: An example rule from our grammar and
the non-zero feature values from Section 3.2.

2016). Fundamentally, MT metrics do not work
for GEC because the output is usually very sim-
ilar to the input, and therefore the input already
has a high metric score. To address this issue, we
tune to GLEU, which was specifically designed
for evaluating GEC output. We chose GLEU in-
stead of M2 because the latter requires a token
alignment between the input, output, and gold-
standard references, and assumes only minimal,
non-overlapping changes have been made. GLEU,
on the other hand, measures n-gram overlap and
therefore is better equipped to handle movement
and changes to larger spans of text.

4 Experiments

For our experiments, we use the Joshua 6 toolkit
(Post et al., 2015). Tokenization is done with
Joshua and token-level alignment with fast-align
(Dyer et al., 2013). All text is lowercased, and we
use a simple algorithm to recase the output (Table
2). We extract a hierarchical phrase-based transla-
tion model with Thrax (Weese et al., 2011) and
perform parameter tuning with pairwise ranked
optimization in Joshua. Our training data is from
the Lang-8 corpus (Tomoya et al., 2011), which
contains 1 million parallel sentences, and gram-
mar is extracted from the 563k sentence pairs that
contain corrections. Systems are tuned to the
JFLEG tuning set (751 sentences) and evaluated
on the JFLEG test set (747 sentences). We use an
English Gigaword 5-gram language model.

We evaluate performance with two metrics,
GLEU and M2, which have similar rankings and

1. Generate POS tags of the cased input sentence
2. Label proper nouns in the input
3. Align the cased input tokens with the output
4. Capitalize the first alphanumeric character of

the output sentence (if a letter).
5. For each pair of aligned tokens (li, rj), capital-

ize rj if li is labeled a proper noun or rj is the
token “i”.

Table 2: A simple recasing algorithm, which re-
lies on token alignments between the input and
output.

match human judgments on the JFLEG corpus
(Napoles et al., 2017). We use two baselines:
the first has misspellings corrected with Enchant
(Sp. Baseline), and the second is an unmodi-
fied MT pipeline trained on the Lang-8 corpus,
optimized to BLEU with no specialized features
(MT Baseline), and we compare our performance
to the current state of the art, YB16. While we
train on about half a million sentence pairs, YB16
had nearly 2 million sentence pairs for training.4

We additionally report metric scores for the hu-
man corrections, which we determine by evaluat-
ing each reference set against the other three and
reporting the mean score.

All systems outperform both baselines, and the
spelling baseline is stronger than the MT baseline.
The spelling baseline also has the highest preci-
sion except for the best automatic system, YB16,
demonstrating that spelling correction is an impor-
tant component in this corpus. There is a disparity
in the GLEU and M2 scores for the baseline: the
baseline GLEU is about 5% lower than the other
systems but the M2 is 30% lower. This can be at-
tributed to the lesser extent of changes made by
the baseline system which results in low recall for
M2 but which is not penalized by GLEU, which
is a precision-based metric. The human correc-
tions have the highest metric scores, and make
changes to 77% of the sentences, which is in be-
tween the number of sentences changed by YB16
and SMEC, however the human corrections have
a higher mean edit distance, because the anno-
tators made more extensive changes when a sen-
tence needed to be corrected than any of the mod-
els.

Our fully customized model with all modifi-
cations, Specialized Machine translation for Er-

4Drawn from the CLC, which is not public.
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ror Correction (SMEC+morph), scores lower than
YB16 according to GLEU but has the same M2

score. SMEC+morph has higher M2 recall, and
visual examination of the output supports this,
showing many incorrect or unnecessary num-
ber of tense changes. Automatic analysis re-
veals that it makes significantly more inflection
changes than the humans or YB16 (detected with
the same method described in Section 3.2), from
which we can conclude that the morphological
rules errors are applied too liberally. If we re-
move the generated morphological rules but keep
the spelling rules (SMEC), performance improves
by 0.4 GLEU points and decreases by 0.1 M2

points—but, more importantly, this system has
higher precision and lower recall, and makes more
conservative morphological changes. Therefore,
we consider SMEC, the model without artificial
morphological rules, to be our best system.

The metrics only give us a high-level overview
of the changes made in the output. With error-
coded text, the performance by feature type can be
examined with M2, but this is not possible with
GLEU or the un-coded JFLEG corpus. To investi-
gate the types of changes systems make on a more
granular level, we apply the feature extraction
method described in Section 3.2 to quantify the
morphological and lexical transformations. While
we developed this method for scoring translation
rules, it can work on any aligned text, and is sim-
ilar to the forthcoming ERRANT toolkit, which is
uses a rule-based framework for automatically cat-
egorizes grammatical edits (Bryant et al., 2017).
We calculate the number of each of these trans-
formations made by to the input by each system
and the human references, determining significant
differences with a paired t-test (p < 0.05). Fig-
ure 1 contains the mean number of these trans-
formations per sentence made by SMEC, YB16,
and the human-corrected references, and Figure 2
shows the number of operations by part of speech.
Even though the GLEU and M2 scores of the two
systems are nearly identical, they are significantly
different in all of the transformations in Figure 1,
with SMEC having a higher edit distance from
the original, but YB16 making more insertions
and substitutions. Overall, the human corrections
have a significantly more inserted tokens than ei-
ther system, while YB16 makes the most substitu-
tions and fewer deletions than SMEC or the hu-
man corrections. The bottom plot displays the
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Figure 1: Mean tokens per sentence displaying
certain changes from the input sentence.

mean number of operations by part of speech (op-
erations include deletion, insertion, and substitu-
tion). Both systems and the human corrections
display similar rates of substitutions across differ-
ent parts of speech, however the human references
have significantly more preposition and verb op-
erations and there are significant differences be-
tween the determiner and noun operations made
by YB16 compared to SMEC and the references.
This information can be further analyzed by part
of speech and edit operation, and the same infor-
mation is available for other word classes.

5 Model analysis

We wish to understand how each component
of our model contributes to its performance,
and therefore train a series of variations of the
model, each time removing a single customiza-
tion, specifically: the optimization metric (tun-
ing to BLEU instead of GLEU; SMEC−GLEU),
the features (only using the standard MT fea-
tures; SMEC−feats), and eliminating artificial rules
(SMEC−sp). The impact of training data size will
be investigated separately in Section 5.1. We com-
puted the automatic metric scores of each model
variation and performed the automatic edit anal-
ysis described in Section 3.2. In Table 4, we
report the net metric increase or decrease com-
pared to the full model, and the percent increase
or decrease for each of the features. Changing
the metric from GLEU to BLEU significantly de-
creases the amount of change made by the model,
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M2 Edit distance
System GLEU P R F0.5 Sents. changed (tokens)
Sp. Baseline 55.5 57.7 16.6 38.4 42% 0.8
MT Baseline 54.9 56.7 14.6 36.0 39% 0.7
SMEC+morph 57.9 54.7 44.2 52.3 88% 2.8
SMEC 58.3 55.9 41.1 52.2 85% 2.5
YB16 58.4 59.4 35.3 52.3 73% 1.9
Human 62.1 67.0 52.9 63.6 77% 3.1

Table 3: Results on the JFLEG test set. In addition to the GLEU and M2 scores, we also report the
percent of sentences changed from the input and the mean Levensthein distance.
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Figure 2: Mean number of operations (deletions,
insertions, and substitutions) per sentence by part
of speech.

SMEC−GLEU, with a 60% lower edit distance than
SMEC, and at least 50% fewer of almost all trans-
formations. The GLEU score of this system is
nearly 1 point lower, however there is almost no
change in the M2 score, indicating that the changes
made were appropriate, even though they were
fewer in number. Tuning to BLEU causes fewer
changes because the input sentence already has a
high BLEU score due to the high overlap between
the input and reference sentences. GLEU encour-
ages more changes by penalizing text that should
have been changed in the output.

Removing the custom features (SMEC−feats)
makes less of a difference in the GLEU score,
however there are significantly more determiners
added and more tokens are substituted with words
that have different lemmas and parts of speech.
This suggests that the specialized features encour-
aged morphologically-aware substitutions, reduc-

ing changes that did not have semantic or func-
tional overlap with the original content. Removing
the artificially generated spelling rules (SMEC−sp)
had the greatest impact on performance, with a
nearly 4-point decrease in GLEU score and 9.5-
decrease in M2. Without spelling rules, signifi-
cantly fewer tokens were inserted in the correc-
tions across all word classes. We also see a signif-
icantly greater number of substitutions made with
words that had neither the same part of speech or
lemma as the original word, which could be due to
sparsity in the presence of spelling errors which is
addressed with the artificial grammar.

Table 5 contains example sentences from the
test set with system outputs that illustrate these ob-
servations. These ungrammatical sentences range
from one that can easily be corrected using min-
imal edits; to a sentence that requires more sig-
nificant changes and inference but has an obvious
meaning; to a sentence that is garbled and does not
have an immediately obvious correction, even to a
native speaker. The reference correction contains
more extensive changes than the automatic sys-
tems and makes spelling corrections not found by
the decoder (engy → energy) or inferences in the
instance of the garbled third sentence, changing
lrenikg → Ranking. SMEC makes many spelling
corrections and makes more insertions, substitu-
tions, and deletions than the two SMEC varia-
tions. However, the artificial rules also cause some
bad corrections, found in the third example chang-
ing studens→ stud-ens, while the intended word,
students, is obvious to a human reader. When
optimizing to BLEU instead of the custom met-
ric (SMEC−GLEU), there are fewer changes and
therefore output is less fluent. In the first exam-
ple, SMEC−GLEU applies only one spelling change
even though the rest of the sentence has many
small errors that were all corrected in SMEC, such
as missing determiner and extra auxiliary. The
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Score
SMEC SMEC SMEC

SMEC −GLEU −feats −sp

GLEU 58.3 57.6 58.1 54.4
M2 52.2 44.9 47.7 42.7
Transformation
Edit dist −60% −11%
Deleted −51% −7% −4%
Inserted −46% −24%
Substituted −37% +9%
Diff inflection −53%
Diff token −18% +9%
Diff token&POS −29% +24% +31%
Spelling −35% +8%
Determiner −51% −7%

del −47% −5%
ins −70% +39% −30%
sub −56%

Preposition −52%
del −51%
ins −45% −10% −22%
sub −42%

Noun −40% −6% −10%
del −45% −9% −12%
ins −38% −7% −13%
sub −30%

Verb −57% −5% −11%
del −61% −6% −7%
ins −53% −13% −40%
sub −50%

Punctuation −52%
del −47% −5%
ins −84% −30%
sub

Table 4: Modifications of SMEC, reporting the
mean occurrence of each transformation per sen-
tence, when there is a significant difference (p <
0.05 by a paired t-test). We report the difference
with percentages because each transformation oc-
curs with different frequency.

same pattern is visible in the other two examples.
Finally, without the artificial rules, SMEC−sp fixes
only a fraction of the spelling mistakes—however
it is the only system that correctly changes stu-
dens → students. Independent from these mod-
ifications, the capitalization issues present in the
input were all remedied by our recasing algorithm,
which improves the metric score.

5.1 Impact of training data

Lang-8 is the largest publicly available parallel
corpus for GEC, with 1 million tokens and approx-
imately 563k corrected sentence pairs, however
this corpus may contain noise due to automatic

44 46 48 50 52 54 56 57 60
GLEU

FCE (21.2k)
NUCLE (21.8k)

FCE+NUCLE (42.8k)
Lang-8 (43k)

Lang-8 (563k)

no spelling rules with spelling rules

Figure 3: GLEU scores of SMEC with different
training sizes, with and without artificial rules.

alignment and the annotators, who were users of
the online Lang-8 service and may not necessarily
have provided accurate or complete corrections.
Two other corpora, FCE and NUCLE, contain an-
notations by trained English instructors and abso-
lute alignments between sentences, however each
is approximately 20-times smaller than Lang-8.
We wish to isolate the effect of size and source
of training data has on system performance, and
therefore randomly sample the Lang-8 corpus to
create a training set the same size as FCE and NU-
CLE (43k corrected sentence pairs), train a model
following the same procedure described above.
We hypothesized that including artificial rules may
help address problems of sparsity in the training
data, and therefore we also train additional models
with and without spelling rules to determine how
artificial data affects performance as the amount
of training data increases. Figure 3 shows the rel-
ative GLEU scores of systems with different train-
ing data sizes and sources, before and after adding
artificial spelling rules.

More data increases performance for Lang-8,
however there is no clear relationship between size
and performance on the FCE+NUCLE data. Mod-
els trained on FCE, NUCLE, and FCE/NUCLE
all have similar performance. And, training on
43k Lang-8 sentence pairs slightly improves per-
formance over training on just FCE/NUCLE, sug-
gesting that more data negates the presence of
noise and the sentential rewrites present in Lang-8
are better for training a GEC system. The rewrites
in Lang-8 could be more similar to those found in
JFLEG since both datasets allow for broader flu-
ency changes instead of corrections to coded spans
of text. In future work, we will train on version
2 of the Lang-8 Learner Corpus, which has twice
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Orig Unforturntly , almost older people can not use internet , in spite of benefit of internet .
Human Unfortunately , most older people can not use the internet , in spite of benefits of the

internet .
SMEC Unfortunately , most older people can not use the internet , in spite of the benefits of

the internet .
SMEC−GLEU Unfortunately , almost older people can not use internet , in spite of benefit of internet .
SMEC−sp Unforturntly , 2 older people can not use the internet , in spite of the benefits of the

internet .
Orig becuse if i see some one did somthing to may safe me time and engy and it wok ’s i will

do it .
Human Because if I see that someone did something that may save me time and energy and it

works I will also do it .
SMEC Because if I see 2 one did something 2 may save me time and edgy and 2 work 2 , I

will do it .
SMEC−GLEU Because if I see some one did something to may save me time and edgy and it wok ’s I

will do it .
SMEC−sp Because if I see 2 one somthings 2 may save me time and engy 2 work 2 I will do

it .
Orig lrenikg the studens the ideas have many advantegis :
Human Ranking the students ’ 2 ideas has many advantages .
SMEC Linking the stud-ens 2 ideas have many advantages :
SMEC−GLEU Linking the stud-ens the ideas have many advantages :
SMEC−sp Lrenikg 2 students 2 ideas have 2 advantegis :

Table 5: Example corrections made by a human annotator, SMEC, and two variations: trained on BLEU
instead of GLEU SMEC−GLEU and without artificial spelling rules (SMEC−sp). Inserted or changed text
is in bold and deleted text is indicated with 2.

as much data as the version used in this work, to
determine whether performance continues to im-
prove. For all models, adding artificial spelling
rules improves performance by about 4 GLEU
points (adding spelling rules to FCE training data
only causes a 2-point GLEU improvement). The
amount of performance does not change related to
the size of the training data, however the consis-
tent improvement supports our hypothesis that ar-
tificial rules are useful to address problems of data
sparsity.

6 Conclusion

This paper has presented a systematic investiga-
tion into the components of a standard statistical
MT pipeline that can be customized for GEC. The
analysis performed on the contribution of each
component of the system can inform the design of
future GEC models. We have found that extending
the translation grammar with artificially generated
rules for spelling correction can increase the M2

score by as much as 20%. The amount of training

data also has a substantial impact on performance,
increasing GLEU and M2 scores by approximately
10%. Tuning to a specialized GEC metric and
using custom features both help performance but
yield less considerable gains. The performance
of our model, SMEC, is on par with the current
state-of-the-art GEC system, which is neural MT
trained on twice the training data, and our analy-
sis suggests that the performance of SMEC would
continue to improve if trained on that amount of
data. In future work we will test this hypothesis
with the larger parallel corpus extracted from ver-
sion 2 of the Lang-8 Learner Corpora. Our code
will be available for automatic feature extraction
and edit analysis, as well as more details about the
model implementation.5
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Abstract

Automatic essay scoring is nowadays suc-
cessfully used even in high-stakes tests,
but this is mainly limited to holistic scor-
ing of learner essays. We present a
new dataset of essays written by highly
proficient German native speakers that is
scored using a fine-grained rubric with the
goal to provide detailed feedback. Our ex-
periments with two state-of-the-art scoring
systems (a neural and a SVM-based one)
show a large drop in performance com-
pared to existing datasets. This demon-
strates the need for such datasets that allow
to guide research on more elaborate essay
scoring methods.

1 Introduction

Automatic essay scoring is the task of automat-
ically rating free-form writings. The scores as-
signed are often holistic and are based both on
content and form. Automatic essay scoring is
nowadays successfully used to reduce human scor-
ing workload (Dikli, 2006), for example for the as-
sessment of language proficiency (Weigle, 2013).
Automatically assigned scores are considered reli-
able enough that they have replaced one out of two
human annotators even in high-stakes language
proficiency tests such as TOEFL for many years
now (Attali and Burstein, 2006).

Essay scoring approaches in recent years have
mainly focused on a small number of publicly
available datasets, especially the ASAP dataset
from the Kaggle competition. On this dataset,
many approaches reach very competitive re-
sults, comparable to human scoring performance
(Shermis and Hamner, 2012), so that the impres-
sion might arise that automatic essay scoring is a
solved problem.

In this paper, we present experiments on a new
dataset that we consider to be more challeng-
ing than currently available ones. We score es-
says written by prospective teachers, before start-
ing their university education in Germany. These
essays in German language are collected to as-
sess whether these native-speaking students might
need additional language training in order to be-
come a teacher. While other datasets either
measure the full range of language proficiency
from novice learners to (near-)natives, or measure
the writings of high-school students, our dataset
shows much less variety in language proficiency.
As almost all test-takers are native speakers and
possess a general qualification for university en-
trance, differences between good and a not so
good essays are much less pronounced.

When applying state-of-the-art essay scoring
systems on this dataset, we find that a feature
set working well on a standard dataset shows
a considerably worse performance on our data.
This makes it very questionable whether automatic
scoring techniques could currently be applied in
a real-life scenario, thus confirming the need for
deeper methods able to handle such datasets.

We first present an overview of related work,
especially publicly available datasets and present
our corpus in detail. We then asses the scorabil-
ity of the corpus by a series of experiments us-
ing a supervised machine learning system with a
standard feature set. We first confirm that our sys-
tem reaches state-of-the-art performance by evalu-
ating it on the ASAP corpus and scores in our cor-
pus assessing the writing globally. Subsequently,
we assess how well such a feature set is suited to
model the different scoring variables annotated in
our data and find that the global scores are mod-
eled best. Concentrating on these scores, we in-
vestigate the influence of various feature settings
and different amounts of training data on the scor-
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ing performance.

2 Related Work

Automatic essay scoring is almost al-
ways tackled as a machine learning task
(Dikli, 2006; Valenti et al., 2003). A wide
range of features representing differ-
ent aspects contributing to a good es-
say have been proposed such, as n-grams
(Chen and He, 2013) or LSA (Foltz et al., 1999),
length (Mahana et al., 2012; Östling, 2013),
linguistic correctness in terms of spelling and
grammar (Mahana et al., 2012; Östling, 2013),
or cohesion and coherence of a text through
identifying overlap between sentences and usage
of connective devices (Lei et al., 2014). Recently,
also neural methods have been proposed and
successfully used for essay scoring (Taghipour
and Ng, 2016).

Most essay scoring approaches in recent years
have been evaluated either on proprietary datasets
or on a few publicly available ones. Not pub-
licly available data include datasets used by Kle-
banov et al. (2016) with large amounts of college
level exam data, or data from music teacher pro-
ficiency test (Madnani et al., 2016). Responses
in this last dataset are in length on the borderline
between short answers and essays and are inter-
esting because they, as well as our corpus, target
writings by generally language-proficient popula-
tion. The dominating publicly available dataset
for essay scoring in recent year has been the data
of the ASAP essay scoring challenge.1 It con-
tains both source-based and opinion tasks target-
ing US students from grade 7 to 10 for 8 different
prompts with up to 3000 responses per prompt.
Since its release in 2012, the dataset has been
widely used in a number of approaches (Alikanio-
tis et al., 2016; Taghipour and Ng, 2016; Cummins
et al., 2016). Another dataset, the CLC-FCE cor-
pus (Yannakoudakis et al., 2011) contains essays
written by ESOL test takers, but relatively little
data per individual prompt (1,244 essays across 10
prompts), making it not the first choice for prompt-
specific approaches. Because of its extensive er-
ror annotations, it has also been used for the task
of grammatical error detection and correction (e.g.
Cahill et al. (2013) and Seo et al. (2012)).

In Swedish, a corpus of high school essays has
been released by Östling (2013) with an overall

1https://www.kaggle.com/c/asap-aes

number of 1,702 essay for 19 different prompts.
This means, also this dataset contains few es-
says per prompt, such that their automatic scoring
mainly focuses on form (which can be assessed
across prompts) rather than content (which is to a
higher degree prompt-specific).

Some other corpora were originally not de-
signed for the task of essay scoring, but each
sample comes with a language proficiency level
of its writer, therefore allowing to use them for
language proficiency assessment. That means
their labels do not necessarily reflect the profi-
ciency of the current essay, but rather the gen-
eral language proficiency of the writer. For
example, the ETS corpus of non-native written
English (Blanchard et al., 2013) contains 12,100
TOEFL test essays and has originally been pub-
lished for the task of native-language identi-
fication (Tetreault et al., 2013), but also comes
with coarse proficiency levels and has been
used for the task of proficiency classification
(Klebanov et al., 2016; Vajjala, 2017). Similarly
the ICNALE corpus (Ishikawa, 2011) contains En-
glish essays from Asian writers where each es-
say has an assigned proficiency level. Beyond the
English language, proficiency classification has
been performed on the Swedish SweLL corpus
(Volodina et al., 2016; Pilán et al., 2016), and for
Estonian (Vajjala and Lėo, 2014).

3 A more Challenging Essay Dataset

As described above, most datasets are either small
or target a wide range of proficiency levels, so that
relatively shallow features are sufficient to achieve
quite good performance. To overcome this prob-
lem, we have created a new dataset from essays
written in German by prospective university stu-
dents, mostly native speakers. The essays are one
part of a large-scale assessment project at the Uni-
versity of Duisburg-Essen, SkaLa (Bremerich-Vos
and Scholten-Akoun, 2016). All students who in-
tend to enroll in a degree program for future teach-
ers have to participate in a compulsory language
assessment. A major constituent of this assess-
ment is an open writing task with two parts. First,
students are asked to summarize a newspaper arti-
cle dealing with an education-related topic (which
we call the source text), in our datasets, an article
about the pros and cons of study fees. This part of
the response is the summary part of the essay. Sec-
ond, the students shall briefly discuss a particular
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statement from the prompt (the discussion part).
The time limit for this task is 120 minutes and the
produced text is supposed to consist of at least 350
words.

The aim of the fine-grained evaluation is to
identify the participants’ strengths and weaknesses
as precisely as possible. After a manual evalua-
tion of the essays, students receive detailed feed-
back about their performance in each of the man-
ually scored variables and –if need be– are in-
formed about relevant available training programs
at the university designed to foster written lan-
guage competencies.

In this way, 2,020 essays with an average of
around 600 tokens per essay were collected and
scored as described next.

Scoring Rubric While many essay-scoring cor-
pora provide only a holistic score, this dataset has
been scored using a fine-grained rubric, targeting
different aspects of writing.

The raters were asked to evaluate the students’
texts with regard to a total of 41 variables. The
writing skills ratings are based upon analytical
descriptors (cf. Weigle (2002, p. 114) and Weir
(2005, p. 183)). Table 1 provides an overview
of the annotated variables. 11 variables measured
content-related aspects, i.e. whether a certain ar-
gument regarding the topic of the source text is
mentioned in the essay, 3 formal, 5 structural and
10 measured linguistic aspects. In addition, there
are 6 dimension variables and one overall variable.

Before the annotators scored the texts according
to the fine-grained rubric, they evaluated the texts
in a subjective-holistic overall rating (G1 – writ-
ten language competence). This evaluation was
always carried out immediately after the first read-
ing of the text, hence before the extensive analyti-
cal evaluation.

The rating scheme includes three types of vari-
ables: a) descriptors are variables for the evalua-
tion of specific individual aspects of an essay (e.g.
whether a certain argument from the source text is
covered in the summary, whether the central thesis
is correctly identified or whether grammar is pro-
ficiently used). The descriptors are directly anno-
tated. b) Dimension ratings (G2–G7) are weighted
aggregations of individual descriptors, i.e. they are
not annotated but computed based on the descrip-
tor annotations (e.g. G4–Discussion is an aggre-
gation of the descriptors for the discussion part
D1 to D4). c) Finally, a superordinate rating (G8

– informed overall judgment) emerges from the
weighted aggregation of the dimension ratings and
therefore relates to the entire text in all of its as-
pects covered by the rating scheme. (Annotators
were allowed to change the aggregated G8 score,
if they felt it did not adequately represent the es-
say.)

The essays were annotated by one out of 6
annotators each. The annotators received exten-
sive training on a subset of randomly selected
120 essays. After training, annotators reached an
inter-annotator agreement between 52 and 100%
ModAgree (cf. Harsch and Martin (2012, p. 228-
250) and Harsch and Martin (2013)) for the dif-
ferent descriptor variables. Percentage ModA-
gree is computed by measuring per essay and
variable what percentage of all ratings assigned
by the different annotators for this essay agrees
with the mode, i.e. the value assigned most of-
ten. These values are then aggregated across all
essays. For the subjective-holistic G1 score, anno-
tators reached 59% ModAgree, for the aggregated
G8 score 60% ModAgree was reached . Note that
higher agreement values for the descriptor vari-
ables are partially due to fewer categories avail-
able for annotation.

In very few cases (up to four essays per vari-
able), it was not possible for the annotator to en-
code a certain variable for a category (e.g. discus-
sion variables could not be annotated if the discus-
sion part was missing). We do not represent those
essays in the label distributions and exclude them
from the training and test data when performing
machine learning experiments for that variable.

4 Experimental Setup

We split the data randomly into 90% train-
ing data and reserve 10%, i.e. 202 essays, as
held-out test set. If not reported otherwise,
our results are based on ten-fold cross-validation
on the training section. In accordance with
previous work, we evaluate using quadratically
weighted kappa (QWK). For a more intuitive in-
terpretation of the results, we also report accu-
racy. All data is preprocessed using a DKPro
pipeline (Eckart de Castilho and Gurevych, 2014)
consisting of segmentation, POS-tagging (both
OpenNLP2), lemmatization using the MateLem-
matizer (Anders et al., 2010) and parsing using the
StanfordParser (Rafferty and Manning, 2008).

2https://opennlp.apache.org
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Score Description Range % Mod- Relevant Distribution
Agree Essay Part

G1 Written language competence based on first impression 1/2/3/4/5/6 59 Both

Fo
rm

F1 Appropriateness: Does the text address the task? 1/2/3/4 100 Both

F2 Plagiarism: Does the text copy the prompt? 1/2 100 Both

F3 Running text vs. bullet points 1/2 100 Both

C
on

te
nt

C1 Central question 1/2/3 86 Summary

C2 Central thesis 1/2/3 79 Summary

C3 Political background 1/2/3 85 Summary

C4 Effect of study fees 1/2/3 90 Summary

C5 Securing academic educ. financially 1/2/3 92 Summary

C6 Beneficiaries 1/2/3 93 Summary

C7 Primary education (finances) 1/2/3 89 Summary

C8 Primary education (career) 1/2/3 85 Summary

C9 Academics vs. non aademics 1/2/3 91 Summary

C10 Overtaxing the poor 1/2/3 86 Summary

C11 Paying later 1/2/3 88 Summary

G2 Coherence – overall score 1/2/3/4/5/6 65 Summary

G3 Summary –aggregated score 1/2/3/4/5/6 74 Summary

D
is

cu
ss

io
n D1 Are there own contributions (aspects not mentioned in source)? 1/2 92 Discussion

D2 Is an own point of view present and is it motivated? 1/2/3 75 Discussion

D3 Quality of argumentation 1/2/3 85 Discussion

D4 Rigor of discussion 1/2/3/4/5/6 59 Discussion

G4 Discussion – aggregated score 1/2/3/4/5/6 55 Discussion

St
ru

ct
ur

e

S1 Introduction present and marked? 1/2/3 94 Both

S2 Summary present and marked? 1/2/3 79 Both

S3 Discussion present and marked? 1/2/3 88 Both

S4 Conclusion present and marked? 1/2/3 78 Both

S5 Formatting 1/2/3/4 68 Both

G5 Structure – aggregated score 1/2/3/4/5/6 67 Both

L
an

gu
ag

e

L1 Spelling: no / up to 5 / 6 to 10 /more 1/2/3/4 76 Both

L2 Typos: no / up to 5 / more 1/2/3 86 Both

L3 Grammar: no / up to 5 / more 1/2/3 79 Both

L4 Punctuation errors: no / up to 5 / more 1/2/3 80 Both

L5 Word usage (correctness) 1/2/3 68 Both

L6 Word usage (variance) 1/2 91 Both

L7 Is there conceptually oral language? 1/2/3 76 Both

L8 Sentence structure (variability) 1/2 98 Both

L9 Citations (formal aspects): use of quotation marks, references. . . 1/2 75 Summary

L10 Citations (content): Are direct citations used for central points? 1/2 86 Summary

G6 Stilistic skills – aggregated score 1/2/3/4/5/6 52 Both

G7 Verbal skills – aggregated score 1/2/3/4/5/6 64 Both

G8 Overall Impression, aggregated from G2 to G8 1/2/3/4/5/6 60 Both

Table 1: Scoring categories in our corpus. Note that a lower score corresponds to a better essay.
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For our experiments, we rely on two state-of-
the-art systems: A classical supervised system
based on hand-crafted features, and an SVM clas-
sifier, and an LSTM neural model based on em-
beddings.

4.1 SVM Classifier
We use Weka’s (Hall et al., 2009) Support
Vector classifier (SMO) in standard con-
figuration as provided through DKPro TC
(Daxenberger et al., 2014). We utilize a number
of state-of-the-art features: As the essays in
our dataset were written within a certain time
limit, the length of an essay is an indicator of
its quality. We measure length by the number
of sentences, tokens and characters per essay.
Additionally, we measure average sentence length
in tokens and average token length in characters.
N-gram features model words and phrases or
constructions – in the case of POS n-grams – in
an essay. We use boolean occurrence features
for token and POS uni- to trigrams and token
skip bi- to 5-grams. We count the occurrence of
linguistic features, such as certain punctuations
(commas, exclamation marks, quotation marks)
as well as formal references to the source text and
occurrences of reported speech.

Another set of features is based on syntax. We
count the number of subordinate clauses in gen-
eral, as well as the number of temporal and causal
subordinate clauses using lists of indicator words
for the latter two. We model syntactic variability
through the average and maximal depth of parse
trees in an essay and the distribution of individual
POS tags. We also cover the linguistic variance
in an essay through type-token-ratio. Also lan-
guage errors are usually considered informative.
We use the rule-based LanguageTool3 checker to
identify the number of spelling mistakes, punc-
tuation errors and other grammatical errors. The
number of cohesive devices, i.e. connectives, nor-
malized by the essay length in tokens. Addition-
ally, the average similarity between adjacent sen-
tences measured both through greedy string tiling
and the number of shared nouns between two sen-
tences represents coherence.

4.2 Neural System
As the neural system, we use the Neural Essays
Assessor (NEA) (Taghipour and Ng, 2016)4, a

3https://languagetool.org/de/
4https://github.com/nusnlp/nea

LSTM architecture using a mean-over-time layer
for aggregation in its reported best configuration
exchanging the English word embeddings for Ger-
man polyglot embeddings (Al-Rfou et al., 2013)
and using 50 LSTM units for run-time efficiency.
We also perform 10-fold cross-validation using 8
folds for training and 1 fold as development set to
determine which of 50 epochs to use per run.

5 Experiments & Results

This section presents our experimental results. We
first evaluate state-of-the-art systems on the two
global variables G1 and G8 in our data and com-
pare to the performance on ASAP. We then investi-
gate the performance on all variables to measure to
what factors our model is sensitive. In subsequent
experiments we address the influence of using the
essay’s summary and discussion part separately, of
individual feature groups and the size of training
data on the scoring performance.

5.1 Experiment 1: Performance of
State-of-the-Art Systems

In our first experiment, we assess the overall per-
formance of the scoring system on the two global
variables G1 (holistic) and G8 (aggregated) under
different feature settings. We apply the neural sys-
tem and for the SVM-based system we test several
conditions: As n-grams are known to be strong
features (Yannakoudakis et al., 2011), we evaluate
a baseline taking only token n-grams into consid-
eration. We use two versions of the feature, one
where we consider the top 1,000 most frequent n-
grams (n-gram 1,000) and one where we consider
the top 10,000 n-grams (n-gram 10,000). We next
evaluate the full system with and without stacking
of the three groups of n-gram features individually
in order to avoid that these feature groups might
overpower the other features.

In Table 2, we report the performance of the dif-
ferent setups for the variables G1 and G8. We see
that we always reach a higher performance when
predicting the informed overall score G8 than the
holistic G1. Remember that G1 is assigned be-
fore scoring the other essay variables while G8
is a score based on the other variables. It seems
plausible that G8 is more consistent and easier to
predict automatically, although we do not find that
reflected in agreement scores between human an-
notators.

We further observe that the performances of
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Our corpus ASAP
G1 (holistic) G8 (aggregated)

Paradigm Configuration acc. QWK acc. QWK acc. QWK

Neural NEA (Taghipour and Ng, 2016) .43 .45 .59 .53 n/a .76

SVM

n-grams – top 1000 .36 .36 .47 .40 .44 .64
n-grams – top 10000 .45 .44 .56 .48 .49 .67
full + n-grams top 1000 .40 .39 .54 .45 .46 .66
full + n-grams top 10000 .45 .45 .57 .48 .49 .68
full + stacked n-grams 1000 .47 .39 .58 .47 .53 .72
full + stacked n-grams 10000 .48 .42 .59 .46 .54 .72

Table 2: Scoring performance for G1 (intuitive holistic) and G8 (aggregated holistic). For comparison,
we also provide the performance of a comparable English model for the ASAP dataset (averaged over
all 8 prompts).

both variables benefit from a larger number of n-
grams. However, additional features in the full
model are only beneficial if we have lower num-
bers of n-grams. These findings suggest that there
is some redundancy between the n-grams and the
remaining features.

We observe that using the out-of-the-box neu-
ral system is at least on par with the best super-
vised configuration. While this shows the poten-
tial of neural approaches on the global variables,
in the following experiments, we concentrate on
the SVM system that can be more easily targeted
towards the individual variables.

Verification Using ASAP Data For compari-
son, we also evaluate our feature set (with minor
adaptations from German to English) on the ASAP
corpus, a well-known dataset for essay scoring
(see Section 2). As labeled test data is not avail-
able, we evaluate using 5-fold cross validation
on the training data – Table 2, the two rightmost
columns. For the neural system, we report results
by Taghipour and Ng (2016). Both the neural sys-
tem .76 QWK and the SVM .72 QWK are on par
with the best open-source system participating in
the ASAP shared task that reached .71 QWK.5

These results show that the applied systems are
state of the art on established datasets and are thus
probably also state of the art on our new dataset.
However, the performance level is much lower, as
the task is more challenging.

5.2 Experiment 2: Scoring Performance for
Different Variables

Next, we want to assess how well our essay scor-
ing system is able to predict the different variables.

5Results are not directly comparable, as the official test
data from the challenge is not publicly available.

We repeat Experiment 1 in the best-performing
feature setting using the full model with 10,000
n-grams for each scoring variable separately, i.e.
we use always the same features to train different
models.
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Figure 1: Scoring performance in quadratically
weighted kappa for models trained separately us-
ing the same features on each scoring variable.
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feature set G1 (holistic) G8 (aggregated)

merged .449 .481
split .441 .522

Table 3: Scoring performance measured in
quadratically weighted kappa for G1 and G8 with
features computed on the complete essay text
(merged) and with features computed on the sum-
mary and discussion part separately (split).

It is clear that our one-fits-all approach can be
improved by using feature sets tailored towards
the individual variables. With this experiment we
rather want to investigate which variables are sen-
sitive to our model which uses features used for
predicting global scores. This could help to an-
swer the question which aspects of a global score
an essay scoring system actually measures. Fig-
ure 1 shows the results.

We see that the feature set predicts at a very
moderate level for many of the variables. For the
very skewed variables F1 to F3, L6 and L8, per-
formance is particularly bad. We also see that
variables from each of the four categories (content
discussion, structure, and language) can be learnt
to a very limited degree. Interestingly, the model
performs a bit better on the aggregated scores G2
to G7 and the two global variables G1 and G8 al-
though still on a level that prohibits a practical use
of the system. In the following, we concentrate on
G1 an G8. In doing so, we can also compare to
scores in other essay datasets that use only holistic
scores.

5.3 Experiment 3: Splitting Essays into
Summary and Discussion Part

The prompt in our task asks for essays with a spe-
cific structure: a summarization and a discussion
part. Some of the variables are measured on only
one of those two parts (cf. Table 1). Therefore it
seems reasonable to measure not only if a feature
occurs, but also in which part of the essay. For
example, the trigram in my opinion might be an
indicator for a good essay if it occurs in the discus-
sion, but not in the summary. Therefore, we also
determine n-gram features (token, pos, and skip)
separately for both essay parts.6 In the split condi-
tion in Table 3, we duplicate each n-gram feature
and compute it individually on the summary and

6There are essays where only one part was present. In
such cases all features for the other part have been set to 0.
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Our corpus – token n-grams
Our corpus – POS n-grams

ASAP – token n-grams
ASAP – POS n-grams

Figure 2: Assessing various numbers of token or
POS n-grams as features for the scoring perfor-
mance of G8.

the discussion part, the merged condition repeats
values from Table 2 for the best-performing SVM,
the full model with 10,000 n-grams.

We see that for G8 we profit from that split,
while for G1 we do not. We do not have a good
intuition why this is the case, but suspect that the
more informed G8 score takes this additional in-
formation better into account. What we learn from
this experiment is that it is helpful to take addi-
tional prompt-specific structure in the data into
consideration. Identifying further automatically
detectable sub-parts of the essay and treating them
separately is a promising step for future work.

5.4 Experiment 4: Number and Type of
N-grams

We have seen that a major contribution to the per-
formance for both ASAP and our dataset comes
from token n-gram features and that we benefit
from a higher number of n-grams. To further as-
sess this influence, we take the number of avail-
able n-grams to their extremes and perform ex-
periments using token n-grams and POS n-grams
individually while varying the number of k top-
frequent n-grams to extract from 10 to 10,000.
Note that it can happen for POS n-grams and for
token n-grams on ASAP that k is bigger than the
actual number of n-grams present in the data. In
that case, we take all available n-grams.

In Figure 2, we see a huge difference between
ASAP and our corpus: in ASAP, a steep per-
formance increase can be observed already with
low numbers of n-grams and the curve flattens out
early. In our corpus, we see a steady increase of
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Configuration G8 (aggregated)

full model .47

– token n-grams .41
– skip n-grams .47
– POS n-grams .45
– length .46
– coherence .47
– cohesion .46
– syntax .46
– occurrence .47
– error .44

Table 4: Ablation test (QWK) for the global G8
variable.

performance that is less pronounced in the begin-
ning and in general on a much lower level. One
corpus variable explaining this effect is the aver-
age length of the essay. ASAP essays are shorter
(the average number of tokens per prompt varies
between 100 and 600) while our essays have a gen-
eral average around 600 tokens. Even if we add
more n-gram features the performance gap never
closes and shows the difficulty in our data.

5.5 Experiment 5: Feature Ablation

We perform an ablation test to discern the con-
tribution of individual feature groups. Table 4
shows the performance for the full model (us-
ing top 1,000 token, POS and skip n-grams, and
stacking) and for the model with individual fea-
ture groups ablated. We chose this model because
our models with more n-gram features show very
similar results for the full model in comparison to
n-grams only and the current settings seems most
suitable to highlight potential contributions of in-
dividual features.

We can see that the feature group with the high-
est effect are unsurprisingly token n-grams. Most
of the other features have only a minor effect.
However, we saw in the comparison between the
full model and n-grams only, that the additional
features have a beneficial effect in our setting. We
assume that our feature set is quite redundant, so
that e.g. the occurrence of a connective can also be
learnt from the respective unigram.

5.6 Experiment 6: Amount of Training Data

In a practical setting it is important to know how
many training instances have to be available to
reach a certain performance and at which amount
of training data the performance levels off. This
helps us to decide whether we can already fully as-

Learning Curves on G8
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Figure 3: Learning curve experiments using differ-
ent numbers of training instances, always testing
on the same test set for G8.

sess the performance of our method on the given
data or whether more training data would be help-
ful. We therefore perform a learning curve experi-
ment showing the correlation between the number
of training data and the scoring performance. In
this experiment, we keep the test data constant and
use the 10% held-out data for this purpose. We
use the split feature set with 10,000 n-gram fea-
tures which showed the best performance on the
cross-validation experiments. We always double
the number of training data, starting from 7 until
we reach 1,800. We sample each number of train-
ing instances randomly 100 times from the pool of
unlabeled data and report average, worst and best
performance across those 100 runs. The result-
ing learning curves are shown in Figure 3 We can
see that the performance varies tremendously be-
tween the best and worst runs for smaller amounts
of training data. This highlights that a careful se-
lection of training data can help when only limited
human annotation effort is available. We also see
that the curve starts to flatten out in the end for
the best case, so that we will not profit much more
from more training data.

6 Conclusions and Future Work

We have presented a set of experiments on a new
challenging dataset and have shown that standard
features that perform well on a standard essay
scoring dataset do not perform so well here. We
attribute our results to the high proficiency of our
writers. Of course, we cannot be sure that some of
the differences might be due to the language of the
essays being German, not English and we expect
that some features of the German language, such
as compounds, are indeed an additional challenge.
Nevertheless, we have demonstrated that essay
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scoring still can be a challenging problem, calling
for deeper linguistic analysis. Future work needs
to concentrate on finding better representations for
this kind of data, e.g. we hypothesize that recog-
nizing argumentative structure might be helpful,
as e.g. done in (Stab and Gurevych, 2016).

While the current set of essay data cannot be
published for copyright reasons, we are preparing
to collect and release a set of essays from the same
setting from the next cohort. Essays of a similar
type and in similar amounts are being collected at
the beginning of each semester and we are prepar-
ing ways of getting the students’ consent to pub-
lishing their anonymized essays in a corpus. In do-
ing so, we aim at providing a challenging dataset
to the community and broaden the range of avail-
able essay data.
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Abstract

We describe the submissions entered by
the National Research Council Canada in
the Native Language Identification Shared
Task 2017. We mainly explored the use
of voting, and various ways to optimize
the choice and number of voting systems.
We also explored the use of features that
rely on no linguistic preprocessing. Long
ngrams of characters obtained from raw
text turned out to yield the best perfor-
mance on all textual input (written es-
says and speech transcripts). Voting en-
sembles turned out to produce small per-
formance gains, with little difference be-
tween the various optimization strategies
we tried. Our top systems achieved ac-
curacies of 87% on the ESSAY track, 84%
on the SPEECH track, and close to 92% by
combining essays, speech and i-vectors in
the FUSION track.

1 Introduction

This paper describes the system entered by the
National Research Council Canada in the Native
Language Identification (NLI) Shared Task 2017
(Malmasi et al., 2017).

The task of Native Language Identification con-
sists of predicting the native (L1) language of a
foreign speaker, from textual and speech clues
in a second (L2) language. Applications of this
task are mostly in language learning and foren-
sic/security, see (Malmasi, 2016, Section 1.1) for
a good overview. This is an interesting exam-
ple of a task that is difficult to perform for hu-
mans, especially when the number of target na-
tive languages is large. In fact, in a comparison
between automated and human evaluation, Mal-
masi et al. (2015) could only use 5 L1 languages,

whereas the automated classifier covered 11 lan-
guages. They also found that, even in these lim-
ited settings, humans generally under-performed
the automated systems.

An international evaluation in 2013 (Tetreault
et al., 2013) showed that statistical methods could
reach a high level of performance on this task
(close to 84% accuracy) using a mixture of sur-
face form features, linguistic features, and model
combination. Ensemble methods, in particular,
have proved crucial to reach top performance on
this task and other related document categoriza-
tion tasks like the discrimination of language vari-
ants (Goutte et al., 2014). Recent work has con-
firmed this; we refer the reader to Malmasi and
Dras (2017) for an overview and evaluation of
many combination approaches.

Our best attempts at the NLI-2013 evaluation
used model combination by voting, a simple strat-
egy in which each base model contributes a vote
towards a category, and final prediction goes to
the category with the most votes. In this evalu-
ation, we therefore explore this strategy further,
looking into important aspects of the process: se-
lecting the models to add to the combination, as
well as their number. An attractive perk of the
voting/combination approach is that it provides a
natural way to handle multimodal data such as the
text and speech data available in the evaluation.
One can train models using either modality, and
combine their predictions using voting. This is
known as the late fusion approach. By contrast,
the early fusion approach combines different sets
of features and trains a single model on those. We
test and compare a simple early fusion model in
the FUSION track below.

Our second investigation is on the feature side.
In particular, we investigate the use of long char-
acter ngram, without any other linguistic process-
ing. Previous work reached state-of-the-art perfor-
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mance on the 2013 NLI Shared Task using string
kernels (Ionescu et al., 2016), considering sub-
sequences of 5 to 9 characters. On the task of
discriminating similar languages (Goutte et al.,
2016), long character ngrams also reach top per-
formance (Goutte and Léger, 2016) using subse-
quences of 5 and 6 characters. We looked in
more detail into how useful this type of feature
could be in the context of NLI. This contrasts with
many systems used in the 2013 evaluation, includ-
ing ours, which used a combination of lexical and
syntactic features, including short character and
word ngrams, part-of-speech and syntactic depen-
dencies. We test character ngrams up to 6grams,
extracted from raw text without any linguistic pre-
processing (no tokenization or casing normaliza-
tion).

In the following section, we quickly review the
data and introduce the approaches we tested for
the NLI Shared Task 2017. Section 3 presents our
results, both during development and evaluated on
the final test data.

2 Data and Methods

2.1 Data

The NLI-2017 collection covers 11 native lan-
guages: Arabic, Chinese, French German, Hindi,
Italian, Japanese, Korean, Spanish, Telugu and
Turkish, stratified across categories (Table 1). It
was obtained from a standardized assessment of
English proficiency for academic purposes. Each
document contains three parts:

1. The text of an essay written in English by a
native L1 speaker, in response to a prompt;

2. The orthographic transcript of a 45-second
English spoken reply given by the native L1
speaker in response to a prompt;1

3. 800-dimensional i-vectors, computed from
the 45s audio file recording the spoken reply.

The i-vectors (Verma and Das, 2015) are a com-
pact representation of the audio signal, typically
used in speaker recognition. The raw audio file
is not available for this task. The prompts for the
text and spoken replies are also provided for both
training and test data, but we did not use that in-
formation in our work.

1Speech and text prompts are different.

(Estimation)
L1 Train Dev Test
ARA 1000 100 100
CHI 1000 100 100
FRE 1000 100 100
GER 1000 100 100
HIN 1000 100 100
ITA 1000 100 100
JPN 1000 100 100
KOR 1000 100 100
SPA 1000 100 100
TEL 1000 100 100
TUR 1000 100 100
Total 11000 1100 1100

Table 1: NLI-2017 collection: #doc per L1.

In the NLI Shared Task 2017, the ESSAY track
uses the text of the essay alone; The SPEECH track
uses the transcript as well as the i-vectors; In the
FUSION track, all information can be used. Fi-
nally, note that we only participated in the closed
data condition, where only the provided collection
may be used for modelling.

2.2 Features

For the text data (essays and transcripts), we gen-
erated a number of fairly standard textual features.
Each type of feature results in a specific feature
space that we denote by a tag indicating the type
of feature, and a number indicating the size, e.g.
char3 for trigrams of characters.

Characters: We extracted subsequences of 3 to
6 characters from the text. This was done
first on the tokenized text (as provided by
the orgnizers), resulting in 4 feature spaces:
char3, char4, char5 and char6. We
extracted the same features from the raw, un-
tokenized text, resulting in another four sets
of features: rchar3, rchar4, rchar5
and rchar6.

Words: We extracted subsequences of 1 to 4
words from the tokenized text, ignoring
punctuation, resulting in 4 feature sets:
bow1, bow2, bow3 and bow4.

POS: We extracted subsequences of 1 to 3
part-of-speech tags, as produced by the
freely available Stanford POS tagger,2 v3.7.0

2http://www-nlp.stanford.edu/software/tagger.shtml
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(Toutanova et al., 2003). This produced three
feature sets: pos1, pos2, pos3.

For the character and word ngrams, we use a
tf-idf weighting corresponding to the ltc weight-
ing scheme (i.e. log term frequency, (log) inverse
document frequency, and cosine normalization) in
SMART (Manning et al., 2008, Fig. 6.7). Be-
cause most part-of-speech tags tend to occur in
most documents, we did not use idf on the part-of-
speech ngrams, and only perform scaling to unit
length (nnc weighting in SMART).

Finally, in the SPEECH and FUSION tracks, the
i-vectors were used as provided, either alone or in
conjunction with another transcript feature. In that
case, we scaled the i-vectors to unit length (cosine
normalization).

2.3 Models
Equipped with multiple ways to generate features
from documents, we will now review the models
we estimated on those, as well as the approaches
we investigated to improve the voting combina-
tion.

Model Estimation
We addressed the problem of identifying the na-
tive language as a document categorization prob-
lem with 11 classes (one per native language). We
use 11 binary classifiers trained in a one-versus-all
fashion, with a calibration layer on the classifier
output in order to provide proper multilabel pre-
dictions.

Each of the base one-vs-all classifier is a
Support Vector Machine trained using SVMlight

(Joachims, 1998) with linear kernels, all default
parameters and cost factor (-j) set to 10 in order
to balance positive and negative examples. Once
a classifier is trained, its output is calibrated in or-
der to output proper probabilities, using a mixture
of Gaussian distributions (Bennett, 2003). This al-
lows the output of the 11 classifiers to be well-
behaved probabilities that we can compare in or-
der to predict the most probable class, or use in
further post-processing in combination with other
classifier’s outputs.

Our first submission in each of Tables 2–4 is a
single model trained that way, all other submis-
sions are voting combinations, as described below.

Model Combination
Leveraging ensembles of models has proven ef-
fective in order to improve performance on Na-

tive Language Identification (Tetreault et al., 2013;
Malmasi and Dras, 2017) and many other NLP
tasks (Goutte et al., 2014). Among many alter-
natives, we focus on voting, a conceptually and
practically simple approach where each model in
the ensemble casts a vote towards a class, votes
are tallied and prediction goes to the most voted
class. In plurality voting, all models cast a sin-
gle, identical vote towards one class. Other vari-
ants weigh votes according to, for example, how
confident each model is in its prediction. Two
important hyper-parameters influence the result-
ing prediction and its quality: 1) the number of
voting systems, and 2) the way these systems are
selected.

In a typical learning setup, it makes sense to let
both of these choices be led by the resulting esti-
mated prediction error. In previous work, we sim-
ply ranked models according to prediction error,
estimated on either a separate validation/dev set
or by cross-validation, and selected models in de-
scending order of performance until the resulting
combined performance started to drop.

For this evaluation, we experimented with a
greedy selection approach: instead of considering
all models in descending order of performance, we

1. Start with an ensemble containing only the
highest performing model; place all remain-
ing models in a candidate pool.

2. Add each candidate from the pool in turn to
the current ensemble; compute resulting esti-
mated performance.

3. Pick the candidate that produce the best per-
formance, remove it from the pool and place
it in the ensemble.

4. Iterate Steps 2–3 until pool is empty.

This greedy algorithm performs the optimal
choice at each step but does not reconsider pre-
vious choices in order to further improve the
model. It provides a one-step-optimal order in
which models are added to the ensemble. In or-
der to pick the number of models to include in the
ensemble, we again look at the estimated predic-
tion error. The simplest method is to look again at
dev set or cross-validation performance. There are
two issues with this, however:

1. When the order and number of models are set
using the same prediction performance esti-
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mate, these choices are clearly not indepen-
dant, so our results will be biased. Typically,
the number of models will be over-estimated.

2. We are essentially performing multiple com-
parisons between ensembles based on the
same performance estimate. Unless we cor-
rect for multiple comparison, this will again
lead to overestimate the ensemble size.

In order to partly address these concerns, we
proceed with a selection method inspired by half
sampling (Mccarthy, 1969). We split the evalua-
tion data in two balanced halves (half the dev set,
or half the full set in cross-validation). We use one
half to estimate the best models to add to the en-
semble, as above, and use the other half to get an
unbiased estimate of the gain in performance from
each addition, in order to select the best ensemble
size. Of course we can swap the two halves, and
there are many (correlated) ways to split the eval-
uation data. In our experiment we only considered
one split in half, and swapped the two halves, re-
sulting in two ensembles (last two submissions in
Table 4).

Another combination approach is stacking
(Wolpert, 1992), where a meta-classifer is trained
to predict on the basis of base model scores. This
approach was shown to be effective on Native Lan-
guage Identification (Malmasi and Dras, 2017),
and when several meta-classifiers are available,
they can again be combined for further gains. The
main drawback is that there are more parameters
to estimate than in a simple ensemble combination
approach.

3 Results

3.1 Explorations
In our preliminary experiments, we validated all
design decisions by evaluating performance in two
ways:

1. Building models on the official train set, and
testing on the official dev set containing 1100
examples;

2. Joining the official train and dev data into one
training set on which we run 10-fold cross-
validation.

We later present both performance estimates for
our submitted systems, together with the official
test performance.

Dev CV Test
System Acc. Acc. m-F1 Acc.
Org. baseline .724 n/a .710 .710
(rchar6) single .835 .836 .862 .862
Best Dev Vote .847 .842 .874 .874
Best CV Vote .842 .845 .870 .869
Closed Task Best n/a n/a .882 .882

Table 2: Results for the closed ESSAY track: orga-
nizer’s baseline, our three submissions (our best
result emphasized, best results in bold) and the
best ranked system. ’Acc.’ is accuracy and ’m-
F1’ is macro-averaged F1.

3.2 ESSAY track

Our three submissions to the ESSAY track are sim-
ple and typical illustrations of the ideas we ex-
plored for this evaluation:

1. Best single feature set (rchar6): the use of
6-grams on raw text (no tokenization or cas-
ing) provides the best performance estimates
on both the dev set and in cross-validation.

2. The best vote, optimized on dev set perfor-
mance, includes 10 models trained on the
following feature sets: rchar6, char6,
pos3, bow2, bow4, char3, bow1, bow3,
char4, pos2.

3. The best vote, optimized on cross-validation
performance, includes 7 models trained on
the following feature sets: rchar6, char6,
bow3, rchar3, bow1, bow2, pos3.

The performance of our three submissions on
the test set is shown in Table 2. The first out-
come is that the single model based on raw
text character 6-grams performs very significantly
above the organizer-provided baseline. It is also
our best performing single system, outperforming
bag-of-words, bag of word ngrams, part-of-speech
ngrams, or character ngrams extracted from to-
kenized text. This suggests that large character
ngrams, without any linguistic pre-processing, are
more than competitive with any of the typical tex-
tual features. The test performance of this simple
model is around 86%, which is higher than any
performance reported at the NLI-2013 evaluation
(on a different dataset, of course).

As expected, ensemble prediction allows to im-
prove the performance further. Gains are small,
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Dev CV Test
System Acc. Acc. m-F1 Acc.
Org. baseline .755 n/a .798 .798
(rchar6+ivec) .826 .737 .845 .845
Best Dev vote .843 .810 .841 .841
Closed Task Best n/a n/a .876 .876

Table 3: Results for the closed SPEECH track: or-
ganizer’s baseline, our two submissions (our best
result emphasized, best result in bold) and the best
ranked system. ’Acc.’ is accuracy and ’m-F1’ is
macro-averaged F1.

however: our best voting combination reached
87.4% accuracy, a gain of 1.2% over our best sin-
gle system. This was obtained by optimizing the
number of voting systems on the dev set, although
the cross-validation-optimized vote performs less
than 0.5% below our top submission on this track.

Our best result is 0.78% below the top ranked
system in the closed ESSAY track, a difference that
is not statistically significant and places our result
in a set of 7 groups tied for first (out of 17 groups).
We believe that this shows both how sophisticated
and how mature statistical models for NLI have
become. The confusion table for our best entry in
shown in Figure 1 (left).

3.3 SPEECH track

For the SPEECH track, we only considered the use
of transcripts and i-vectors, either together in a
joint feature space, or within a voting ensemble.
Also, we do not present the results of our first three
submissions, due to an incorrect scaling of the i-
vectors. The two systems we report here are:

1. A system with a single feature set (rchar6)
together with the unit-scaled i-vectors: the
use of 6-grams alone on the transcript clearly
under-performs, topping at 58% in our exper-
iments; the addition of i-vectors proved nec-
essary to get competitive performance.

2. The best vote, optimized on dev set perfor-
mance, includes 9 models: five with scaled i-
vectors (with rchar6, bow2, pos3, bow1,
pos2) and four using transcripts alone
(pos2, rchar5, rchar3, char3). This
shows that even though transcript features
underperform, they may be useful in an en-
semble.

Dev CV Test
System Acc. Acc. m-F1 Acc.
Org. baseline .783 n/a .790 .790
Early fusion .886 .886 .906 .906
Best Dev vote .910 .893 .903 .903
Best CV vote .902 .901 .917 .917
Top10 vote .891 .894 .912 .912
Top15 vote .896 .899 .917 .917
Best 1

2Sample#1 .898 .901 .919 .919
Best 1

2Sample#2 .901 .899 .916 .916
Closed Task Best n/a n/a .932 .932

Table 4: Results for the closed FUSION track: or-
ganizer’s baseline, our two submissions (our best
result emphasized, best result in bold) and the best
ranked system.

Results from Table 3 show that both submis-
sions outperform the baseline. The voting ensem-
ble actually achieved slightly lower performance
than the single system (by a handful of examples),
the accuracy of which is 2.9% below our best ES-
SAY track submission.

Our best result is 3.07% below the top ranked
system in the closed SPEECH track, a difference
that is statistically significant and places our result
alone below a set of 3 groups tied for first (out of
10 groups). The confusion table for our best entry
in shown in Figure 1 (middle).

3.4 FUSION track
For the FUSION track, we submitted several sys-
tems, as this was the core of our investigation:

1. A simple early fusion system plays the role of
the “single feature set” for the FUSION track:
it uses rchar6 on the essay text, char6 on
the transcripts and scaled i-vectors.

2. The best ensemble, selected to maximize dev
set performance (both order and number of
base models), contains 23 base models mix-
ing essay, transcripts and i-vector features.

3. The best ensemble, selected to maximize
cross-validation performance, contains 24
base models mixing essay, transcripts and i-
vector features.

4. The top-10 and top-15 ensembles of base
models, based on the order optimized on dev
set performance. The idea is to evaluate
whether optimizing the number of models in
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Figure 1: Confusion tables of our best system in each track: ESSAY (left), SPEECH and FUSION (right).

the ensemble on the same performance in-
deed overestimates the ensemble size.

5. Two half-sample ensembles, estimated by
splitting the cross-validated predictions in
halves, as described in Section 2.3 and swap-
ping the halves for ordering and selecting the
models.

Table 4 shows that most ensembles gain over
the early fusion approach, but the improvement is
limited to less than 1.5%. Only the “Best Dev
vote” ensemble displays a drop in performance.
This suggests that, as expected, the smaller dev set
provides a less reliable estimate of performance,
and performance improvements, than the cross-
validation or half-sampling approaches. The Top-
15 ensemble yields the same performance as the
“Best CV” vote, which contains 24 base models.
This shows that several of those base models bring
no actual gain in predictive performance, confirm-
ing that selecting the order and number of base
models in the ensemble tends to over-estimate the
ensemble size. The best overall result is provided
by the first half-sampling ensemble, which reaches
91.9% accuracy. This is less than .3% above, and
likely not significant compared to the three clos-
est following ensembles (“Best CV”, “Top15” and
“Best 1

2Sample#2”).
We also note that all FUSION systems, even the

simple early fusion, are clearly above the ESSAY

and SPEECH results, suggesting that using multi-
ple sources of information is indeed beneficial.

Our best result is 1.26% below the top ranked
system in the closed FUSION track, a difference
that is not statistically significant and places our
result in a set of 4 groups tied for first (out of 4
groups). Again, this shows that several approaches
are able to yield high accuracy and state-of-the-

art results on this difficult NLI task. The confu-
sion table for our best entry in shown in Figure 1
(right). This suggest a high level of predictive per-
formance, except for the confusion between Hindi
and Telugu, which was already noted in the 2013
evaluation.

4 Discussion

4.1 Voting and Optimal Ensembles
Our results confirm that ensemble methods, and
voting in particular, provide small, but system-
atic gains in predictive performance. Our work
suggests, however, that there is some variability
in results depending on how the ensemble is esti-
mated, and in particular on what estimator of pre-
dictive performance is used. For example, the as-
sessment of performance improvement is hardly
consistent across the dev, CV and test estimators,
although each estimator usually will produce en-
sembles that gain over a single system. We feel
that there may be room to improve the design on
ensembles, and voting ensembles in particular.

4.2 Are Characters the New Words?
Our work on Native Language Identification con-
firms that long character ngrams can yield state-of-
the-art performance, and often outperform word
ngrams. This confirms earlier work on similar
tasks such as Discriminating Similar Languages.
Clearly, the fact that we are able to handle large
ngram sizes allows the index to cover many word
tokens, as frequent words are typically also short.
Character ngrams may also be able to model word
stems, in many situations, without any linguis-
tic modelling or heuristics. The big advantage
of this approach is that it requires no linguis-
tic preprocessing, not even tokenization, and may
be applicable to languages with rich morphology,
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on which word-based approaches typically suffer.
The downside is the need to index many ngrams.
This is partly offset by 1) the fact that the number
of actually observed ngrams grows much slower
than the number of possible ngrams, and 2) mod-
ern indexing techniques such as hashing are essen-
tially insensitive to the theoretical feature set size.
Working with long ngrams offers the prospect of
developping versatile document categorizers that
work on several languages and character sets with
no prior linguistic tools (eg no segmentation for
Chinese or no vowelization for Arabic).
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Cyril Goutte, Serge Léger, Shervin Malmasi, and Mar-
cos Zampieri. 2016. Discriminating similar lan-
guages: Evaluations and explorations. In Proceed-
ings of the 10th International Conference on Lan-
guage Resources and Evaluation (LREC 2016).

Radu Tudor Ionescu, Marius Popescu, and Aoife
Cahill. 2016. String kernels for native language
identification: Insights from behind the curtains.
Computational Linguistics 42(3):491–525.

Thorsten Joachims. 1998. Text categorization with Su-
port Vector Machines: Learning with many relevant
features. In Claire Nédellec and Céline Rouveirol,
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Abstract

We present the CIC-FBK system, which
took part in the Native Language Iden-
tification (NLI) Shared Task 2017. Our
approach combines features commonly
used in previous NLI research, i.e., word
n-grams, lemma n-grams, part-of-speech
n-grams, and function words, with re-
cently introduced character n-grams from
misspelled words, and features that are
novel in this task, such as typed char-
acter n-grams, and syntactic n-grams of
words and of syntactic relation tags. We
use log-entropy weighting scheme and
perform classification using the Support
Vector Machines (SVM) algorithm. Our
system achieved 0.8808 macro-averaged
F1-score and shared the 1st rank in the NLI
Shared Task 2017 scoring.

1 Introduction

Native language identification (NLI) is a natural
language processing (NLP) task that aims at au-
tomatically identifying the native language (L1)
of a language learner based on his/her writing in
the second language (L2). Identifying the native
language is based on the hypothesis that the L1
of a learner impacts his/her L2 writing due to the
language transfer effect. NLI can be used for a
variety of purposes, including marketing, security,
and educational applications. From the machine-
learning perspective, the NLI task is viewed as a
multi-class, single-label classification problem, in
which automatic methods have to assign class la-
bels (L1s) to objects (texts).

Recent trends in NLI include cross-genre and
cross-corpus NLI scenarios (Malmasi and Dras,
2015a), as well as identifying the L1 based on
writings in other non-English L2s and cross-

lingual NLI research (Malmasi and Dras, 2015b).
However, following the practice of the first NLI
shared task (Tetreault et al., 2013), this year’s task
focuses on L2 English data (Malmasi et al., 2017).
This can be related to the use of English as lingua
franca on the Internet and academia, when NLI
methods are particularly useful for languages with
a large number of foreign speakers. Moreover,
following the 2016 Computational Paralinguistics
Challenge (Schuller et al., 2016) and the VarDial
workshop (Malmasi et al., 2016), this year’s com-
petition covers an NLI task based on the spoken
response. Overall, this year’s task consists of three
tracks: NLI on the essay only, NLI on the spoken
response only, and NLI on both essay and spoken
response. In this paper, we describe the CIC-FBK
approach to the essay-only track.

Previous works on identifying the native lan-
guage from texts explored a large variety of
features, including lexical and part-of-speech
(POS) features (Koppel et al., 2005a), charac-
ter n-grams (Ionescu et al., 2014), spelling er-
rors (Koppel et al., 2005b), and syntactic fea-
tures (Wong and Dras, 2011). Following previ-
ous research on the NLI task, we incorporate com-
monly used word n-grams, lemma n-grams, POS
n-grams, and function words. In order to capture
the L1 influences at the character level, we use
recently introduced character n-grams from mis-
spelled words (Chen et al., 2017), as well as 10
categories of character n-gram features proposed
by Sapkota et al. (2015). We also include syn-
tactic features by extracting syntactic dependency-
based n-grams of words and of syntactic relation
tags (Sidorov et al., 2014) using the algorithm de-
signed by Posadas-Durán et al. (2014, 2017). We
describe the features used by the CIC-FBK system
in more detail in subsection 3.1.

Our system achieved 0.8808 macro-averaged
F1-score and 0.8809 accuracy in the essay-only
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track and shared the 1st rank in the NLI Shared
Task 2017 scoring, obtaining the 2nd absolute
score with the difference of 0.0010 F1-score and
0.0009 accuracy with the 1st place.

2 Data

The dataset used in the NLI Shared Task 2017 is
composed of English essays written by non-native
learners in a standardized assessment of English
proficiency for academic purposes. The corpus
consists of 13,200 essays (1,000 essays per L1 for
training, 100 for development, and 100 for test-
ing). The essays are sampled from 8 prompts,
and score levels (low/medium/high) are provided
for each essay. The training, development, and
test sets are balanced in terms of the number of
essays per L1 group. The 11 L1s covered by
the corpus are: Arabic (ARA), Chinese (CHI),
French (FRE), German (GER), Hindi (HIN), Ital-
ian (ITA), Japanese (JAP), Korean (KOR), Span-
ish (SPA), Telugu (TEL), and Turkish (TUR). The
detailed description of the corpus and its statistics
can be found in Malmasi et al. (2017).

3 Methodology

Our system incorporates a wide range of features,
i.e., word, lemma, and POS n-grams, spelling er-
ror character n-grams, typed character n-grams,
and syntactic n-grams. We used the tokenized ver-
sion of essays provided by the organizers. For the
evaluation of our approach, we merged the train-
ing and development sets, and conducted experi-
ments under 10-fold cross-validation. System per-
formance was measured in terms of both classifi-
cation accuracy and F1 (macro) score. The for-
mer was used as evaluation metric in the majority
of previous works on NLI, whilst the later is the
official evaluation metric in the NLI Shared Task
2017.

3.1 Features
3.1.1 Word, lemma, and POS n-grams
Word and lemma features represent the lexical
choice of a writer, while part-of-speech (POS)
features capture the morpho-syntactic patterns
in a text. Following previous works on the NLI
task (Jarvis et al., 2013; Malmasi and Dras, 2017),
we use word, lemma, and POS n-grams with
n ranging from 1 to 3. We include punctuation
marks and split n-grams by a full stop. We lower-
case word and lemma n-grams and replace each

digit by the same symbol (e.g., 12,345→ 00,000),
as proposed in Markov et al. (2017), to capture the
format (e.g., 00.000 vs. 00,000), which reflects
stylistic choice of a learner and not the value of a
number that does not carry stylistic information.
Lemmas and POS tags were obtained using the
TreeTagger software package (Schmid, 1995).

3.1.2 Function words
Function words are the most common words
in a language (e.g., articles, determiners, con-
junctions). They are considered one of the most
important stylometric features (Kestemont, 2014).
Function words can be seen as indicators of the
grammatical relations between other words. We
use a set of 318 English function words from
the scikit-learn package (Pedregosa et al., 2011).
Other examined function word lists obtained
from the Natural Language Toolkit1 (127 function
words) and the Onix Text Retrieval Toolkit2

(429 function words), as well as function word
skip-grams (Guthrie et al., 2006) did not lead to
an improvement in accuracy.

3.1.3 Spelling error character n-grams
Spelling errors have been used as features for NLI
since Koppel et al. (2005b). They are considered
a strong indicator of an author’s L1, since they
reflect L1 influences, such as sound-to-character
mappings in L1. Recently, Chen et al. (2017)
introduced the use of character n-grams from
misspelled words. The authors showed that
adding spelling error character n-grams to other
commonly used features (word and lemma
n-grams) improves NLI classification accuracy.
We extract 39,512 unique misspelled words from
the training and development sets using the spell
shell command. Then we build character n-grams
(n = 4) from the extracted misspelled words.
Other examined size of spelling error character
n-grams (n = 1, 2, 3, and 5), as well as their
combinations did not lead to an improvement in
system performance.

3.1.4 Typed character n-grams
Character level features are sensitive to both the
content and the form of a text and able to cap-

1http://www.nltk.org
2http://www.lextek.com/manuals/onix/functionwords1.html
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ture lexical and syntactic information, punctuation
and capitalization information related with the au-
thors’ style (Stamatatos, 2013). The effectiveness
of character n-gram features for representing the
stylistic properties of a text has been demonstrated
in previous NLI studies (Ionescu et al., 2014; Chen
et al., 2017). Their effectiveness in NLI is hypoth-
esized to be a result of phoneme transfer from the
learner’s L1, and by their ability to capture ortho-
graphic conventions of a language (Tsur and Rap-
poport, 2007).

Sapkota et al. (2015) defined 10 different char-
acter n-gram categories based on affixes, words,
and punctuation. In this approach, instances of the
same n-gram may refer to different typed n-gram
features. For example, in the phrase less care-
lessness, the two instances of the 4-gram less are
assigned to different character n-gram categories.
As an example, consider the following sample sen-
tence:

(1) Lisa said, “John should repair it tomorrow.”

The character n-grams (n = 4) for the sample
sentence (1) for each of the categories proposed
by Sapkota et al. (2015) are shown in Table 1. For
clarity, spaces are represented by the underscore.

SC Category N-grams

af
fix

prefix shou repa tomo
suffix ould pair rrow
space-prefix sai sho rep it tom
space-suffix isa ohn uld air

w
or

d whole-word Lisa said John
mid-word houl epai omor morr orro
multi-word ∗ sa s hn s ld r ir i it t

pu
nc

t beg-punct “Joh
mid-punct ∗∗ , “ . ”
end-punct aid, row.

∗ If the previous word is more than one character long, two characters are
considered; otherwise, only one character is considered.
∗∗ We use the tokenized version of essays and set the size of n-grams to 3
for this category. For other categories of typed character n-grams, the size
is set to 4.

Table 1: Typed character 4-grams per category for
the sample sentence (1) after applying the algo-
rithm proposed by Sapkota et al. (2015).

Typed character n-grams have shown to be pre-
dictive features for other classification tasks, such
as authorship attribution (Sapkota et al., 2015),
author profiling (Markov et al., 2016), and dis-
criminating between similar languages (Gómez-
Adorno et al., 2017). In our experiments, typed

character n-grams (n = 4) outperformed tradi-
tional character n-grams of the same size in most
system configurations. In addition, we compared
the performance of typed and traditional charac-
ter n-grams on the 7-way ICLEv2 corpus (Granger
et al., 2009), following the corpus splitting as de-
scribed in Ionescu et al. (2014). In this experi-
ment, typed character n-grams proved to be more
indicative than traditional character n-grams when
used in combination with features described in this
paper.

3.1.5 Syntactic n-grams
Syntactic features, including production
rules (Wong and Dras, 2011) and Tree Sub-
stitution Grammars (TSGs) (Swanson and
Charniak, 2012), have been previously explored
for NLI. Tetreault et al. (2012) experimented with
the Stanford parser (de Marneffe et al., 2006)
dependency features and concluded that they
are strong indicators of structural differences
in L2 writing. We exploit the Stanford depen-
dencies to build syntactic n-gram features by
using the algorithm designed and made available
by Posadas-Durán et al. (2014, 2017).3 Consider
the following sample sentence:

(2) I remember this great experience.

The dependencies generated by the Standard
parser for the the sample sentence (2) are the fol-
lowing:
root(ROOT, remember),
nsubj(remember, I),
dobj(remember, experience),
det(experience, this),
amod(experience, great).

These dependencies, including backoff trans-
formation based on POS, were used as features for
NLI in Tetreault et al. (2012). According to the
metalanguage proposed in Sidorov (2013a), the
syntactic 2-grams of words are the following:
remember[I],
remember[experience],
experience[this],
experience[great];
when the syntactic 3-grams of words are:
remember[I,experience],
remember[experience[this]],
remember[experience[great]],

3The Python implementation of the algorithm is available
on http://www.cic.ipn.mx/ sidorov/MultiSNgrams 3.py
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experience[this,great];
the syntactic 2-grams of syntactic relation tags are:
root[nsubj],
root[dobj],
dobj[det],
dobj[amod];
the syntactic 3-grams of syntactic relation tags are:
root[nsubj,dobj],
root[dobj[det]],
root[dobj[amod]],
dobj[det,amod].

Here, the head element is on the left of a square
parenthesis and inside there are the dependent el-
ements; the elements separated by a coma refer to
non-continuous syntactic n-grams, that is, the ele-
ments are at the same level in a syntactic tree.

Syntactic n-grams can be used in any task
where traditional n-grams are applied. They allow
to introduce syntactic information into machine-
learning methods (obviously, at cost of previ-
ous syntactic parsing). Syntactic n-grams outper-
formed traditional n-grams in the task of author-
ship attribution (Sidorov et al., 2014) and were ap-
plied in tasks related with L2, for example, auto-
matic English as L2 grammar correction (Sidorov,
2013b). In our system, we use only continuous
syntactic n-grams of words and of syntactic re-
lation tags with n ranging from 2 to 3. The in-
clusion of non-continuous syntactic n-grams im-
proved 10-fold cross-validation accuracy; how-
ever, did not perform well on the test set.

3.2 Frequency threshold
The fine-tuning of feature set size has proved to be
a useful strategy for NLI (Jarvis et al., 2013) and
other NLP tasks (Stamatatos, 2013; Markov et al.,
2017). In our approach, we selected the frequency
threshold value that provided the highest 10-fold
cross-validation result. We consider only those
features that occur in at least two documents in the
training corpus and that occur at least 4 times in
the entire training corpus. This frequency thresh-
old improves 10-fold cross-validation accuracy by
about 1%, compared to the configuration when all
the features are considered, and reduces the size of
the feature set by approximately 90% of the origi-
nal. The final size of our feature set is 726,494.

3.3 Weighting scheme
We use log-entropy weighting scheme, which
showed good results in previous studies on
NLI (Jarvis et al., 2013; Chen et al., 2017).

Log-entropy weighting scheme consists of lo-
cal weighting (denoted as Llog(i, j)) and global
weighting (denoted as Gent(i)). The local weight-
ing is calculated by taking the logarithm value of
adding-one smoothed term frequency:

Llog(i, j) = log(frequency(i, j) + 1), (1)

where frequency(i, j) is the frequency of term
i with regard to document j. The global entropy
weighting is calculated by the following formula:

Gent(i) = 1 +

J∑
j=1

pij log pij

log(J + 1)
, (2)

where J is the total number of documents in the

corpus.
J∑

j=1
pij log pij is the additive inverse of en-

tropy of the conditional distribution given i and

pij =
frequency(i, j)∑

j
frequency(i, j)

. (3)

The final weighting W is calculated as follows:

W = Llog(i, j)×Gent(i). (4)

Other examined feature representations, i.e., bi-
nary feature representation, tf , tf -idf , and nor-
malized feature representation did not enhance
system performance. Using log-entropy weight-
ing scheme outperforms tf -idf , the second best
scheme in our experiments, by 2.6% in 10-fold
cross-validation accuracy.

3.4 Classifier
Support Vector Machines (SVM) is considered
among the best performing classification algo-
rithms for text categorization tasks; moreover, it
was the classifier of choice for the majority of the
teams in the previous edition of the NLI shared
task. We use the liblinear scikit-learn (Pedregosa
et al., 2011) implementation of SVM with ‘ovr’
multi-class strategy. We set the penalty hyper-
parameter C to 100 based on our model selection
result.

4 Results

We present the results of our experiments in two
phases. First, we show the performance of each
type of features in isolation under 10-fold cross
validation on the merged training and develop-
ment sets. Then, we compare the performance
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obtained on the test set with other participating
teams. We present the 10-fold cross-validation re-
sults in terms of classification accuracy. For each
experiment, the difference between accuracy and
F1 (macro) score was less than 0.0003.

The individual performance of the features used
in our system with the configurations described in
the previous section, as well as the number of fea-
tures (N) of each type are shown in Table 2.

Features Accuracy N
words n-grams (n = 1–3) 0.8463 230,714
lemma n-grams (n = 1–3) 0.8454 228,229
POS n-grams (n = 1–3) 0.4930 14,510
function words 0.5004 302
spelling error character 4-grams 0.3779 12,322
typed character 4-grams 0.7779 35,480
syntactic n-grams of words (n = 2–3) 0.7064 148,728
syntactic n-grams of SR tags (n = 2–3) 0.2361 5,344
combination of the above 0.8640 726,494

Table 2: 10-fold cross-validation accuracy of each
feature type individually on the merged training
and development sets.

In line with the previous works on the NLI
task (Tetreault et al., 2013; Jarvis et al., 2013;
Chen et al., 2017), in our configurations word
and lemma n-grams are the most predictive fea-
tures. They showed 0.8463 and 0.8454 10-fold
cross-validation accuracy, respectively, when eval-
uated in isolation. Typed character n-grams also
performed well with a much smaller feature size,
achieving 0.7779 accuracy. Syntactic n-grams of
syntactic relation tags showed the lower accuracy
when evaluated in isolation; however, when used
in combination with other features, they improve
10-fold cross-validation accuracy by 0.2%. The
combination of all the features showed 0.8640
10-fold cross-validation accuracy on the merged
training and development sets.

The NLI Shared Task 2017 organizers reported
several 1st ranked teams based on McNemar’s sta-
tistical significance test with an alpha value of
0.05. The official results for the essay-only track
in terms of F1 (macro) score and classification ac-
curacy for the 1st ranked teams, as well as the base-
line results are shown in Table 3.

The CIC-FBK best run differs 0.0009 in terms
of classification accuracy from the highest result
achieved by the ItaliaNLP Lab system, which cor-
responds to one correctly predicted label. All the
17 participating teams in the NLI Shared Task
2017 achieved higher level of F1 (macro) score
than the official baseline of 0.7104.

Rank Team F1 (macro) Accuracy
1 ItaliaNLP Lab 0.8818 0.8818
1 CIC-FBK 0.8808 0.8809
1 Groningen 0.8756 0.8755
1 NRC 0.8740 0.8736
1 taraka rama 0.8716 0.8718
1 UnibucKernel 0.8695 0.8691
1 WLZ 0.8654 0.8655
- Official baseline 0.7104 0.7109
- Random baseline 0.0909 0.0909

Table 3: Results for the essay-only track for the 1st

ranked teams. The results for our team are high-
lighted in bold typeface.

The CIC-FBK system showed 0.8639 F1
(macro) score and 0.8640 accuracy under 10-fold
cross-validation on the merged training and devel-
opment sets. Our other runs in the NLI Shared
Task 2017 included small modifications in sys-
tem configurations, such as variations in frequency
threshold values and different strategy for dealing
with digits (e.g., 12,345→ 0,0). However, since
these modifications showed only marginal accu-
racy variations and did not improve system perfor-
mance on the test set, the results for these runs are
omitted in this paper.

The confusion matrix for our best run is shown
in Figure 1. The highest level of confusion is
between Hindi and Telugu classes. Korean and
Japanese is another problematic language pair, in
which Korean native speakers are often classified
as Japanese. The highest accuracy of 0.9800 was
achieved for German native speakers. These re-
sults are in line with the ones reported in the pre-
vious edition of the NLI share task (Tetreault et al.,
2013), where the teams achieved low levels of ac-
curacy for the Hindi/Telugu (none of the systems
was able to reach 0.8000 accuracy for Hidni) and
the Korean/Japanese pairs. In future work, we in-
tend to tackle these two language pairs in isola-
tion in order to improve the overall system perfor-
mance.

5 Conclusions

We presented the description of the best submis-
sion of the CIC-FBK team to the NLI Shared Task
2017. Our approach combines features commonly
used in the NLI task with recently introduced
spelling error character n-grams, as well as with
typed character n-grams, and syntactic n-grams of
words and of syntactic relation tags.
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Figure 1: Confusion matrix for the best CIC-FBK run.
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Typed character n-grams and syntactic n-grams
are new types of features that are introduced in
the NLI task for the first time. It was found
during the preliminary experiments on the train-
ing and development sets that these features im-
prove the classification accuracy when used in
combination with other types of features, such
as word n-grams, lemma n-grams, part-of-speech
n-grams, spelling error character n-grams, and
function words. The CIC-FBK system achieved
0.8808 F1 (macro) score and 0.8809 accuracy and
shared the 1st rank in the competition.
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Abstract

In this paper, we explore the performance
of a linear SVM trained on language-
independent character features for the NLI
Shared Task 2017. Our basic system
(GRONINGEN) achieves the best perfor-
mance (87.56 F1-score) on the evaluation
set using only 1-9 character n-grams as
features. We compare this against several
ensemble and meta-classifiers in order to
examine how the linear system fares when
combined with other, especially non-linear
classifiers. Special emphasis is placed on
the topic bias that exists by virtue of the
assessment essay prompt distribution.

1 Introduction

Native Language Identification (NLI) is the task of
identifying a writer’s native language (L1) based
on their writings in another language. Typically,
low-to-medium proficiency writers exhibit a ten-
dency to “borrow” linguistic constructions from
their native language and apply them to the lan-
guage in which they are communicating. A na-
tive Russian speaker, for example, may forego the
use of articles such as “the” when writing in En-
glish. This phenomenon, widely referred to as
Language Transfer, allows for a common set of
linguistic features to emerge between speakers of
the same native language (Odlin, 1989). NLI is
thus concerned with applying machine learning
approaches using these features in order to auto-
matically identify the L1 of writers communicat-
ing in another language.

There are many practical applications for NLI.
Second language (L2) education is a field in which
NLI can offer much potential aid. For instance,
in identifying the native language of a learner by
their writing, it is possible to isolate the linguistic

features they employ when communicating. This
could subsequently be integrated in language-
specific error-correction systems, in which a user
receives L1-based suggestions to correct their L2
writing. At a large scale, this could be extended
to enhance existing teaching pedagogies and tailor
them towards students of a particular L1. NLI is
another natural fit for forensic linguistics, where it
can be used to detect the native language (and po-
tentially the nationality) of an anonymous writer.

NLI is typically framed as a multi-class classifi-
cation problem, wherein a classifier is trained on
more than two native languages simultaneously.
As with many text-classification tasks, Support
Vector Machines (SVM) have consistently pro-
duced the best results for the task, e.g., (Brooke
and Hirst, 2012). However, other classifiers, such
as Random Forests and Logistic Regression, have
also been explored (Tetreault et al., 2013). En-
semble systems, which combine the predictions of
several classifiers and output the most likely class
label via voting or probability-averaging, have fur-
ther been shown to provide a boost in accuracy
compared to the single-classifier approach. Such
systems, however, are not light-weight. In training
several classifiers simultaneously, quick training
speeds are typically sacrificed in favor of a (usu-
ally marginal) performance gain. This paper is
thus concerned with exploring each of these classi-
fication methods as they pertain to the NLI Shared
Task 2017 (Malmasi et al., 2017).

2 Related Work

In 2005, Koppel et al. (2005) begun exploring
methods for NLI by exploring the International
Corpus of Learner English (Granger et al., 2009).
In this work, they evaluated the effect of sev-
eral features, including function words, letter n-
grams, part-of-speech bigrams and error types.

382



Training an SVM on the combination of these
yielded an accuracy score of 80.0%. Several
years later, a shared task in NLI was organized by
Tetreault et al. (2013). A total of 29 teams partici-
pated in this competition, with the winning system
implementing a combination of lexeme, lemma,
and POS-tagged 1-3grams for their model (Jarvis
et al., 2013). This system produced an accuracy of
83.6% discriminating between 11 different native
languages. Ionescu et al. (2014) later improved
on this result by applying Kernel Ridge Regres-
sion and Kernel Discriminant Analysis in order
to extract character n-gram features from the NLI
Shared Task 2013 data. This approached yielded
an 85.3% accuracy score on the 2013 shared task’s
test set.

In the years between the initial NLI shared
task and the current one, teams have continued
to produce new state-of-the-art systems. Most re-
cently, Malmasi and Dras (2017), presented an
exhaustive survey of potentially relevant features
for NLI. These included character, word, lemma,
and POS n-grams, function words, context-free
grammar production rules, and dependency tags,
among others. Separate SVMs were trained on
each of these features and their outputs were fed
into a mean probability ensemble. A meta Linear
Discriminant Analysis (LDA) classifier was then
trained on the probability distributions generated
by the ensemble, yielding an accuracy of 87.1%.

3 Methodology and Data

3.1 Data

The provided data set consists of 13,200 English-
language essays submitted for a standardized as-
sessment of English proficiency for academic pur-
poses. The essays are equally divided into 11
native languages (L1s), totalling 1,200 essays
per language. The languages represented therein
are as follows: Arabic (ARA), Chinese (CHI),
French (FRE), German (GER), Italian (ITA),
Hindi (HIN), Japanese (JPN), Korean (KOR), Tel-
ugu (TEL), and Turkish (TUR). The full data set
is divided into three parts, with 11,000, 1,100,
and 1,100 essays constituting the training, devel-
opment, and test set, respectively. The number of
words per essay varies between 300 and 400.

In participating in the assessment, all partici-
pants were instructed to write their essay about a
specific prompt topic. The data set is thus divided
over 8 different prompts as well as L1s. While

the L1s are evenly distributed over the data, the
distribution of the prompts is skewed by both lan-
guage and overall, as shown in Table 1. The table
represents the distribution of the prompts for the
training and the development set combined, since
this constitutes all of the data that our final system
is trained on. Noteworthy is the fact that Hindi
and Telugu have similar distributions over all the
prompts, which is a different distribution than the
the other languages. It is also interesting that only
a small portion (12 essays) are written about P1
for Italian, which could cause a discrepancy in the
later classification of the language.

Due to these factors, we pay particular attention
to the prompt distribution during our analysis.

3.2 Features

Our main classifier is a Linear Support Vector Ma-
chine, which has been shown to perform well in
prior NLI tasks. We performed a grid search over
the C, loss, and penalty parameters of the Linear
SVM in order to obtain the best-performing vari-
ant. However, tuning these parameters failed to
produce any noteworthy results and we thus opted
for a non-parametric SVM. We also evaluated the
performance of the classifier with an RBF kernel
in order to examine whether a non-linear approach
would generalize better over the data. Ultimately,
this resulted in significantly longer training times
as well as much lower performance accuracy and
was discarded in favor of the linear alternative.
The non-parametric classifier is based on several
combinations or stand-alone models of the fea-
tures described below.

3.2.1 Character n-grams
Large ranges of character n-grams contain charac-
teristic information about the writing style of an
author. Compared to word n-grams, which only
capture the identity of a word and its possible
neighbors, character n-grams are additionally ca-
pable of detecting the morphological makeup of a
word. In a task such as NLI, where many words
are likely to be misspelled, character n-grams are
especially powerful at detecting patterns in such
misspellings, and substantially less sparse than
word n-grams. In this paper, we experimented
with several ranges of character n-grams. Even
though prior research in NLI has largely focused
on character n-grams of up to 5 characters, this
range did not perform well in this task. Instead, in-
creasing the upper bound of the range to between
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Table 1: Overview of prompt distribution per language for the data set
ARA CHI FRE GER HIN ITA JPN KOR SPA TEL TUR

# % # % # % # % # % # % # % # % # % # % # %
P0 139 12.6% 140 12.7% 156 14.2% 151 13.7% 86 7.8% 187 17.0% 138 12.5% 128 11.6% 159 14.5% 55 5.0% 170 15.5%
P1 133 12.1% 141 12.8% 68 6.2% 28 2.5% 53 4.8% 12 1.1% 142 12.9% 142 12.9% 157 14.3% 41 3.7% 43 3.9%
P2 141 12.8% 139 12.6% 160 14.5% 153 13.9% 161 14.6% 141 12.8% 143 13.0% 143 13.0% 162 14.7% 171 15.5% 169 15.4%
P3 138 12.5% 139 12.6% 151 13.7% 152 13.8% 158 14.4% 173 15.7% 141 12.8% 141 12.8% 160 14.5% 166 15.1% 167 15.2%
P4 138 12.5% 140 12.7% 158 14.4% 155 14.1% 161 14.6% 173 15.7% 116 10.5% 140 12.7% 141 12.8% 165 15.0% 169 15.4%
P5 136 12.4% 134 12.2% 160 14.5% 150 13.6% 156 14.2% 187 17.0% 138 12.5% 137 12.5% 134 12.2% 169 15.4% 147 13.4%
P6 138 12.5% 126 11.5% 87 7.9% 157 14.3% 163 14.8% 138 12.5% 140 12.7% 136 12.4% 54 4.9% 167 15.2% 90 8.2%
P7 137 12.5% 141 12.8% 160 14.5% 154 14.0% 162 14.7% 89 8.1% 142 12.9% 133 12.1% 133 12.1% 166 15.1% 145 13.2%

Total: 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100

8 and 10 characters yielded very encouraging re-
sults. In training a classifier on character n-grams
ranging from 1 to 10, this effectively models the
effect of word unigrams, bigrams, and, in cases of
very short words, trigrams. Indeed, the most in-
formative features in these cases are 7-9 character
n-grams in which the author discusses his or her
own country (Japanese people talk about Japan,
etc.). When combined with the morphological in-
sight of the lower-range character n-grams, this
approach proved to be simultaneously very pow-
erful and simple. Though the performance differ-
ence between ranges of 1-8, 1-9, 1-10, 2-8, etc. is
marginal, we choose the 1-9 range for our system
as it provided the best results for Hindi and Telugu
on the dev set - the languages which were most
often confused in our case. It is important to note
that we also employ a binary-counting approach,
where a feature is either present (if it appears at
least once in a document) or absent (if it did not
appear). These counts are normalized via term-
frequency, inverse-document frequency (tf-idf) as
implemented by the scikit-learn1 machine learning
package for Python.

3.2.2 Part-of-speech tags
Part-of-speech tags provide information about
how ESL learners approach English at a morpho-
syntactic level. Intuitively, then, it is likely that the
native distribution and usage of POS tags might
affect a learner’s production of English. For ex-
ample, native speakers of Turkish are known for
the difficulty they experience with appropriately
inserting definite articles in English. This diffi-
culty could thus surface in terms of observed POS
sequences or distributions in Turkish-native pro-
duction of English texts. Furthermore, this could
be notably different from what is observed in the
production of speakers whose native language fea-
tures a usage of determiners that is more similar to
English.

1http://scikit-learn.org/stable/

Although countless POS-taggers exist, one ma-
jor problem in acquiring reliable tags is intrinsic to
the non-native nature of the texts we deal with. As
POS models for English are trained on native En-
glish data, it is not granted that they will perform
as well on non-native writing as they do on canon-
ical texts. For this reason, we trained a POS tagger
(Plank et al., 2016) on POS-tagged English learner
data obtained from the Universal Dependencies
project (Nivre et al., 2016), i.e., English-ESL
(78k training tokens), tuning its parameters on the
corresponding UD dev data. We experimented
with several combinations of POS n-grams on our
data, and found that a range of 1–4 yielded the best
results on the development set.

3.2.3 Prompt word extraction

In an attempt to remove topic bias, we extracted
words that appear to be typical of each prompt
topic. This was done with the intuition that
such words would ultimately confuse the classi-
fier towards modeling prompt instead of native
language. As such, we concatenated every es-
say per topic (resulting in 8 large prompt docu-
ments) as well as every essay in total. Each of the
prompt documents was then passed to a sparse ad-
ditive generative model (SAGE) (Eisenstein et al.,
2011), with the concatenated corpus acting as a
comparison corpus. This allowed us to identify
the top keywords per topic (P0: “advertiser”; P1:
“tourist”, etc.). We then combined these prompt
lists into a single keyword list (ranked by SAGE-
score), which we considered to be representative
of the total number of prompt words written in the
corpus. In training our classifier, we then replaced
the top 100 of such words (if correctly spelled)
in the individual essays with a dummy token (*).
We retained misspelled prompt words, as our intu-
ition is that these represent (incorrect) information
about the writers’ understanding of English mor-
phology. Using this approach resulted in a slight
drop in performance accuracy (∼2%) for every
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model it was tested with, thereby confirming our
intuition that our systems were indeed modeling
topics, too.

3.2.4 P7 Omission
In examining the prompt distribution for the test
data, we noticed that Prompt 7 was excluded en-
tirely from the provided essays. As such, we hy-
pothesized that omitting P7 from the training data
would remove a degree of confusion introduced by
the P7 prompt lexicon. To check this assumption,
we first removed all essays with P7 as a prompt
from the dev data (143 documents). This resulted
in a slight drop in F1-score (from 84% to 83%)
on the dev set. We then repeated this experiment
with the P7 essays also omitted from the training
data (1,419 documents). Doing so reproduced the
initial f1-score of 84%, albeit with different (less)
training and dev data. We replicated this for the
test submission, removing P7 from the concate-
nated train and dev data (1,562 documents) in or-
der to balance our system in terms of prompt with
respect to the actual test set.

3.3 Meta-classification and Ensembles

Meta-classification is the process of training a
classifier on the probability distributions output
by another classifier. Doing so has the effect of
revealing the classification patterns of the latter
classifier, including cases where it experienced the
most confusion in assigning a label. In seeing
enough of these patterns, a meta classifier can ef-
fectively learn from the label probability distribu-
tions and correct the decisions of the main clas-
sifier. We experimented with an SVM meta clas-
sifier trained on both the output of the character
n-gram classifier, as well as the output of a com-
bined character n-gram and a simple neural net-
work (CBOW, see Section 3.3.1). We performed
5-fold cross-validation on the training set in or-
der to obtain the label probabilities for the docu-
ments in the training data. Though this approach
improves upon the performance of both classifiers
we evaluated, it is important to note that it may
lead to over-fitting (Thornton et al., 2013).

We separately trained an ensemble and meta-
classifier on the probability distributions output by
several systems as features. The goal in doing
so was to examine how the aforementioned lin-
ear SVM fares when combined with other, non-
linear classifiers. The classifier employed is an
ensemble linear SVM, which is trained on the pre-

dicted probability distributions of a randomly cho-
sen 60% of the dev set and tuned on the remaining
40%. We use the standard hyperparameters of the
SVM implementation in scikit-learn, without any
tuning. The maximum of the predicted probabil-
ity distribution on the test set is then used as the
system’s label prediction.

We evaluated the performance of three ensem-
bles. The first two ensembles included the char-
acter 1-9-gram system, the CBOW system, and a
CNN system (see Section 3.3.2). The CNN sys-
tems in the two runs differed in the input represen-
tations used. In first case (CNN1), the CNN used
word unigrams and character 4-5grams, whereas
in the second case (CNN2), it used word uni-
grams and character 6-grams. The third ensem-
ble (Submission #8) concatenated the probability
distributions generated by both character 1-9-gram
and CBOW models (i.e. ARA CBOW: 0.1234;
ARA CHAR: 0.1432; etc.) and trained a
meta-classifier on these probabilities.

Each of the systems included in the ensembles
(excluding the character 1-9-gram SVM) as well
as the meta-classifier are described below.

3.3.1 CBOW system
We incorporated a simple neural baseline that
combines word embeddings with a feedforward
neural architecture similar to the continous bag-
of-words (CBOW) model introduced in (Mikolov
et al., 2013). This system represents each doc-
ument as the average embedding of all words in
the document. We used a shallow model (no deep
layers), with a single dropout layer followed by
the softmax output layer. The parameters of this
model were set based on the dev set: 512 input di-
mensions, 0.1 dropout, 20 epochs, trained with the
adam optimization algorithm (Kingma and Ba,
2014) for 20 iterations with a batch size of 50.

3.3.2 Deep Residual Networks
Deep residual networks (resnets) are a class of
convolutional neural networks (CNNs), which
consist of several convolutional blocks with skip
connections in between (He et al., 2016). Such
skip connections facilitate error propagation to
earlier layers in the network, which allows for
building deeper networks. Resnets have been
shown to be useful for NLP tasks, such as text
classification (Conneau et al., 2016), and se-
quence labelling (Bjerva et al., 2016). We ap-
plied resnets with four residual blocks in our en-
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semble experiments, each containing two succes-
sive one-dimensional convolutions. Each such
block is followed by an average pooling layer and
dropout (p = 0.5, Srivastava et al. (2014)). The
resnets were applied to several input representa-
tions: word unigrams, and character 4-6-grams.
The outputs of each resnet are concatenated be-
fore passing through two fully connected layers.
We trained the resnet over 50 epochs with adam,
using the model with the lowest validation loss. In
addition to dropout, we used weight decay for reg-
ularization (ε = 10−4).

3.4 Discarded features
All previous features and systems have been used
for the final submissions and will be discussed in
the results section of this paper. However, it is
noteworthy to mention which features were eval-
uated but nonetheless failed to provide a perfor-
mance improvement. These were tested on the de-
velopment set of the data as standalone features
as well as in combination with others. However,
in none of the cases were these features able to
improve the performance of any of the submitted
systems.

3.4.1 Word, lemma, and POS n-grams
Given the relative success of prior work in
NLI, such as (Jarvis et al., 2013), we de-
cided to experiment with traditional n-gram fea-
tures. In these experiments, we employed the
spaCy2 NLP toolkit in order to generate the
lemma and POS representations of words to-
kens. Several combinations of these features were
evaluated, such as WORD + LEMMA + POS bi-
grams/trigrams, WORD/LEMMA unigrams + POS
bigrams/trigrams, etc. Combinations of binary
features and frequency-based features were evalu-
ated for all aforementioned feature types. The in-
clusion of any of the features, however, decreased
the performance of our system by at least 2% and
they were therefore excluded from any of our final
submissions.

3.4.2 Skipgrams
Skipgrams are a relatively new approach in NLP,
most notable for their effectiveness in approx-
imating word meaning in vector space models
(Mikolov et al., 2013). In addition to calculating
the n consecutive units in a sequence, skipgrams
introduce another parameter, k, which calculates

2https://spacy.io/

n-grams of units separated by a distance of k. For
example, the character bigram k = 1 represen-
tation of apple would thus be: (a, p), (p,
l), (p, e). As such, we experimented with
skipgrams for several of our systems. Most no-
tably, we evaluated character 2-9-grams with skips
of 2 and 3. These results, however, were largely
identical to our simpler 1-9-gram system and were
thus discarded due to significantly longer training
times and exceedingly sparse feature matrices.

3.4.3 IPA representation

Due to the success of the character n-gram mod-
els in capturing morphological details, we tested
a feature that transcribed every essay into its pho-
netic representation. Even though we knew this
would largely reproduce the same information
captured by the raw text of the essays, we nonethe-
less hypothesized that an IPA-transcription would
reveal further insights about how learners impose
the morpho-phonetic features of their native lan-
guage onto their spelling in English. For example,
while dipthongization is not represented by the or-
thography of a word, a phonetic transcription is
able to capture it. Thus, we employed the eS-
peak text-to-speech software3, which reproduced
words according to how an English speaker would
pronounce them. When tested against our best-
performing character-level system, this approach
produced a slight drop in F1-score (∼ 1%). This
factor, combined with very long training time, led
us to ultimately discard the feature.

3.4.4 Misspellings

In examining the essays in the training set, we ob-
served a large number of misspelled words. As
such, we experimented with incorporating word
misspellings into our system. These words were
identified via the PyEnchant Python library4 and
replaced with a dummy token (*). We posited
that this would have the effect of identifying mis-
spellings and capturing their distributions per lan-
guage. The character-level features of misspelled
words were also retained by the combined char-
acter 1-9-n-gram model. We attempted various
feature representations for this method, including
1-9 character n-grams as well as word unigrams
combined with non-filtered 1-9 character n-grams.
None of these results were noteworthy, however.

3http://espeak.sourceforge.net/
4http://pythonhosted.org/pyenchant/
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4 Results

Table 2 provides an overview of all submissions
with results obtained both on the development and
on the final evaluation sets.

The results show that our best-performing sys-
tem was the character 1-9-gram system trained
on the concatenation of training and development
data. This is a notable improvement on the devel-
opment set, which was 84%. The system for the
first submission is the same as for the second sub-
mission. However the first submission was only
trained on the training data set and the second also
included the dev set. This resulted in more doc-
uments for training, which improved the perfor-
mance of the system. This resulted in our overall
best system. The confusion matrix for this system
is given in Figure 1.

Here, the most confused cases are Hindi and
Telugu, replicating what we observed (at a higher
rate) during the development of our system. This
discrepancy has also been reported by various
prior studies, including Jarvis et al. (2013), whose
system was trained and evaluated on different data
than ours. The other noteworthy cases are Turk-
ish and Arabic, which are confused at least once
for all but one and two languages, respectively.
Even though Korean is mislabeled as Japanese
eight times, the same does not apply for the reverse
situation: Japanese is the second most accurately-
labeled class, with only German faring better. In-
terestingly, the meta classifier over the character 1-
9-gram probabilities fares slightly worse than the
standalone system. This, however, could likely be
due to overfitting the system on the training data,
which is a risk posed by any meta-classification
approach.

Both of the prompt-based systems produced
largely similar results. In the case of prompt-word
omission, the confusion between Hindi and Tel-
ugu is slightly reduced, but also moved to other
classes. The omission of P7 documents from train-
ing also resulted in a larger drop in accuracy from
the character 1-9-n-gram system, which was not
observed during development. Of course a drop
would be expected, but not as large as it would
likely be if a prompt topic written about in the
test data had been omitted from the training data
instead. Also, it is possible that the omission of
1,562 total documents from training is responsible
for this result, prompt-effect notwithstanding.

Each of the ensemble methods failed to match

the performance of the character 1-9-n-gram sys-
tem. Though the intuition in assembling the en-
semble classifiers was that they would provide ex-
tra insight for the main classifier by virtue of be-
ing non-linear, this is not reflected in terms of ac-
curacy. It is noteworthy, however, that the sys-
tem including the CNN trained on character 4-
5-n-grams and word unigrams (CNN1) improved
much on Arabic (88% F1-score) and Turkish (83%
F1-score), suggesting that further refinement of
this system (perhaps extending the character n-
gram ranges) may be fruitful. Unfortunately, due
to time constraints, we did not have a chance to
explore other configurations, as CNNs take a con-
siderably long time to train.

Finally, we note that the native-trained POS-
approach did not produce encouraging results.
Unlike the ensemble, which improved the classi-
fier’s performance on some classes despite yield-
ing a lower F1-score, the POS tags failed to pro-
vide any notable insight relative to the character
classifier. However, this is not to say that this
approach should be entirely discarded. Rather, it
would be interesting to combine the POS features
with other feature types, such as word or lemma
n-grams, as opposed to character n-grams.

5 Discussion

Our first submission (i.e., standalone 1-9 charac-
ter n-grams), which was trained on both the train-
ing and development data yielded the best test-set
performance out of all our submitted systems. As
we received the results of our primary submissions
from the organizers during the testing period, it
was confirmed that the 1-9 character n-gram fea-
tures were very powerful when evaluated on the
test set. We thus continued to include these fea-
tures in subsequent system submissions. The in-
sight regarding the performance of these initial
systems against the test set has certainly impacted
the decisions we made about which features to in-
clude later. It must be noted, however, that our
best performing system was submitted before we
had received any such feedback, since it was one
of the first systems we submitted. Therefore we
did not tweak any aspect of the system for the test
set. The system we developed initially without any
knowledge of the test set performed best and also
proved to be the most compact system.

As mentioned in the features section, topic bias
was one of our major concerns during the sys-
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Submission Char. 1-9-grams Char. 1-10-grams POS tags PW omitted Meta CBOW CNN1 CNN2 P7 Omitted Dev F1 Test F1

Random baseline: 0.0700 0.0909
Essay baseline: 0.6907 0.7104

1 x 0.8374 0.8684
2 x 0.8374 0.8756
3 x x 0.8165 0.8682
4 x x 0.8459 0.8737
5 x x x - 0.8515
6 x x x - 0.8616
7 x x 0.8410 0.8613
8 x x x 0.8321 (0.5302)
9 x x 0.8212 0.8414
10 x x 0.8385 0.8720

Table 2: Overview of submissions to the NLI Shared Task 2017. Test scores were received during the
test phase. As CNN1 and CNN2 were evaluated against 30% of the development set, their results are
excluded from the performance on the development set. (The low test performance for Submission 8
suggests that something went wrong with uploading the correct system.)

Figure 1: Confusion matrix for character 1-9-grams trained on train+dev

tem evaluation process. Our experiments with the
prompt-word feature revealed that our system was
indeed modeling prompt topic in addition to na-
tive language. In order to further validate this, we
ran a series of experiments in which we omitted a
prompt from the training set in a leave-one-prompt
out scenario. We then fit a classifier on this trun-
cated training data and evaluated it against the en-
tire dev set (i.e., with all prompt information re-
tained). The performance of the classifier varied
greatly depending on which prompt was omitted,
dropping in accuracy between 3% and 20%.

Interestingly, our experiments with omitting
prompt information from the test set (both dev

and test, in separate instances) did not reproduce
such drastic drops in performance. Instead, the
system’s accuracy declined only slightly (as in
the case of P7 omission), if at all. This sug-
gests that, in evaluating the assessment submis-
sions, the evaluation data can consist of a smaller
prompt distribution than the training data, with
only minimal prompt-overfitting observed for the
latter. Conversely, this also means that a system
must be trained on at least the same prompts that
the data against which it is evaluated. Otherwise,
the drop in performance may be unpredictable.

These prompt-omission experiments led us to
conclude that, while it is possible to build a state-
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of-the-art model, the fact that it is trained and
tested against the same prompt topics likely ren-
ders it unable to generalize towards other, poten-
tially unseen future prompts. Furthermore, it is
improbable that a system trained on one year’s
assessments will come close to replicating simi-
lar results when tested against essays from other
years, due to the discrepancy in potential prompts.
Certainly, this is to say that, in order to obtain a
true metric of how well any of the submitted sys-
tems would fare in practical scenarios (i.e. NLI on
future year’s TOEFL essays), it is vital that they
be tested against a data set that contains different
and unseen prompts.
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Abstract

This paper reports our contribution (team
WLZ) to the NLI Shared Task 2017 (essay
track). We first extract lexical and syntac-
tic features from the essays, perform fea-
ture weighting and selection, and train lin-
ear support vector machine (SVM) classi-
fiers each on an individual feature type.
The output of base classifiers, as proba-
bilities for each class, are then fed into a
multilayer perceptron to predict the native
language of the author. We also report the
performance of each feature type, as well
as the best features of a type. Our system
achieves an accuracy of 86.55%, which is
among the best performing systems of this
shared task.

1 Introduction

Native language identification (NLI) is the task
of determining an author’s native language (L1)
based on their writings in a second language (L2).
NLI works under the assumption that an author’s
L1 will dispose them towards particular language
production patterns in their L2, as influenced
by their native language. This relates to cross-
linguistic influence (CLI), a key topic in the field
of second language acquisition (SLA) that ana-
lyzes transfer effects from the L1 on later learned
languages (Malmasi, 2016). The identification of
L1-specific features has been used to study lan-
guage transfer effects in second-language acqui-
sition (Malmasi and Dras, 2014), which is use-
ful for developing pedagogical material, teaching
methods, L1-specific instructions and generating
learner feedback that is tailored to their native lan-
guage.

The first NLI shared task was held in 2013
(Tetreault et al., 2013), and the winner team re-

ported an accuracy of 83.6% on the test data using
an SVM classifier with over 400,000 unique fea-
tures consisting of lexical and POS n-grams occur-
ring in at least two texts in the training set (Jarvis
et al., 2013). In addition to n-gram features, other
researchers have also explored syntactic features
(Bykh and Meurers, 2014) and the use of string
kernels (Ionescu et al., 2014).

All NLI shared tasks to date have been based
on L2 English data, but NLI research has been ex-
tended to at least six other non-English languages
(Malmasi and Dras, 2015). In addition to us-
ing the written responses, a recent trend has been
the use of speech transcripts and audio features
for dialect identification (Malmasi et al., 2016).
The combination of transcripts and acoustic fea-
tures has also provided good results for dialect
identification (Zampieri et al., 2017). Following
this trend, the 2016 Computational Paralinguistics
Challenge (Schuller et al., 2016) also included an
NLI task based on the spoken response. The NLI
Shared Task 2017 attempts to combine these ap-
proaches by including a written response (essay)
and a spoken response (speech transcript and i-
vector acoustic features) for each subject. The task
also allows for the fusion of all features.

Ensemble methods using multiple classifiers
have proven to be one of the most successful ap-
proaches for the task of NLI (Malmasi and Dras,
2017), and researchers have reported better results
using stacking than a single classifier in other text
classification tasks (e.g., Liu et al., 2016). In this
work we present a stacking model using lexical
and syntactic features for NLI Shared Task 2017
(Malmasi et al., 2017), report the performance
of different feature types, and show the best fea-
tures in each type. The features we use in the fi-
nal model include character/word/stem n-grams,
function word n-grams, and dependency parses.
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2 Data

The data set we use for NLI Shared Task 2017
(see details in Malmasi et al., 2017) includes En-
glish essays written by test takers who partici-
pated in a standardized assessment of English pro-
ficiency for academic purposes. The 11 native
languages of the test takers are: Arabic (ARA),
Chinese (CHI), French (FRE), German (GER),
Hindi (HIN), Italian (ITA), Japanese (JPN), Ko-
rean (KOR), Spanish (SPA), Telugu (TEL), and
Turkish (TUR). There are 11,000 essays (1,000
per L1) in the training partition (Train), 1,100 (100
per L1) in the development partition (Dev), and
1,100 (100 per L1) in the test partition (Test). All
essays are available in both original and tokenized
texts.

3 Methods

3.1 Features
We use tf-idf weighting for all the features in this
work, since we observe better results than other
feature representations, namely binary represen-
tation and frequency-based representation. For
most of the feature types, we also select k-best
features with chi-square metric instead of using
all of them. Previous research has reported fea-
ture selection could improve the classification ac-
curacy (Liu et al., 2014), and we notice the same
trend for this task. In preliminary experiments fea-
ture selection increases the accuracy by around 1-
3% for each feature type. The k value for each
feature type varies with regard to the total num-
ber of features, and we choose the selected num-
ber of features based on their performance on the
Dev set (trained on Train set). Both tf-idf weight-
ing and feature selection are realized with Scikit-
Learn (Pedregosa et al., 2011).

Character n-grams We extract character 3-7
grams from the tokenized text, and each is repre-
sented as a feature type (denoted by Char3-7). We
also experiment with character 8-9 grams but do
not include them in the final model, since adding
them does not improve the accuracy.

Word n-grams We extract word uni-, bi-, and
tri-grams from the tokenized text, and each is rep-
resented as a feature type (denoted by Word1-3).

Lemma n-grams We use the WordNet Lem-
matizer in NLTK (Bird, 2006) to lemmatize the
tokenized essays, and then extract lemma uni-,

bi-, and tri-grams as feature types (denoted by
Lemma1-3). However, we do not include these
features in the final model, since adding them does
not improve the accuracy.

Stem n-grams We first stem the tokenized text
with Porter stemmer using NLTK, and then extract
stem uni-, bi-, and tri-grams as feature types (de-
noted by Stem1-3).

POS n-grams We use the Stanford POS tagger
(Toutanova et al., 2003) to tag the tokenized es-
says, and then extract POS uni-, bi-, and tri-grams
as feature types (denoted by POS1-3). However,
we do not include these features in the final model,
since adding them does not improve the accuracy.

Function word n-grams We use the Stanford
POS tagger to tag the tokenized essays first, and
then extract the function words by their POS tags
(which are tagged as auxiliary verbs, conjunctions,
determiners, pronouns, etc.). Function word uni-,
bi-, and tri-grams are used as features (denoted by
FW1-3).

Dependency parses We use the Stanford de-
pendency parser (Klein and Manning, 2003) to
extract the dependencies from the tokenized es-
says. Three types of dependencies are included in
the experiments (taking “I agree” as an example):
original dependency (Dep0), e.g., (agree, nsubj,
I); dependency where one of the word is replaced
by its POS tag (Dep1), e.g., (VBP, nsubj, I) and
(agree, nsubj, PRP); dependency where both of the
words are replaced by their POS tags (Dep2), e.g.,
(VBP, nsubj, PRP). We include the POS-replaced
dependencies, since we believe they would gener-
alize better, as noted by Malmasi and Dras (2017).

Word embeddings We use the Common Crawl
(42B tokens, 1.9M vocab, uncased, 300d vec-
tors) in GloVe (global vectors for word representa-
tion) (Pennington et al., 2014) to produce feature
vectors for each essay, with the help of Gensim
(Řehůřek and Sojka, 2010). For all the words in
an essay, we average their word vectors if they oc-
cur in the GloVe vocabulary as well. We observe
that word vectors with larger dimension perform
better than those with lower dimension when ex-
perimenting with different dimensions (e.g., 50d,
100d, 200d, 300d). However, we do not in-
clude the word embedding features (denoted by
WV300) in the final model, since adding them
does not improve the accuracy.
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Feature type Total # Selected # CV Dev Test
Char3 11,320 10,000 0.7327 0.7447 0.7555
Char4 51,072 30,000 0.7944 0.7827 0.8145
Char5 145,575 30,000 0.8158 0.8045 0.8264
Char6 334,117 30,000 0.8260 0.8000 0.8309
Char7 631,139 50,000 0.8386 0.8018 0.8336
Word1 25,950 20,000 0.7699 0.7627 0.8136
Word2 205,625 50,000 0.8417 0.7809 0.8245
Word3 384,184 50,000 0.8227 0.7082 0.7218
Stem1 145,575 10,000 0.7572 0.7618 0.7827
Stem2 334,117 30,000 0.8276 0.7791 0.8118
Stem3 631,139 30,000 0.7982 0.6964 0.7127
FW1 511 all 0.4199 0.4309 0.4227
FW2 12,385 all 0.4623 0.4764 0.4900
FW3 104,770 all 0.4174 0.4300 0.4464
Dep0 253,719 30,000 0.7868 0.6718 0.7473
Dep1 256,271 30,000 0.7996 0.7336 0.7709
Dep2 4,426 4,000 0.4598 0.4645 0.4745

Lemma1 22,541 20,000 0.7614 0.7627 –
Lemma2 181,533 50,000 0.8389 0.7891 –
Lemma3 355,414 50,000 0.8242 0.7082 –

POS1 44 all 0.3516 0.3800 –
POS2 12,385 all 0.5297 0.5173 –
POS3 18,961 15,000 0.5741 0.5710 –

WV300 300 300 0.5645 0.5673 –

Table 1: Total number of features, selected number of features, and accuracy of each feature type. CV:
10-fold cross validation on Train; Dev: trained on Train, tested on Dev; Test: trained on Train and Dev,
tested on Test. Best performance of a feature group on Test is in bold.

3.2 Classifiers

We use linear SVM (implemented by Scikit-
Learn) as the base classifier for the feature types
mentioned above. We set C=0.8 for Char3, Word1,
Stem1, FW1-3, and Dep2, and use default settings
for other parameters. Experiments on other feature
types use the default setting: C=1.0, L2 penalty,
squared hinge loss, etc. For each feature type, we
run 10-fold cross validation on Train and test on
Dev to decide the number of selected features we
would like to use for the final system.

To combine the output of probabilities from
base classifiers and predict the final label, one
method is to concatenate all the probabilities and
feed into a classifier to generate the final predic-
tion. We examine the performance of multilayer
perceptron (MLP), linear SVM, Linear Discrimi-
nant Analysis (LDA), and MLP performs the best.
We try different hidden layer sizes, and finally use
one hidden layer of 100 perceptrons. Since MLP
produces different results in every run, our final

results using MLP contains the average results of
10 runs to reduce the variance.

We also try combining the probabilities mathe-
matically: 1) summing up the probabilities from
all feature types and taking the maximum as final
prediction (denoted by SumProbs); 2) summing
up the logarithmized probabilities from all feature
types and taking the maximum as final prediction
(denoted by LogSumProbs).

We run cross validation on Train and Dev to
decide which feature types to include in the final
model.

4 Results

4.1 Results by feature type

We report the performance of each feature type in
Table 1. The upper part contains the 17 features
we use in the final model, and the lower part con-
tains some features we would like to explore but
do not include in the final submissions.
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We can see that the total number of features is
very large for some feature types, which makes
feature selection necessary. However, we choose
the number of features by their performance on
Dev and cross validation on Train, so there is no
guarantee that we have the optimal number of se-
lected features.

The features that perform comparatively well
on Test set are: Char7, Word2, Stem2, FW2, and
Dep1. We believe that bigrams perform better than
unigrams or trigrams in general, because they con-
sider context more than unigrams and generalize
better than trigrams.

We also show the top features for each feature
type ranked by Chi-square in Table 4, in the hope
that it would be helpful for researchers interested
in SLA or at least provide some insights to the
readers. We notice that among the word n-grams
are some country related words such as “italy” and
“in japan”, as well as some common expressions
such as “in order to” and “more and more”.

4.2 Final results

The Word Unigram baseline in Table 2 is achieved
by using normalized frequency of all the word un-
igrams (which occurred at least three times in the
essays) as features, and linear SVM as the classi-
fier.

We try different methods of combining the out-
put of probabilities by base classifiers and report
their performance in Table 2. MLP and linear
SVM are the best combiners among our exper-
iments (other classifiers include random forest,
LDA, logistic regression). When not using a clas-
sifier, summing up the logarithmized probabilities
achieves better results than summing up the prob-
abilities directly. The detailed evaluation of our
best performing system is shown in Table 3, and
the confusion matrix is shown in Figure 1.

From the confusion matrix we observe a few
quite distinctive language groups: CHI, JPN, and
KOR; HIN and TEL; FRE, ITA, and SPA. We
suppose the confusion between languages results
more from cultural than linguistic reasons. For
instance, HIN and TEL are mutually misclassi-
fied in a lot of cases, while HIN belongs to Indo-
European language family and TEL belongs to
Dravidian. Similarly, CHI, JPN, and KOR come
from three different language families, but they are
in a cluster where one is often misclassified as an-
other.

System F1 (macro) Accuracy
Random Baseline 0.0909 0.0909
Word Unigram 0.7104 0.7109
MLP 0.8654 0.8655
LinearSVM 0.8593 0.8591
LogSumProbs 0.8564 0.8565
SumProbs 0.8554 0.8555
LDA 0.8446 0.8445

Table 2: Final results using different combining
methods. Trained on Train and Dev, tested on Test.

Precision Recall F1
ARA 0.8673 0.8500 0.8586
CHI 0.9388 0.9200 0.9293
FRE 0.8600 0.8600 0.8600
GER 0.9406 0.9500 0.9453
HIN 0.7843 0.8000 0.7921
ITA 0.8878 0.8700 0.8788
JPN 0.8679 0.9200 0.8932
KOR 0.8632 0.8200 0.8410
SPA 0.8173 0.8500 0.8333
TEL 0.8265 0.8100 0.8182
TUR 0.8700 0.8700 0.8700

avg / total 0.8658 0.8655 0.8654

Table 3: Detailed evaluation of our best perform-
ing system. Trained on Train and Dev, tested on
Test. Best and worst F1 in bold and italics.

5 Discussion and future work

We explore the performance of different feature
types for NLI in this work. Among the features
types we examine, character/word/lemma/stem n-
grams have the best individual performance. De-
pendency parses are also informative with respect
to the native language of the author. POS n-
grams might be too general for this task, achieving
around 50% accuracy alone. Word embeddings
are good indicators for text classification tasks
such as sentiment analysis, which relies heavily
on the semantics of the content. NLI is not only
about the semantics of the text but also involves
writing style (e.g., the use of expressions and sen-
tence structure). We suppose this justifies the per-
formance of using word embeddings as features.

When we combine the output of base classifiers
using different feature types to predict the final la-
bel, we have to decide which feature types to in-
clude. It is not practical to try all the combina-
tions of features, so we start with the feature types
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Figure 1: Confusion matrix of our best performing model.

with best individual performance, adding one and
another. We do not include a feature type if it
does not improve the accuracy on cross valida-
tion, and thus we cannot guarantee the optimiza-
tion of performance on the test data. This pro-
cess is very time consuming, and we believe there
should be a better way of doing so. At the same
time we observe adding lemma n-grams does not
help, although lemma n-grams achieve very high
accuracy by themselves. We believe the reason is
that lemma n-grams are overlapping with word n-
grams a lot, so they do not contribute more to the
final prediction. We should keep in mind that good
classifiers for ensemble learning need both accu-
racy and diversity. It remains unclear why func-
tion words (with accuracy of around 40%-50%)
help more than POS n-grams or word embeddings,
though.

We notice MLP improves the system perfor-
mance over linear SVM as a combiner. For an
individual feature type, MLP also performs bet-
ter than linear SVM in most cases; however, we
choose linear SVM as the base classifier, since it
has better balance between speed and accuracy.
MLP is roughly ten times slower than linear SVM
when we run the experiments. This points us to
the use of neural networks, since MLP is one of

the simplest neural architecture. We would like to
explore more about neural networks for NLI in fu-
ture.

Another direction of future work may be to-
wards a different architecture of combing various
feature types. Ensemble methods have been stud-
ied quite a lot in text classification tasks; however,
building an ensemble classifier is hardly an end-
to-end task. We would like to explore how we can
make the system smarter and learn by itself with
less human input.

Finally, we hope the work in NLI would be
of interest to the researchers from SLA/ESL. We
hope the work we have done for NLI could be
potentially useful for language teachers, and we
would like to collaborate with them if they need
anything from the view of computational linguis-
tics.
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Feature Type Top Features Selected by Chi-square
Char3 h; vel; ink; n j; alo; pan; -t ; oup; oft; u w; owe; . .; kyo; fue; u ; nk ; ’m; ’m ; a ; he ; i ’; u a; - ; & ; ..; , i; . ; gst; yme; i t; i ; wev; ho; gu; oym;

yo; apa; you; gui; uid; tou; : ; rav; , ; ja; urk; ko; ou ; kor; jap
Char4 veli; ticu; germ; gste; ngst; ften; ofte; bbli; owev; weve; lopp; nk t; ymen; . ho; how; , i ; i th; oyme; ur g; you; r gu; pane; gui; joym; rkey;

urke; guid; uide; tou; rave; deed; avel; trav; ita; ndee; in j; tour; ind; n ko; turk; pan ; alot; n ja; you ; orea; kor; kore; jap; apan; japa
Char5 i thi; n ita; avel ; rean ; eed ,; oymen; howe; our g; k tha; orean; r gui; ur gu; rkey ; joyme; turke; urkey; uide ; njoym; guid; guide; in j; panes;

pan ,; apane; ravel; anese; trave; deed ; trav; ital; indee; ndeed; tour; tour ; . ind; turk; in ko; n kor; inde; alot; alot ; orea ; in ja; you ; n jap;
apan ; kore; korea; japa; japan

Char6 a tour; ravel ; eed , ; orean ; . howe; oyment; howev; orea ,; k that; nk tha; korean; r guid; ur gui; our gu; urkey ; turke; joymen; turkey;
njoyme; enjoym; guide ; guide; tour g; pan , ; apanes; japane; anese ; apan ,; panese; travel; trave; indeed; ndeed ; in ko; . ind; deed ,; tour ;
in kor; n kore; . inde; indee; in ja; alot o; alot ; korea ; n japa; japan ; in jap; korea; japan

Char7 wever ,; a tour; a tour ; travel ; oyment ; . howev; . howe; korean ; howeve; k that ; korea ,; orea , ; nk that; ink tha; korean; enjoym; r guide;
ur guid; our gui; turkey ; turkey; tour gu; joyment; njoymen; enjoyme; guide ; tour g; japane; japanes; apan , ; japan ,; panese ; indeed ;
travel; apanese; deed , ; in kor; ndeed ,; in kore; . inde; . indee; n korea; indeed; alot o; in jap; alot of; korea ; n japan; in japa; japan

Word1 u; jack; developped; infact; milan; pubblic; exemple; preparation; trip; ’m; youth; group; &; think; the; your; various; france; dont; ..; -; a;
youngsters; he; germany; hence; his; italy; towards; traveling; particular; italian; often; however; thier; travel; i; korean; guide; enjoyment;
turkey; :; japanese; indeed; tour; ,; alot; korea; you; japan

Word2 and hence; that you; jack of; the youth; it ’s; led by; younger generation; the above; , they; when compared; i ’m; a particular; group tour;
you are; first ,; two reasons; a group; particular subject; korea .; in germany; second ,; now a; , we; . second; japan .; as compared; , and; .
..; , that; in fact; i conclude; in italy; where as; in france; in turkey; a days; . however; i think; a tour; , i; however ,; think that; korea ,; tour
guide; japan ,; indeed ,; in korea; . indeed; alot of; in japan

Word3 a lot of; have alot of; of all ,; conclude , i; , young people; master of none; , i think; tour guide .; enjoy a lot; , they can; , in japan; usage of
cars; of all trades; . i think; the younger generation; to conclude ,; on the one; each and every; the possibility to; i feel that; a group led; .
therefore ,; however , i; reasons , i; the one hand; group led by; . to conclude; . in japan; for this reason; is , that; i conclude that; in korea .;
jack of all; led by a; when compared to; . first ,; in a group; by a tour; are two reasons; . in fact; . second ,; in japan .; as compared to; a tour
guide; now a days; in korea ,; . however ,; in japan ,; i think that; . indeed ,

Stem1 atleast; an; that; istanbul; intrest; taiwan; india; commun; fuel; tokyo; trip; group; infact; possibl; jack; milan; think; toward; advertiss; difer;
the; exempl; youth; dont; variou; your; he; franc; hi; henc; germani; itali; particular; pubblic; youngster; often; thier; howev; italian; korean;
guid; turkey; travel; japanes; tour; inde; alot; korea; you; japan

Stem2 all trade; when you; with out; have alot; feel that; you will; the italian; usag of; old age; each and; one hand; in india; peopl that; master of;
group led; you have; mode of; to conclud; conclud that; and henc; everi thing; that you; when compar; possibl to; the youth; in group; jack
of; younger gener; the abov; led by; enjoy lot; the subject; particular subject; you are; group tour; in germani; by tour; two reason; as compar;
in fact; now day; in itali; where as; in franc; in turkey; think that; tour guid; in korea; alot of; in japan

Stem3 the new thing; alot of money; alot of thing; the statement that; and for thi; in olden day; youth of today; are my follow; in order to; the youth
of; in today world; would say that; for these reason; for exampl consid; the older peopl; day by day; in thi way; for new thing; mode of
transport; when you are; think that is; final conclud that; the usag of; accord to me; to my mind; all the subject; travel in group; the young
peopl; more and more; you have to; think that in; tri for new; have alot of; master of none; usag of car; in group led; each and everi; the
possibl to; on the one; of all trade; the younger gener; the one hand; group led by; for thi reason; jack of all; when compar to; led by tour; by
tour guid; are two reason; as compar to

FW1 when; whether; to; about; by; some; amongst; it; can; into; every; than; there; atleast; must; three; across; or; why; upon; she; till; because;
behind; will; could; of; though; my; would; whereas; might; they; their; this; him; that; olden; any; the; we; its; an; may; which; your; he;
his; towards; you

FW2 that why; the he; all the; there three; you in; and he; some might; one should; to you; the may; the behind; any one; that that; that this; that
in; you the; because you; his and; and that; you you; of the; which he; it to; you and; they can; what you; and towards; the which; he can; and
you; he will; towards the; by myself; every one; in by; in olden; there two; he may; we can; in his; towards their; if you; you can; the you;
you will; the of; when you; where as; that you; you to

FW3 some might that; there three as; you to and; as as with; the towards their; all but of; the of an; you to in; in the twenty; there in twenty; than
there two; the you to; the in olden; some might with; to would that; you will to; you to the; they how to; for us to; you to to; if you to; in to
this; but on the; that you can; we can the; the where as; above we can; their towards their; on of that; for these with; the these my; when you
you; all as before; and for this; that in the; that you to; where as the; there two for; all in all; in all as; with the that; two for this; we can that;
as would that; in the of; to in by; the of the; the that you; on the one; each and every

Dep0 compared advmod when; days det these; student det the; important cop ; enjoyment case of; possibility det the; thing det every; sub-
jects det the; taiwan case in; each cc and; usage nmod cars; self nmod; enjoy dobj lot; hand nummod one; product det a; subject det the;
knowledge det a; take dobj example; group acl led; conclude mark to; india case in; people det the; generation det the; feel nsubj i;
generation amod younger; have nsubj you; group det a; preparation det a; youth det the; led nmod guide; reasons nummod two;
tour compound group; group case in; subject amod particular; guide case by; days det a; germany case in; fact case in; italy case in;
france case in; turkey case in; conclude nsubj i; poss his; guide det a; think nsubj i; guide compound tour; korea case in; japan case in

Dep1 nn acl led; conclude mark to; nn det any; led nmod nn; youth det dt; generation amod jjr; vbn nmod guide; conclude nsubj fw;
vbg mark in; subject det dt; group det dt; enjoyment case in; vbp advmod indeed; preparation amod jj; nn case towards; group case in;
nn det a; tour compound nn; vbp nsubj that; preparation det dt; poss your; nns amod various; vbp nsubj i; nn amod italian; nns det the;
nn nmod korea; india case in; vb dobj alot; germany case in; vb nsubj you; reasons nummod cd; nn amod japanese; nn nmod japan;
france case in; italy case in; vbd nsubj i; think nsubj prp; guide case in; nn amod particular; turkey case in; alot nmod nn;
vbp nsubj you; guide det dt; guide compound nn; alot nmod nns; nn compound tour; korea case in; japan case in

Dep2 jjs case to; vbg dobj nn; vb dobj prp; vb nsubj prp; vbg nsubj nns; jj mwe in; vb advcl vbp; vbp ccomp jj; vbg nmod nns; jj cop vbz;
nn case in; prp case vbg; jj nsubj prp; vbd dobj nn; nn compound nn; jj xcomp vb; jjr conj jjr; vb aux vbd; vb nsubj fw; vbp nsubj wdt;
vbd advmod rb; vbp advmod rb; jj advmod rb; predet pdt; nn nmod nn; vbd nmod nnp; jj cop vb; nnp nmod dt; vbp expl ex; nns det;
jj cop vbg; in mwe nn; vb nsubj nns; vb aux vbp; vb advmod ls; vbn aux vbz; vb neg rb; vbd nsubj fw; poss nns; vbg mark in;
jj mark to; nns case pos; vbp nsubj nns; vbp nsubj prp; vbp advmod ls; nns det dt; vbp nsubj fw; vbd nsubj prp; nn det dt

Table 4: Top features ranked by Chi-square on Train and Dev (separated by “;”).
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Abstract

This paper presents an ensemble system
combining the output of multiple SVM
classifiers to native language identification
(NLI). The system was submitted to the
NLI Shared Task 2017 fusion track which
featured students essays and spoken re-
sponses in form of audio transcriptions
and iVectors by non-native English speak-
ers of eleven native languages. Our sys-
tem competed in the challenge under the
team name ZCD and was based on an en-
semble of SVM classifiers trained on char-
acter n-grams achieving 83.58% accuracy
and ranking 3rd in the shared task.

1 Introduction

Native language identification (NLI) is the task of
automatically identifying non-native speakers’ na-
tive language based on their foreign language pro-
duction. As evidenced in Malmasi (2016) NLI is a
vibrant research area in NLP and is usually mod-
eled as single-label text classification.

NLI is based on the assumption that the mother
tongue influences second language acquisition
(SLA) and production. Corpora containing texts
and utterances by non-native speakers are used to
train systems that are able to recognize features
that are prominent in the production of speakers
of a particular native language. These features are
subsequently used to identify texts (or utterances)
that are likely to be written or spoken by speakers
of the same language.

There are two important reasons to study NLI.
Firstly, there is SLA. NLI methods can be ap-
plied to learner corpora to investigate the influence
of native language in second language acquisi-
tion and production complementing corpus-based
and corpus-driven studies. The second reason is a

practical one. NLI methods can be an important
part of several NLP systems including, for exam-
ple, author profiling systems developed for foren-
sic linguistics.

This paper presents the system submitted by the
ZCD team to the NLI Shared Task 2017 (Mal-
masi et al., 2017). The organizers of the chal-
lenge provided participants with a dataset contain-
ing essays and spoken responses in form of tran-
scriptions and acoustic features (iVectors) by non-
native English speakers of eleven native languages
taking a standardized assessment of English profi-
ciency for academic purposes. Native languages
included are: Arabic, Chinese, French, German,
Hindi, Italian, Japanese, Korean, Spanish, Telugu,
and Turkish. To discriminate between these eleven
native languages we apply an ensemble of multi-
ple linear SVM classifiers trained on character n-
grams. The main motivation behind the choice of
this approach is the success of linear SVMs and
SVM ensembles in NLI and in similar text classi-
fication tasks such as dialect, language variety, and
similar language identification as will be discussed
in Section 2.

2 Related Work

There have been several NLI studies published
in the past few years. Due to the availability
of suitable language resources for English (e.g.
learner corpora), the vast majority of these stud-
ies dealt with English (Brooke and Hirst, 2012;
Bykh and Meurers, 2014), however, a few NLI
studies have been published on other languages.
Examples of NLI applied to languages other than
English include Arabic (Ionescu, 2015), Chinese
(Wang et al., 2016), and Finnish (Malmasi and
Dras, 2014).

To the best of our knowledge, the NLI Shared
Task 2013 (Tetreault et al., 2013) was the first
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Team Approach System Paper
Jarvis SVM trained on character n-grams (1-9), word n-grams (1-4),

and POS n-grams (1-4)
(Jarvis et al., 2013)

Oslo SVM trained on character n-grams (1-7) (Lynum, 2013)
Unibuc String Kernels and Local Rank Distance (LRD) (Popescu and Ionescu, 2013)
MITRE Bayes ensemble of multiple classifiers (Henderson et al., 2013)
Tuebingen SVM trained on word n-grams (1-2), and POS n-grams (1-5), and

syntactic features (dependencies)
(Bykh et al., 2013)

NRC Ensemble of SVM classifiers trained on character trigrams, word
n-grams (1-2), POS n-grams (2-4), and syntactic features (depen-
dencies)

(Goutte et al., 2013)

CMU-Haifa Maximum Entropy trained on word n-grams (1-4), POS n-grams
(1-4), and spelling features

(Tsvetkov et al., 2013)

Cologne-Nijmegen SVM classifier with TF-IDF weighting trained on character n-
grams (1-6), word n-grams (1-2), and POS n-grams (1-4)

(Gebre et al., 2013)

NAIST SVM trained on character n-grams (2-3), word n-grams (1-2),
and POS n-grams (2-3), and syntactic features (dependencies and
TSG)

(Mizumoto et al., 2013)

UTD SVM trained on word n-grams (1-2) (Wu et al., 2013)

Table 1: Top ten NLI Shared Task 2013 entries ordered by performance.

shared task to provide a benchmark for NLI focus-
ing on written texts by non-native English speak-
ers. A few years later, the 2016 Computational
Paralinguistics Challenge (Schuller et al., 2016)
included an NLI task on speech data. The NLI
Shared Task 2017 combines these two modalities
of non-native language production by including
essays and spoken responses of test takers in form
of transcriptions and iVectors.

The combination of text and speech has been
previously used in similar shared tasks such as the
dialect identification shared tasks organized at the
VarDial workshop series (Zampieri et al., 2017)
and described in more detail in Section 2.2.

In the next sections we present the most suc-
cessful entries submitted for the NLI Shared Task
2013 and their overlap with methods applied to di-
alect, language variety, and similar language iden-
tification.

2.1 NLI Shared Task 2013

The aforementioned NLI Shared Task 2013
(Tetreault et al., 2013) established the first bench-
mark for NLI on written texts. Organizers of
the first NLI task provided participants with the
TOEFL 11 (Blanchard et al., 2013) dataset which
contained essays written by students native speak-
ers of the same eleven languages included in the
NLI Shared Task 2017.

Twenty-nine teams participated in the competi-
tion, testing a wide range of computational meth-
ods for NLI. In Table 1 we list the top ten best

entries ranked by performance along with their re-
spective system description papers.

The best system by Jarvis et al. (2013) applied
a linear SVM classifier trained on character, word,
and POS n-grams. Seven out of the ten best en-
tries in the shared task used SVM classifiers. This
indicates that SMVs are a very good fit for NLI
and motivates us to test SVM classifiers in our
ensemble-based system described in this paper.

2.2 Overlap with Dialect Identification

In the last few years, we observed a significant
and important overlap between NLI approaches
and computational methods applied to dialect, lan-
guage variety, and similar language identification.
So far the overlap between the two tasks has not
been substantially explored in the literature.

Members of several teams that submitted sys-
tems to the NLI Shared Task 2013, some of them
presented in Table 1, also participated in the di-
alect identification shared tasks organized within
the scope of the VarDial workshop series held
from 2014 to 2017. The three related shared tasks
organized at the VarDial workshop thus far are the
Discriminating between Similar Languages (DSL)
task organized from 2014 to 2017, Arabic Di-
alect Identification (ADI) organized in 2016 and
2017, and German Dialect Identification (GDI) or-
ganized in 2017.

Next we list some of the teams that adapted sys-
tems from NLI to dialect identification in the past
few years.
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• Variations of the string kernels method by the
Unibuc team (Popescu and Ionescu, 2013)
competed in the ADI task in 2016 (Ionescu
and Popescu, 2016) and in 2017 (Ionescu and
Butnaru, 2017) achieving the best results.

• Cologne-Nijmegen’s TF-IDF-based ap-
proach (Gebre et al., 2013) competed in
the DSL shared task 2015 (Zampieri et al.,
2015a) as team MMS ranking among the top
3 systems.

• A variation of NRC’s SVM approach (Goutte
et al., 2013) competed in the DSL 2014
(Goutte et al., 2014) achieving the best re-
sults.

• Bobicev applied Prediction for Partial Match-
ing (PPM) in the NLI shared task (Bobicev,
2013) with results that did not reach top
ten performance. A similar improved ap-
proached competed in the DSL 2015 (Bo-
bicev, 2015) ranking in the top half of the ta-
ble.

• A similar approach to the one by Jarvis
(Jarvis et al., 2013) that ranked 1st place in
the NLI task 2013 competed in the DSL 2017
(Bestgen, 2017), achieving the best perfor-
mance in the competition.

• Variations of MQ’s SVM ensemble approach
(Malmasi et al., 2013) have competed in
the DSL 2015 (Malmasi and Dras, 2015)
and the ADI 2016 (Malmasi and Zampieri,
2016), achieving the best performance in
both shared tasks.

This section evidenced an important overlap be-
tween NLI methods and dialect identification
methods both in terms of participation overlap in
the shared tasks and in terms of successful ap-
proaches. With the exception of Bobicev (2013),
most teams that were ranked among the top ten en-
tries in the NLI shared task were also successful at
the VarDial workshop shared tasks.

Detailed information about all approaches and
performance obtained in these competitions can
be found in the VarDial shared task reports
(Zampieri et al., 2014, 2015b; Malmasi et al.,
2016b; Zampieri et al., 2017) and in the evaluation
paper by Goutte et al. (2016).

3 Methods

In the next sections we describe the data provided
by the shared task organizers and the ensemble
SVM approach applied by the ZCD team.

3.1 Data

The organizers of the NLI Shared Task 2017
provided participants with data corresponding to
eleven native languages: Arabic, Chinese, French,
German, Hindi, Italian, Japanese, Korean, Span-
ish, Telugu and Turkish. The training dataset
consists of 11,000 essays, orthographic transcrip-
tions of 45-second English spoken responses, and
iVectors (1,000 instances for each of the eleven
native languages), while the development dataset
was stratified similarly, containing 100 instances
for each native language.

There were individual tracks in which only the
essays or only the responses could be used and
a fusion track in which both the essays and the
speech transcriptions (including iVectors) could be
used. The test dataset, containing 1,100 instances
with essays, speech transcriptions and iVectors,
was released at a later date.

The use of a dataset containing text and speech
is the main new aspect of the 2017 NLI task so we
decide to compete in the fusion track taking both
modalities into account. The approach used in our
submission is described next.

3.2 Approach

We built a classification system based on SVM en-
sembles, following the methodology proposed by
Malmasi and Dras (2015).

The idea behind classification ensembles is to
improve the overall performance by combining
the results of multiple classifiers. Such systems
have proved successful not only in NLI and di-
alect identification, as evidenced in the previous
sections, but also in numerous text classification
tasks, among which are complex word identifica-
tion (Malmasi et al., 2016a) and grammatical er-
ror diagnosis (Xiang et al., 2015). The classifiers
can differ in a wide range of aspects, such as algo-
rithms, training data, features or parameters.

In our system, the classifiers used different fea-
tures. We experimented with the following fea-
tures: character n-grams (with n in {1, ..., 10})
from essays and speech transcripts, word n-grams
(with n in {1, 2}) from essays and speech tran-
scripts, and iVectors. For the n-gram features we
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System F1 (macro) Accuracy
Essays + Transcriptions + iVectors 0.8358 0.8355
Essays + Transcriptions 0.8191 0.8191
Official Baseline (with iVectors) 0.7901 0.7909
Official Baseline (without iVectors) 0.7786 0.7791
Random Baseline 0.0909 0.0909

Table 2: ZCD results and baselines for the fusion track.

used TF-IDF weighting applied on the tokenized
version of the essays and speech transcripts (pro-
vided by the organizers). As a pre-processing step,
we lowercased all words.

We first trained a classifier for each type of
feature using the essays as input data, and per-
formed cross-validation to determine the optimal
value for the SVM hyperparameter C, searching
in {10−5, ..., 105}. Further, for the n-gram fea-
tures we kept only those classifiers whose individ-
ual cross-validation performance was higher than
0.8. Thus, our first ensemble consisted of individ-
ual classifiers using character n-grams (with n in
{6, 7, 8}) from essays and speech transcripts.

For the second ensemble, we introduced an
additional classifier using the iVectors as fea-
tures. To combine the classifiers, we employed a
majority-based fusion method: the class label pre-
dicted by the ensemble is the one that was pre-
dicted by the majority of the classifiers. We used
the SVM implementation provided by Scikit-learn
(Pedregosa et al., 2011), based on the Liblinear li-
brary (Fan et al., 2008).

On the development dataset, the first ensemble
(essays + speech transcripts) obtained 0.83 accu-
racy, and the second ensemble (essays + speech
transcripts + iVectors) obtained 0.84 accuracy.

4 Results

We submitted two runs of our system. The first
run included the essays and the transcriptions of
responses, whereas the second run included also
the iVectors. We present the results obtained by
the two runs along with a random baseline and the
performance of the unigram-based official base-
line system in terms of F1 score and accuracy in
Table 2.

The best results were achieved by the second
run, reaching 83.55% accuracy and 83.58% F1
score. As can be seen in Table 2, the iVectors bring
a performance improvement of about 1.6 percent-
age points in terms of accuracy and F1 score.

Ten teams participated in the fusion track and
our best run was ranked 3rd by the shared task or-
ganizers. Ranks were calculated using McNemars
test for statistical significance, a common practice
in many NLI shared tasks (e.g. DSL 2016 (Mal-
masi et al., 2016b), and the shared tasks at WMT
(Bojar et al., 2016)).

The confusion matrix of our best submission is
presented in Table 3. We observed that the best
performance was obtained for Japanese and the
worst performance was obtained for Arabic. Not
surprisingly, most confusion occurred between
Hindi and Telugu. Our initial analysis indicates
that this confusion occurred because of geographic
proximity and not by intrinsic linguistic proper-
ties shared by these two languages, as Hindi and
Telugu do not belong to the same language family
- Hindi is a Hindustani language and Telugu is a
Dravidian language.

5 Most Informative Features

As briefly discussed in the introduction of this pa-
per, NLI methods can provide interesting informa-
tion about patterns in non-native language that can
be used to study second language acquisition and
L1 interference or language transfer. For this pur-
pose, in Table 4 we present the top ten most in-
formative character 8-grams for each of the eleven
languages in the dataset according to our classifier.

It is not surprising that named entities are very
informative for our system and highly discrimina-
tive for most native languages. For example, es-
says and responses from China often contain place
names like China, Taipei, Taiwan, and Beijing,
whereas those from Turkey contain Istanbul and,
of course, Turkey. These features are very frequent
in essays and responses by Chinese and Turkish
speakers due to topical bias and not because of any
intrinsic linguistic property of Chinese or Turkish.
However, in other languages, interesting linguis-
tic patterns can be identified by looking at these
features.
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CHI JPN KOR HIN TEL FRE ITA SPA GER ARA TUR
CHI 91 3 2 0 0 0 2 0 0 1 1
JPN 2 93 2 0 1 1 0 0 1 0 0
KOR 4 14 77 0 0 1 1 1 0 1 1
HIN 1 0 1 80 18 0 0 0 0 0 0
TEL 0 0 1 18 78 0 0 1 0 2 0
FRE 2 0 0 2 1 87 5 0 2 1 0
ITA 0 0 0 1 0 6 85 3 3 2 0
SPA 1 1 2 2 1 4 7 77 2 2 1
GER 0 1 0 3 0 3 2 1 90 0 0
ARA 2 2 2 3 2 7 1 2 1 77 1
TUR 1 2 0 3 0 2 3 1 1 3 84

Table 3: Confusion matrix on the test set.

Language Most Informative Features
Arabic |alot of | alot of|y thing | statmen|statment|e alot o|tatment |ery thin|very thi|every th|
Chinese | i think| taiwan |i think |beijing | beijing| taipei | in chin|in china|n china | chinese|
French | indeed |. indeed| . indee|indeed ,|ndeed , | france |developp| french |to concl|o conclu|
German | , that | and um | germany|germany | berlin |, that t|have to | have to| um yeah|um yeah |
Hindi | towards|towards |as compa| as comp|various | various|s compar| enjoyme| mumbai | behind |
Italian |hink tha|nk that |ink that| in ital|n italy |in fact |in italy| in fact|i think | italian|
Japanese |in japan|n japan | in japa|apanese | japanes|japanese| japan ,|japan , |i disagr| japan .|
Korean | korean |in korea| in kore|n korea | however|however |korea , | korea ,| . howev|. howeve|
Spanish | mexico |oing to |going to| going t| diferen|le that | the cit|es that |diferent|ple that|
Telugu |ing the |hyderaba| hyderab|yderabad|derabad | subject| we can | i concl|i conclu|where as|
Turkish | turkey |istanbul|stanbul | istanbu| uh and |n turkey| in turk|in turke|s about | . becau|

Table 4: Top ten most informative character 8-grams for each language.

In the most informative features for French, for
example, we find developp from the French
développé which leads to a misspelling of the En-
glish word developed. In Arabic we observed a
number of features that indicate misspellings. The
Arabic alphabet is very different from the Latin
one, making spelling English words particularly
challenging for native speakers of Arabic. The top
ten most informative features for Arabic include
word boundary errors such as every thing for ev-
erything, and alot for a lot, as well as the omission
of vowels such as statment for statement.

6 Conclusion

To the best of our knowledge, the NLI Shared Task
2017 fusion track was the first shared task to pro-
vide both written and spoken data for NLI. It was
an interesting opportunity to evaluate the perfor-
mance of NLI methods beyond written texts.

In this paper we highlighted the overlap be-
tween NLI and dialect, language variety, and sim-
ilar language identification and used an approach

that achieved high results in both tasks. We ap-
plied an SVM ensemble approach trained char-
acter n-grams achieving competitive results of
83.55% accuracy ranking 3rd in the fusion track.

Even though the results obtained by our ap-
proach were not low, we believe that there is still
room for improvement. In previous shared tasks
(e.g. NLI 2013, DSL 2015, and ADI 2016) we ob-
served that SVM ensembles ranked higher in the
results tables than our method did in the NLI 2017.
We are investigating whether the combination of
features or the implementation itself can be opti-
mized for better performance.
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Abstract

In this paper, we discuss the results of
the IUCL system in the NLI Shared Task
2017. For our system, we explore a va-
riety of phonetic algorithms to generate
features for Native Language Identifica-
tion. These features are contrasted with
one of the most successful type of features
in NLI, character n-grams. We find that
although phonetic features do not perform
as well as character n-grams alone, they
do increase overall F1 score when used to-
gether with character n-grams.

1 Introduction

Native Language Identification (NLI) is the task of
automatically predicting the native language (L1)
of a speaker given an unlabeled artifact such as
a writing sample or speech transcript in a second
language (L2). In a typical encounter with a non-
native speaker, humans have a variety of contex-
tual clues such as race, approximate age, style of
dress, and accent to assist us in making a predic-
tion about the person’s native language. However,
when predicting L1 relying on features that can be
extracted from text alone, we must proceed with-
out the assistance of these visual and acoustic sig-
nals. Acoustic cues can be an important source
of information since speakers often transfer char-
acteristics of their L1 onto L2. For example, a
Japanese L1 speaker may transfer the rigid CV syl-
lable structure onto English and epenthesize vow-
els into consonant clusters, which may also be re-
flected in writing. Thus, having phonetic informa-
tion may prove useful in an NLI classification task.
However, we need to make sure that the features
we add can be acquired from text and do not con-
tribute to data sparsity. For the IUCL system in the
Native Language Identification Shared Task (Mal-

masi et al., 2017), we began with the premise that
acoustic features lost in text are important for lan-
guage identification and they can be reconstructed
using pseudo-auditory features derived from pho-
netic algorithms that were developed for robust
matching in text search. Additionally, we explore
a dictionary lookup that provides a phonetic rep-
resentation of the words in text.

English orthography is rich, complex, and at
times idiosyncratic. Using phonetic algorithms,
we can reduce some of this complexity by produc-
ing a phonetic representation of a word through
a series of transformations that map characters
and character sequences with similar pronuncia-
tion to a single representation such as mapping
both <ph> and <f>→<f>. To our knowledge,
phonetic algorithms have not been explored to
generate features for NLI.

2 Related Work

The first NLI Shared Task was part of the 2013
Building Educational Applications (BEA) work-
shop (Tetreault et al., 2013). Participants received
the training portion of the TOEFL11 corpus and
were asked to identify the native language of the
essay writer from among a closed set of 11 lan-
guages available in the corpus. Scoring was based
on classification accuracy on an unseen test set in
3 tasks: 1 closed training task where only train-
ing data provided in the TOEFL11 corpus could
be used, and 2 open training tasks. In the first
open training task, researchers could use any train-
ing data except for the TOEFL11 corpus. In the
second task, they could use any training data in-
cluding the TOEFL11 corpus.

Both character-level and word-level n-grams
have featured prominently in past work. Charac-
ter n-grams ranging from lengths 1-9 have been
used (Tetreault et al., 2013). Early work featuring
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character bigrams is that of Tsur and Rappoport
(2007), which achieved 66% accuracy in 5-way
classification. They suggested that character fea-
tures can serve as a proxy for phonology and that
learners’ word choices in essays are influenced by
their native language. That is, learners gravitate
to words in the target language whose phonology
matched that of their native language while avoid-
ing words that do not. This tendency can be cap-
tured at the character level.

Word-level n-grams have been widely used in
a variety of approaches (e.g. Bykh and Meurers,
2012; Jarvis et al., 2013). Traditionally, shorter n-
grams with lengths of 1-3 characters are more use-
ful for computational tasks due to the data sparsity
that ensues as the length of the n-gram increases.
Bykh and Meurers (2012), however, used longest
recurring n-grams that appeared in 2 or more es-
says with good results, perhaps capturing longer
collocations and set phrases used by learners from
specific L1s. Wong and Dras (2009) and Jarvis
et al. (2013) found that both character features and
lexical features are effective but classification ac-
curacy deteriorated when both feature types are
used together.

Part-of-speech n-grams also feature widely in
previous work (Koppel et al., 2005a,b; Wong and
Dras, 2009). Lexical n-grams have been shown to
outperform POS n-grams for classification accu-
racy (Bykh and Meurers, 2012). The traditional
motivation for the use of POS n-grams is based on
the assumption that they abstract away from the
confounding effect of essay topic (Koppel et al.,
2005a,b; Wong and Dras, 2009). However, POS
tag sequences may still be topic dependent. For
instance, an opinion piece may contain more per-
sonal pronouns than a scientific paper. Brooke
and Hirst (2011) suggest that the essay prompts
may lend themselves to responses in different reg-
isters and the register may manifest itself beyond
the lexicon.

Additionally, a number of studies have used
syntactic features: context-free grammar (CFG)
production rules (Wong and Dras, 2011; Bykh
and Meurers, 2014), Tree Substitution Grammar
(TSG) fragments (Swanson and Charniak, 2012),
and Stanford Dependencies (Malmasi and Cahill,
2015).

3 Data

For the 2017 shared task, similar to the 2013
shared task (Tetreault et al., 2013), the data con-
sists of essays from the same 11 L1s, with the
test data drawn from a similar distribution as the
original TOEFL11 corpus. In addition to the writ-
ten text, transcripts of speech and i-vector acoustic
features were included in the data release as they
have shown promising results for dialect identi-
fication (Malmasi et al., 2016; Zampieri et al.,
2017). The NLI 2017 shared task contains tracks
for essay, speech transcript, and i-vectors alone
as well as a fusion task combining all features.
The IUCL system focuses exclusively on the es-
say task.

This dataset consisted of 11 L1s: Arabic
(ARA), Chinese (CHI), French (FRE), German
(GER), Hindi (HIN), Italian (ITA), Japanese
(JPN), Korean (KOR), Spanish (SPA), Telugu
(TEL), and Turkish (TUR). There were a total of
11,000 training essays (1,000 for each L1) and
1,100 development essays (100 for each L1). Ad-
ditionally, the data contained the test taker id, es-
say prompt, and speech prompt. The distribution
of essays by essay prompt for the development
set, shown in Figure 1, varies by L1 with Arabic
and Korean having the most balanced distribution
among prompts and Turkish and Italian having the
least.

4 Acoustic Features

Our system utilizes phonetic features for NLI. We
explore 3 algorithms that were developed for ro-
bust matching: Soundex (section 4.1), Double
Metaphone (DMETA) (section 4.2), and the New
York State Identification and Intelligence System
(NYSIIS) (section 4.3).1 Soundex relies on sim-
ple conversion rules that mostly ignore vowels and
groups consonants together by place of articula-
tion in the mouth. The approach abstracts over is-
sues of 1-to-many sound-symbol correspondence
in English. For example, the sound /ks/ can be
written as both <ks> and <x> as in tacks and
tax. Soundex converts the two spellings to two
different representations. In contrast, the NYSIIS
and the Metaphone family of algorithms (Philips,
1990, 2000) go a step further to incorporate more
of the peculiarities of English spelling, which is
necessary for better mappings of homophones.

1Features were generated using the Fuzzy library
https://pypi.python.org/pypi/Fuzzy
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Figure 1: Distribution of data in the development set by number of essays per prompt for each L1.

Thus, all of these algorithms abstract away from
specific types of acoustic distinctions, but they dif-
fer in which distinctions they ignore.

Finally, we also use the Carnegie Mellon
University Pronouncing Dictionary (CMU) (sec-
tion 4.4) which provides a lookup for the pronun-
ciation of known words. This has the added benefit
of providing more accurate mappings than a rule-
based converter would and thus a better handling
of known words. Moreover, the CMU dictionary
can differentiate different vowel sounds where the
other algorithms cannot.

4.1 Soundex

Soundex (Knuth, 1973) is an early algorithm first
patented in 1918. Under Soundex, the first letter
of a word is retained (including all vowels and
consonants), all other consonants are mapped to
the numbers 1-6, and all other vowels, along with
consonants <h>, <w>, and <y>, are dropped.
Consonants are converted to numbers within the
algorithm as follows: 1: b, f, p, v, 2: c, g, j, k, q, s,
x, z, 3: d, t, 4: l, 5: m,n, and 6: r.

This conversion ensures that the consonants
are divided roughly along places of articulation
with 1 for labials, 2 for coronals and dorsals
(excluding<l> and <r>), 3 for dentals, 4 for lat-
erals, 5 for nasals, and 6 for rhotics. Repeated
numbers after conversion, such as <mn>, which
becomes 55, are reduced to a single number (e.g.,
5). All words are normalized to a starting let-
ter plus 3 digits by either omitting any remain-

ing characters for longer words or appending ze-
ros until there are 3 digits for shorter words. Ta-
ble 1 shows an example sentence from the train-
ing set written by a Turkish speaker converted
to keys using Soundex and the other algorithms
in this paper. One of the the advantages of the
Soundex algorithm is that it is easy to implement
the small number of rules mapping from letters
to numbers. However, since it does not take into
account English spelling rules, words that do not
sound very similar can end up mapped to the same
key. For example, Cajun and Cigna both map
to C250 (Philips, 1990). For our purposes, this
means that adaptations of vowels along with adap-
tations where the place of articulation does not
change are not represented in the features.

4.2 Double Metaphone

The original Metaphone phonetic algorithm
(Philips, 1990), uses an inventory of 16 conso-
nants, 0BFHJKLMNPRSTWXZ, where 0 stands
for /T/ and X for /S/ or /tS/. All 21 orthographic En-
glish consonants are mapped to these 16, by col-
lapsing some letters like <d> and <t> to <t>.
Metaphone contains a number of improvements
over Soundex. For example, the letter <c> is
sometimes pronounced as /s/ and sometimes as /k/
and the Metaphone algorithm covers many of such
cases whereas Soundex does not due to its more
simplistic mapping strategy.

Building on the Metaphone algorithm, the
Double Metaphone (DMETA) algorithm (Philips,
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Algorithm Key
Original Furthermore in the past since the mothers were frequently hausewifes, they were able

to follow their chidren’s education.

Soundex F636 I500 T000 P230 S520 T000 M362 W600 F625 H212 T000 W600 A140 T000
F400 T600 C365 E323

DMETA FR0R AN 0 PST SNK 0 M0RS AR FRKN HSFS 0 AR APL T FL 0R XTRN ATKX

NYSIIS FARTARNAR IN T PAST SANC T MATAR WAR FRAGANTLY HASAF TAY
WAR ABL T FAL TAR CADRAN EDACATAN

CMU FER1DHER0MAO2R IH0N DHAH0 PAE1ST SIH1NS DHAH0 MAH1DHER0Z
WER0 FRIY1KWAH0NTLIY0 HHAOSUWAYFS DHEY1 WER0 , EY1BAH0L
TUW1 FAA1LOW0 DHEH1R CHIHDRAHNZ EH2JHAH0KEY1SHAH0N

Table 1: Sample sentence represented using various phonetic algorithms

2000) includes many changes and improvements
over the original algorithm. Following Soundex,
DMETA originally retains the first vowel in words
and returns a key with a maximum of 4 letters. Ad-
ditionally, it collapses all vowels to the letter A,
and as such the words Auto and Otto, for exam-
ple, are mapped to the same key. It also combines
the letters <p> and <b>, treats <y> and <w>
as vowels (thus eliminating them in post word-
initial contexts) and includes a number of mod-
ifications to account for spelling influences from
foreign words. Finally, the Double Metaphone al-
gorithm returns multiple keys for words that could
be pronounced in alternate ways. However, for
the use in the IUCL system, we only choose the
first key provided since the algorithm favors the
most common American pronunciation over other
alternatives. As an example, consider Spanish bor-
rowings with <ll> that could be pronounced in an
Americanized way as /l/ (e.g. armadillo, flotilla)
or in the Spanish way as /j/ (e.g. tortilla, paella).
This is an issue for a rather small number of words,
roughly 10% based on Phillips’ sample, but should
not be of much consequence for our application.2

4.3 NYSIIS

Similar to the Double Metaphone algorithm, the
NYSIIS algorithm extends Soundex by encoding
each letter with consideration for English spelling
nuances rather than strict reliance on place of ar-
ticulation. Unlike the previous two algorithms,
NYSIIS maintains the position of vowels within
the word but collapses them by converting all vow-

2There is a newer version of the Metaphone algorithm,
Metaphone 3 which is available for commercial use but the
details remain unpublished.

els to <A>. Also, some versions of NYSIIS main-
tain the entire key rather than limiting it to the first
N letters (e.g. exactly 4 letters for Soundex and 1-4
for DMETA). However, word final <s> and <a>
are removed. For the IUCL system, we use the
non-truncated version of the key. Thus, NYSIIS
retains more information in comparison to the pre-
vious two conversion algorithms.

4.4 CMU Pronunciations

The Carnegie Mellon University Pronouncing
Dictionary (CMU)3 is an open source dictio-
nary that contains pronunciations for more than
134,000 English words using a set of 39 phonemes
and stress markers for vowels. The previous
algorithms were designed to minimize the dif-
ferences between homophones and near homo-
phones. However, since this dictionary was de-
veloped for use in automatic speech recognition
(ASR) applications rather than text search, the
mappings are based on the common pronuncia-
tions of American English words. For unknown
words, we the LOGIOS Lexicon Tool4 which
generates a CMU pronunciation using letter-to-
sound rules. Using this tool, the misspelled word
hausewifes in Table 1 is converted into the the pro-
nunciation HHAOSUWAYFS.

Soundex, DMETA, and NYSIIS all fall under
the category of fuzzy matching algorithms. The
original intention for these algorithms were to im-
prove recall when searching for names where the
exact spelling is unknown or uncertain and they

3http://www.speech.cs.cmu.edu/cgi-bin/
cmudict

4http://www.speech.cs.cmu.edu/tools/
lextool.html
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still enjoy widespread use in search applications.
The main advantage for using algorithmic pho-
netic converters such as these is that they can pro-
duce a key as output no matter word is given as in-
put. This has an advantage over dictionary-based
methods like CMU which, under its pure imple-
mentation, fails when a word (such as a proper
name or misspelling) falls outside of its internal
list, however large. On the other hand, dictionary
methods like CMU have the advantage of produc-
ing a more nuanced and accurate key for known
words. This is especially true when it comes to
representation of vowels. All of the other phonetic
algorithms mentioned in this paper either collapse
all vowels to a common representation or elimi-
nate them in non-word-initial positions whereas in
Table 1 we see that the CMU output most closely
resembles the original words.

4.5 Experimental Setup

For all experiments, we use the C-Support Vec-
tor Classifier implementation in scikit-learn with a
linear kernel.5 For feature values, rather than us-
ing a frequency count matrix for features in the
document, the TF-IDF score for the term is used
instead. TF is the term frequency, i.e., the num-
ber of occurrences of a term in a document. IDF
is the inverse document frequency, which is calcu-
lated by dividing the total number of documents
in a corpus by the number of documents contain-
ing term t (if t is not equal 0). The application of
TF-IDF weighting has been used to good effect in
previous research (Gebre et al., 2013).

The benefit of using TF-IDF weighting in this
task is that it dampens the effect of terms that are
well dispersed throughout the corpus while em-
phasizing terms that occur less frequently and only
within a smaller set of documents. For NLI, TF-
IDF weighting is useful for capturing and amplify-
ing the effects of vocabulary choices that are L1-
specific. When using binary features, for exam-
ple, only the presence or absence of a feature is
recorded. This effectively weights rare features,
such as low frequency words and spelling errors,
the same as common features, such as function
words. In contrast, TF-IDF gives a measure of the
informativeness of a word since a word that ap-
pears in many documents will have a lower IDF
than one that rarely occurs. Therefore, terms that

5http://scikit-learn.org/stable/
modules/generated/sklearn.svm.SVC.html

System F1 (macro) Accuracy
Random baseline 0.0909 0.0909
Essay baseline 0.7104 0.7109
Soundex 0.7455 0.7473
CMU 0.7629 0.7627
DMETA 0.7697 0.7727
NYSIIS 0.7830 0.7836
Char† 0.8206 0.8209
Char+CMU 0.8147 0.8145
Char+NYSIIS 0.8190 0.8191
Char+DMETA† 0.8262 0.8264
Char+Soundex 0.8300 0.8300

Table 2: Essay track results. Systems marked by †
were submitted as part of the official NLI Shared
Task. The remaining systems were submitted out-
side of the official testing phase.

receive a high TF-IDF score will occur with high
frequency in a small number of documents.

All experiments were conducted using character
n-grams of length 2-9. Additionally, we restricted
the minimum document frequency to 5 documents
and the maximum to 5% of documents in the train-
ing set.

5 Results

We show the results of the different feature sets in
Table 2. All approaches perform well above the
random baseline of 0.0909 (1/11) and above the
shared task baseline of 0.7104 for the 11-way clas-
sification task. Results for the single feature runs
show that none of the algorithms outperformed ba-
sic character n-grams (Char) features, which result
in an F1 of 0.8206. Of the phonetic algorithms,
NYSIIS shows the highest performance while
Soundex and the CMU dictionary approach do not
fare well, reaching an F1 of 0.7455 and 0.7697
respectively. This shows that the closest model-
ing of pronunciation is not helpful for the task.
When we combine character-based features with
the acoustic features, we observe that all combina-
tions show improvements over the acoustic-only
features. Additionally, combining with DMETA
and Soundex results in higher performance than
character n-grams alone, reaching an F1 of 0.8262
and 0.8300 respectively. The highest performing
acoustic-only model, NYSIIS, shows the least im-
provement, which indicates that the features ex-
tracted from this particular conversion are harm-
ful when combined with character n-grams. One
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Figure 2: Confusion matrix for best official run, Char+DMETA

possible reason can be found in the higher num-
ber of features provided by NYSIIS as opposed
to Soundex and DMETA since NYSIIS does not
truncate the acoustic representation. However, this
requires further investigation.

6 Discussion

Overall, we see that phonetic algorithms do not
perform as well as character n-grams for NLI. One
reason for this could be that by mapping charac-
ters to a simpler representation, important infor-
mation is lost. For example, one of the most com-
mon misspellings for Arabic speakers is becouse
but it would be rendered the same as because by
all of the phonetic algorithms except for CMU.
Information losses such as this could account for
the reduced performance of phonetic algorithms as
compared to character n-grams.

On the other hand, the advantage of phonetic
algorithms is that commonly used phrases such as
for many reasons (common among Arabic speak-
ers) can be collapsed into one feature and captured
even when minor spelling differences exist (espe-
cially if those errors have to do with vowels or
consonant sounds that are close in place of articu-
lation).

One of the most informative phrases in for Turk-

ish L1 writers was ATKX SSTM (DMETA) and
E323 S235 (Soundex) which translates to ‘educa-
tion system’. Table 3 shows all of the variants
of both words found in the training and develop-
ment data with the variants for Turkish L1 writers
shown in italics. Both DMETA and Soundex cap-
ture a wide range of variants including spelling
errors and various parts-of-speech. As Table 3
demonstrates, Soundex is much more aggressive
in combining words that do not sound as simi-
lar (e.g. sixteen, scouting, skidding) into a sin-
gle key (S235). Overall, the power of DMETA
and Soundex is that used in conjunction with other
features, such as character n-grams, these types
of features are able to take advantage of longer
phrases even when they include spelling errors.

We reach the highest results in the official test-
ing phase of the NLI Shared Task 2017 with the
combination of character n-grams with DMETA
features, which surpasses the character features by
about 0.5% absolute and the DMETA features by
about 5.6% absolute. Outside of the testing phase,
our best run combined character n-grams with
Soundex, surpassing character features by 0.9%
absolute and Soundex alone by roughly 8.5% ab-
solute. This shows that the phonetic conversion
plus abstraction provides novel information that is
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DMETA education educationaly, aducation, eeducational, educuation, education, aduca-
tional, edication, educationnal, educations, educationally, eduacation, ed-
cation, ediocation, educationals, educational, edecationat

system systmatting, systems, systematic, systematical, sistm, systamatically, sis-
tematically, systamatic, systematically, syustem, sistem, sistemsm, sis-
tems, system, sysytem, systeme, systam, systme

Soundex education educationnal, educuation, educaction, educating, educaters, edicted, edu-
cations, edged, etcetera, educaded, edcation, educates, educationalisties,
edcucation, eduactional, ethusiastic, educated, edecationat, educaton, eu-
thusiastic, educate, educathion, educationally, eduacation, educoated, ed-
ucatoion, education, ettiquittes, etcetra, educatin, educational, edcated,
educationaly, ediocation, educative, educaed, edcucate, edication, edu-
cat, edcuate, eductional, eductions, eduacte, ethusiastically, educationals,
eductaion, educatinal, edxtra, eduction, eduaction, eeducational, etctec,
educatipn, educateted, educatiuonal, educatied, educators, educator

system sixteens, sustaining, sestem, sistuations, seesighting, sstem, systemic,
sostinable, systems, systematic, sixteen, suggesting, scitients, schedume,
sugestions, systematical, sustainable, skidding, sustained, sustainablity,
sketing, seggestion, sistematically, systamatic, sustan, sostitution, sca-
tion, sustanable, societyhence, sighting, sighteeing, systematically, skait-
ing, sustantiated, sustanining, sections, sistem, succeeding, sucseed-
ments, sistemsm, sistems, section, sugestion, sightings, sustaine, sys-
tem, sistm, sstems, sysytem, sustainment, suggestions, succeding, sys-
tamatically, skating, sustainability, sustain, sustances, ssudents, section,
sexteen, systmatting, scating, sostantable, suggetions, sesation, systeme,
scouting, systam, systme, suggesstion, syustem, suggestion, sistuation,
skatting, sixtenn, systen, suceeding, sastained, successding, suggestiong

Table 3: Variants of “education system” in the corpus that are collapsed by DMETA and Soundex. Words
in italics are taken from Turkish L1 essays.

not captured in spelling directly.
We had a closer look at the errors that our sys-

tem makes. Figure 2 shows a confusion matrix for
the best setting using character and DMETA fea-
tures. The table shows that the main weak point
of the learner lies in confusing Hindi and Telugu.
This is not surprising given the fact that Indians are
often multilingual and speak more than two lan-
guages. Additionally, English is often used as a
lingua franca on the Indian subcontinent with fre-
quent contact from speakers from a variety of L1s
resulting in highly similar linguistic patterns.

7 Conclusion and and Future Work

This paper explored NLI using feature sets derived
from 3 phonetic algorithms and one dictionary-
based lookup. We have shown that our system
IUCL can profit from having access to acoustic
features in addition to character n-grams. In the
future, we plan to further explore variants of pho-

netic conversions in which we do not abbreviate
the words but rather segment them into acoustic
n-grams. Will will also explore how features de-
rived from phonetic algorithms can be combined
with other lexical and syntactic features.
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Abstract

This paper proposes a deep-learning based
native-language identification (NLI) using
a latent semantic analysis (LSA) as a par-
ticipant (ETRI-SLP) of the NLI Shared
Task 2017 (Malmasi et al., 2017) where
the NLI Shared Task 2017 aims to de-
tect the native language of an essay or
speech response of a standardized assess-
ment of English proficiency for academic
purposes. To this end, we use the six
unit forms of a text data such as char-
acter 4/5/6-grams and word 1/2/3-grams.
For each unit form of text data, we con-
vert it into a count-based vector, extract a
2000-rank LSA feature, and perform a lin-
ear discriminant analysis (LDA) based di-
mension reduction. From the count-based
vector or the LSA-LDA feature, we also
obtain the output prediction values of a
support vector machine (SVM) based clas-
sifier, the output prediction values of a
deep neural network (DNN) based classi-
fier, and the bottleneck values of a DNN
based classifier. In order to incorporate
the various kinds of text-based features
and a speech-based i-vector feature, we
design two DNN based ensemble classi-
fiers for late fusion and early fusion, re-
spectively. From the NLI experiments, the
F1 (macro) scores are obtained as 0.8601,
0.8664, and 0.9220 for the essay track, the
speech track, and the fusion track, respec-
tively. The proposed method has compa-
rable performance to the top-ranked teams
for the speech and fusion tracks, although
it has slightly lower performance for the
essay track.
∗Corresponding author

1 Introduction

Native-language identification (NLI) can be used
to improve the performance of automatic speech
recognition (ASR) for non-native speakers us-
ing native-language (L1) specific ASR systems.
NLI can also be used in a computer-assisted
language learning system using the L1-specific
target-language errors. A considerable body of re-
search on NLI has been reported (Malmasi, 2016;
Malmasi and Dras, 2015) and the developed ap-
proaches can be classified into text-based NLI
(Tetreault et al., 2013), speech-based NLI (Mal-
masi et al., 2016), and text and speech based NLI
(Zampieri et al., 2017). Among them, this paper
focuses on the NLI of text and speech data for the
NLI Shared Task 2017 (Malmasi et al., 2017).

The first NLI Shared Task aims to identify the
L1 of the text data of an essay response (Tetreault
et al., 2013). Notably, a part of the 2016 Com-
putational Paralinguistics Challenge focuses on
speech-based NLI (Schuller et al., 2016). This
year, the goal of the NLI Shared Task 2017 is to
detect the L1 of the essay and speech responses
of a standardized assessment of English profi-
ciency for academic purposes among eleven L1s,
Arabic, Chinese, French, German, Hindi, Italian,
Japanese, Korean, Spanish, Telugu, and Turkish.
To this end, there are 11,000 training data set,
1,100 development data set, and 1,100 test data
set. In addition, each data set contains the text of
an essay response, the transcription text and 800-
dimensional i-vector feature of a speech response,
and the L1 annotation of the participant of essay
and speech responses.

In this paper, we propose a deep-learning based
NLI method using a latent semantic analysis
(LSA) as a participant (ETRI-SLP) of the NLI
Shared Task 2017. First, the higher-rank of an
LSA feature is used to detect L1 information; the
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lower-rank of an LSA feature is used to detect doc-
ument topic information (Jeon and Lee, 2016b;
Bellegarda, 2000). Second, we adopt a state-of-
the-art machine learning methods, a deep-learning
method (Jeon and Lee, 2016a; Chung and Park, in
review), for L1 classification using various kinds
of text-based features and a speech-based feature.

2 Feature extraction of the proposed
method

2.1 Data preparation
For the text data of the NLI Shared Task 2017
such as the text of an essay response and the
transcription text of a speech response, we use
six unit forms for each text: (a) word 1-gram,
(b) word 2-gram, (c) word 3-gram, (d) charac-
ter 4-gram, (e) character 5-gram, and (f) charac-
ter 6-gram. It is assumed that a word n-gram
could reveal L1-specific words (e.g. ‘kimchi’ is
a Korean food name) and L1-specific word se-
quences while a character n-gram could capture
L1-specific typing errors, L1-specific character se-
quence patterns, etc.

First, each unit of a text is converted into a
count-based vector and then entropy normaliza-
tion (Jeon and Lee, 2016b; Bellegarda, 2000) is
applied to the count-based vector. Next, the nor-
malized count-based vector (Rawcount) is used to
extract the 2000-rank features of a latent seman-
tic analysis (LSA) (Jeon and Lee, 2016b; Belle-
garda, 2000). The LSA feature is subsequently
compressed into 10-dimensional features using a
linear discriminant analysis (LDA), which is re-
ferred to as RawLSA2000/LDA10 hereafter. It is as-
sumed that the high-rank LSA features could cap-
ture the L1 characteristics.

For a speech data set of the NLI Shared Task
2017, we only use the 800-dimensional i-vector
feature of each speech response, which is sup-
ported by the organizers (Malmasi et al., 2017).
In addition, we apply LDA normalization to the
i-vector features.

2.2 Feature extraction
We extract five kinds of features from the
Rawcount or RawLSA2000/LDA10 of each unit
form of a text for an L1 classification: (a) the out-
put prediction values (SV M count

output) of a SVM clas-
sifier using the Rawcount, (b) the output predic-
tion values (SV M

LSA2000/LDA10
output ) of a SVM clas-

sifier using the RawLSA2000/LDA10, (c) the out-
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tanh DO FC, 256

tanh
FC, 256

tanh
Lossout, 11

softmaxInput Output, 11
LSA-LDA, 10

Mean/Var.. 
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(a) DNN
LSA2000/LDA10
output
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softmax Output, 11FC, 256
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FC, 256
tanhInput

LSA-LDA, 10
Mean/Var. 

Norm.
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tanh

(b) DNN
LSA2000/LDA10
bottleneck

Figure 1: Configuration of the two DNNs for the
DNN

LSA2000/LDA10
output and the DNN

LSA2000/LDA10
bottleneck , re-

spectively.

put prediction values (DNN
LSA2000/LDA10
output ) of

a DNN classifier using the RawLSA2000/LDA10,
(d) the bottleneck (Grézl et al., 2007) values
(DNN

LSA2000/LDA10
bottleneck ) of the last hidden layer of

a DNN classifier using the RawLSA2000/LDA10,
and (e) the RawLSA2000/LDA10 itself.

For the SV M count
output and SV M

LSA2000/LDA10
output ,

a linear kernel SVM is trained using SVM-Light
tool (Joachims, 1999). In addition, two kinds of
DNNs are trained for the DNN

LSA2000/LDA10
output

and DNN
LSA2000/LDA10
bottleneck , respectively, as shown

in Fig. 1. In other words, the input features are
normalized to a zero mean and unit variance and
the output layer of each DNN is a softmax layer
with eleven nodes that correspond to the eleven
L1s. In order to prevent overfitting, dropout (DO)
hidden layers are inserted. Moreover, each fully-
connected (FC) hidden layer uses a hyperbolic
tangent (tanh) activation function. As shown in
Fig. 1(a), DNN

LSA2000/LDA10
output consists of one

input layer, four hidden layers, and one output
layer. The first, third, and fourth hidden lay-
ers are FC layers where each layer contains 256
nodes, while the second hidden layer is a DO
layer. On the other hand, the difference between
DNN

LSA2000/LDA10
bottleneck from DNN

LSA2000/LDA10
output

is that one additional hidden layer with 32 nodes
is inserted before the output layer for bottleneck
feature extraction, as shown in Fig. 1(b).

3 DNN based classifier for the NLI
Shared Task 2017

For each text of the essay response and speech re-
sponse transcription, thirty kinds of features are
extracted by combining the six unit forms with the
five feature types. Moreover, an 800-dimensional
i-vector is extracted for each speech response sig-
nal. In order to combine the various features for
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(b) A multi-column deep-stacking DNN based ensemble clas-
sifier for early fusion

Figure 2: The two kinds of DNN based ensemble
classifiers for early fusion and late fusion, respectively.

the NLI Shared Task 2017, we design two DNN
based classifiers: (a) a vanilla DNN based ensem-
ble classifier for late fusion and (b) a multi-column
deep-stacking DNN based ensemble classifier for
early fusion, as shown in Fig. 2. Basically, each
output layer of the proposed DNN based ensem-
ble classifiers is a softmax layer with eleven nodes
that correspond to the eleven native languages.

• A vanilla DNN based ensemble classifier
for late fusion:
A late fusion method (Snoek et al., 2005)
is a feature combination method that gener-
ates a feature-based classifier corresponding
to each feature and then performs classifica-
tion using the output values of the feature-
based classifiers. As shown in Fig. 2(a),
the vanilla DNN based ensemble classifier
is designed for late fusion using the output
prediction values of the feature-based classi-
fiers, SV M count

output, SV M
LSA2000/LDA10
output , and

DNN
LSA2000/LDA10
output . In other words, we

concatenate the text-based and speech-based
features including the output values of the
feature-based classifiers and then apply the
concatenated feature input data of the vanilla
DNN based ensemble classifier for the fu-
sion. Moreover, the vanilla DNN based en-
semble classifier consists of one input layer,
several hidden layers, and one output layer.

• A multi-column deep-stacking DNN based
ensemble classifier for early fusion:
An early fusion method (Snoek et al., 2005)
is a feature combination method that fuses
several kinds of features. As shown in Fig.
2(b), the multi-column (Ciresan et al., 2012)
deep-stacking DNN based ensemble classi-
fier is designed for early fusion. In other
words, each feature is fed into the multi-
column deep-stacking DNN and then linked
to the corresponding feature layer. The node
values of the last hidden layer of each feature-
related layers are then connected to the in-
put layer of the fusion-related layers. More-
over, the feature-related layers and fusion-
related layers all have different configura-
tions since the proposed multi-column deep-
stacking DNN based ensemble classifier aims
to efficiently combine heterogeneous fea-
tures.

In particular, the overall network of the multi-
column deep-stacking DNN based ensemble clas-
sifier is trained with a single objective function
while the vanilla DNN based ensemble classifier is
trained with multiple object functions such as (a)
the objective functions for the feature-based clas-
sifiers and (b) the objective function for fusion.
In this paper, SV M count

output, SV M
LSA2000/LDA10
output ,

and DNN
LSA2000/LDA10
output are used as feature-
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DO FC, 256
tanh DO FC, 256

tanhInput, 450 Lossout, 11
softmax Output, 11

Figure 3: Configuration of the vanilla DNN based ensem-
ble classifier for the essay track, where each block indicates
a layer of the DNN and the number in a block indicates the
number of nodes in the corresponding layer.

based classifiers for the vanilla DNN based ensem-
ble classifier.

4 Results

This section presents the submitted experimental
setups and the performances for the three tracks of
the NLI Shared Task 2017: (a) the essay track us-
ing the texts of the essay responses, (b) the speech
track using the transcription texts and i-vector fea-
tures of the speech responses, and (c) the fusion
track using both the texts of the essay responses
and the transcription texts and i-vector features of
the speech responses. In the experiments of the
essay track, we also examine the performance of
each unit form of a text while the feature com-
binations are examined in the experiments of the
speech track. In addition, the performance is com-
pared with the classification accuracy metric when
evaluating the 1,100 development data set.

4.1 The experimental setup and its
performances for the essay track

For the L1 detection of the essay track, we only
used the vanilla DNN based ensemble classifier
with the assumption that the text-related features
were not extremely heterogeneous for each other.
The submitted ETRI-SPL NLI system for the es-
say track was performed as follows.

We first transformed each text data into the
six unit forms such as word 1/2/3-grams and
character 4/5/6-grams. Then, we extracted the
five features (SV M count

output, SV M
LSA2000/LDA10
output ,

DNN
LSA2000/LDA10
output , DNN

LSA2000/LDA10
bottleneck ,

and RawLSA2000/LDA10) for each unit-
transformed text. As a result, we obtained
the thirty features for each text and then con-
catenated them into one 450-dimensional feature.
The concatenated feature was then normalized
to a zero mean and unit variance. After that, the
normalized feature was fed into the input layer
of a vanilla DNN based ensemble classifier. As
shown in Fig. 3, the vanilla DNN based ensemble
classifier for the essay track consisted of an input

Unit Feature Norm. Accuracy
dimension method

Official baseline 0.7236

word 1-gram RawLSA2000/LDA10 10 Mean/Var.. 0.7764
word 2-gram RawLSA2000/LDA10 10 Mean/Var. 0.7909
word 3-gram RawLSA2000/LDA10 10 Mean/Var. 0.7045
character 4-gram RawLSA2000/LDA10 10 Mean/Var. 0.7736
character 5-gram RawLSA2000/LDA10 10 Mean/Var. 0.8064
character 6-gram RawLSA2000/LDA10 10 Mean/Var. 0.8164

Table 1: Performance comparison of each unit form of
the DNN

LSA2000/LDA10
output of the proposed method for the

essay track when evaluating the development data, where
‘Mean/Var.’ indicates the normalization to the zero mean and
unit variance.

layer, first and third DO hidden layers, second
and fourth FC hidden layers, and an output layer.
Each FC layer contained 256 nodes with a tanh
activation function.

Prior to the performance comparison of the pro-
posed ETRI-SPL NLI for the essay track, we
evaluated the performance corresponding to each
unit form. To this end, we extracted the six
RawLSA2000/LDA10 features for the word 1/2/3-
grams and character 4/5/6-grams, respectively.
Then, we generated the vanilla DNN based ensem-
ble classifier using each of the six features. After
that, the six classifiers were evaluated for the de-
velopment data. It was shown from the second,
third, and fourth rows of Table 1 that the perfor-
mances corresponding to the word n-grams were
improved except for the word 3-gram when com-
pared to the performance of the official baseline.
It was noted that the performance degradation cor-
responding to the word 3-gram was occurred due
to a data sparseness. Moreover, it was shown
from the fifth, sixth, and seventh rows of the table
that the performances corresponding to the char-
acter n-grams were improved according to the in-
crease of the n-gram order. Especially, the per-
formance corresponding to the character 6-gram
outperformed among the others.

Next, we evaluated the performance corre-
sponding to each feature type. In other words, we
extracted each of the five feature types using the
six unit forms of a text. After that, we generated
the five vanilla DNN based ensemble classifiers
corresponding to the feature types and then we
measured the accuracy-based performance for
the development data. As shown in the second,
third, fourth, fifth, and sixth rows of Table
2, the accuracies were ranged from 0.8273 to
0.8364 for each classifier using the SV M count

output,
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Feature Feature Norm. Accuracy
dimension method

Official baseline 0.7236

Late fusion: vanilla DNN based ensemble classifier

(a) SV Mcount
output 66 Mean/Var. 0.8345

(b) SV M
LSA2000/LDA10
output 66 Mean/Var. 0.8364

(c) DNN
LSA2000/LDA10
output 66 Mean/Var. 0.8345

(d) DNN
LSA2000/LDA10
bottleneck 192 Mean/Var. 0.8273

(e) RawLSA2000/LDA10 60 Mean/Var. 0.8318
(a)+(b)+(c)+(d)+(e) (ETRI-SLP) 450 Mean/Var. 0.8445

Table 2: Performance comparison of the proposed method
for the essay track when evaluating the development set,
where ‘Mean/Var.’ indicates the normalization to the zero
mean and unit variance.

SV M
LSA2000/LDA10
output , DNN

LSA2000/LDA10
output ,

DNN
LSA2000/LDA10
bottleneck , and RawLSA2000/LDA10,

respectively. Thus, it could be noted that each
feature type successes to combine the six unit
forms.

Finally, the accuracy of the proposed ETRI-SPL
NLI for the essay track was 0.8445 using the thirty
features by combining the six unit forms and the
five feature types, as shown in the last row of the
figure. When compared to the above rows of the
figure, we concluded that the thirty features were
well combined for the NLI.

4.2 The experimental setup and its
performances for the speech track

For the L1 detection of the speech track using the
transcription text and i-vector feature of a speech
response, we used the multi-column deep-stacking
DNN based ensemble classifier with the assump-
tion that the text-related features were clearly het-
erogeneous to the speech-related i-vector feature.
Moreover, we empirically selected the feature,
RawLSA2000/LDA10, for the efficient combination
with the text-related features and the i-vector fea-
ture. The submitted ETRI-SPL NLI for the speech
track was performed as follows.

We first transformed each transcription text
into the six unit forms and then extracted the
RawLSA2000/LDA10 for each unit-transformed
text. In addition, we used the 800-dimensional
i-vector feature for each speech response signal.
The text-related feature was then normalized to a
zero mean and unit variance and the i-vector fea-
ture was normalized using a LDA normalization.
As shown in Fig. 4(b), the RawLSA2000/LDA10

and i-vector features were fed into the LSA/LDA
feature layers and the i-vector layers, respectively.
The node values of the last hidden layer of each

FC, 512
ReLU DO FC, 512

ReLU
FC, 512

ReLU
Lossout, 11

softmaxInput, 860 Output, 11

(a) Late fusion: vanilla DNN based ensemble classifier

Feature-related layers

Fusion-related layers

FC, 64
ELU

FC, 64
ELU

DO

Input, 60

Output, 11

𝑅𝑎𝑤$%&'(((/$*&+(, 60
Mean/Var. Norm.

FC, 256
ELU

FC, 256
ELU

DO

Input, 800

i-vector, 800
LDA Norm.

Lossout, 11
softmax

Lossout, 11
softmax

Output, 11

Max-
pooling DO FC, 128

tanh DO, 128 Lossout, 11
softmaxInput, 320 Output, 11

(b) Early fusion: multi-column deep-stacking DNN based en-
semble classifier

Figure 4: Configuration of the two DNN based ensemble
classifiers for the speech track, where each block indicates
a layer of the DNN and the number in a block indicates the
number of nodes in the corresponding layer.

feature layers were then connected to the input
layer of the fusion layers. Each feature layers con-
sisted of an input layer, the first and second FC
hidden layers, the third DO hidden layer, and an
output layer, where the FC layers contained 64 and
256 nodes for RawLSA2000/LDA10 and i-vector,
respectively, with an exponential linear unit (ELU)
activation function. And, the fusion layers con-
sisted of an input layer, the first max-pooling hid-
den layer, the second and fourth DO hidden lay-
ers, the third FC hidden layer, and an output layer,
where the FC layer contained 256 nodes with a
tanh activation function.

Prior to the performance evaluation of the pro-
posed ETRI-SPL NLI for the speech track, we
evaluated the performance corresponding to each
text-related feature, the i-vector feature, and the
feature combinations using a vanilla DNN based
ensemble classifier, as shown in Fig. 4(a). To this
end, the extracted features were concatenated into
one feature and then the concatenated feature was
normalized using an LDA normalization since the
i-vector feature was well matched with the LDA
normalization rather than a normalization to a zero
mean and unit variance. After that, the normalized
feature was fed into the input layer of the vanilla
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Feature Feature Norm. Accuracy
dim. method

Official baseline with transcription 0.5200
Official baseline with i-vector 0.7400
Official baseline with transcription & i-vector 0.7573

Early or Late fusion: vanilla DNN based ensemble classifier

(a) SV M count
output 66 LDA 0.4545

(b) SV M
LSA2000/LDA10
output 66 LDA 0.5827

(c) DNN
LSA2000/LDA10
output 66 LDA 0.5782

(d) DNN
LSA2000/LDA10
bottleneck 192 LDA 0.5764

(e) RawLSA2000/LDA10 60 LDA 0.5836
(f) i-vector 800 LDA 0.8082

(a)+(f) late fusion 866 LDA 0.5118
(b)+(f) late fusion 866 LDA 0.8245
(c)+(f) late fusion 866 LDA 0.6682
(d)+(f) early fusion 992 LDA 0.7345
(e)+(f) early fusion 860 LDA 0.8309

(b)+(c)+(f) late fusion 932 LDA 0.6627
(b)+(d)+(f) late fusion 1058 LDA 0.7127
(b)+(e)+(f) late fusion 926 LDA 0.8145
(c)+(d)+(f) late fusion 1058 LDA 0.6655
(c)+(e)+(f) late fusion 926 LDA 0.6609
(d)+(e)+(f) early fusion 1052 LDA 0.7155
(b)+(c)+(d)+(f) late fusion 1124 LDA 0.6673
(b)+(c)+(e)+(f) late fusion 992 LDA 0.6627
(b)+(d)+(e)+(f) late fusion 1118 LDA 0.7155
(c)+(d)+(e)+(f) late fusion 1118 LDA 0.6609
(b)+(c)+(d)+(e)+(f) late fusion 1184 LDA 0.6582

Early fusion: multi-column deep-stacking DNN based ensemble classifier

(a)+(f) 866 Mean/Var./LDA 0.8109
(b)+(f) 866 Mean/Var./LDA 0.8527
(c)+(f) 866 Mean/Var./LDA 0.8473
(d)+(f) 992 Mean/Var./LDA 0.8491
(e)+(f) 860 Mean/Var./LDA 0.8591

(d)+(e)+(f) 1052 Mean/Var./LDA 0.8455
(d)’+(e)+(f) (ETRI-SLP) 1052 Mean/Var./LDA 0.8545

Table 3: Performance comparison of the proposed method
for the speech track when evaluating the development data,
where the underlined and the bolded represent the remark-
able system and the submitted system, respectively. The
‘early fusion’ of the vanilla DNN based ensemble classi-
fier indicates a classifier that uses no feature-based classi-
fier. And, ‘Mean/Var.’ indicates a normalization to a zero
mean and unit variance. The (d)’ means the noisy data of the
DNN

LSA2000/LDA10
bottleneck , which was an unexpected data.

DNN based ensemble classifier. The vanilla DNN
based ensemble classifier consisted of an input
layer, the first, third, and fourth FC hidden layers,
the second DO hidden layer, and an output layer,
where each FC hidden layer contained 512 nodes
with a rectified linear unit (RELU) activation func-
tion. Also, it was noted that the number of nodes
of the FC hidden layer was increased according to
the increase of the dimension of the input feature
data.

From the fourth row to the ninth row of Table
3, it was noted that the i-vector feature outper-
formed the text-related features. Among the text-

related features, the LSA-LDA based features had
better performances when compared to the count-
based feature. From the tenth row to the fourteenth
row of the table, the SV M

LSA2000/LDA10
output and

RawLSA2000/LDA10 improved the only i-vector
feature when combining one text-related feature
and the i-vector feature. However, it was shown
from the fifteenth row to the twenty-fifth row of
the table that the combination with two or more
text-related features and the i-vector feature did
not improve the combination with one text-related
feature and the i-vector feature. It was summa-
rized that there was no improvement on the combi-
nation with two or more text-related features since
the text-related features had similar information
using the same unit forms.

From the twenty-sixth row to the thirtieth row of
the table, all the combinations of one text-related
feature and the i-vector feature were improved us-
ing the multi-column deep-stacking DNN based
ensemble classifier when compared to the use of
one feature; only two features were improved
using the vanilla DNN based ensemble classi-
fier. Moreover, the thirty-first row of the ta-
ble showed that the performance of the combi-
nation with the two text-related features and i-
vector feature was slightly degraded; however,
the degree of the performance degradation was
marginal. Finally, the last row of the table pre-
sented the performance of the submitted system.
In fact, the original intention was to combine the
two text-related features and i-vector feature. Un-
fortunately, we found that the noisy data was in-
serted as the DNN

LSA2000/LDA10
bottleneck after the sub-

mission. However, from the performance eval-
uation, we could examine that the multi-column
deep-stacking DNN based ensemble classifier had
the robust performance to a noisy data.

4.3 The experimental setup and its
performances for the fusion track

For the L1 detection of the fusion track using
the text of an essay response and the transcrip-
tion text and i-vector feature of a speech re-
sponse, we used the multi-column deep-stacking
DNN based ensemble classifier. For the effi-
cient combination with the text-related features
and the speech i-vector feature, we empirically
selected the RawLSA2000/LDA10 among non-
classifier-based features. The submitted ETRI-
SPL NLI for the fusion track was performed as
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(a) Late fusion: vanilla DNN based ensemble classifier
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(b) Early fusion: multi-column deep-stacking DNN based en-
semble classifier

Figure 5: Configuration of the two DNN based ensemble
classifiers for the fusion track, where each block indicates
a layer of a DNN and the number in a block indicates the
number of nodes in the layer corresponding to a block.

follows.

We first transformed each text of the essay
and speech transcription into the six unit forms
and then extracted the RawLSA2000/LDA10 for
each unit-transformed text. To fuse an essay re-
sponse and a speech response, the count-based
vector of the speech transcription text was ap-
pended to the count-based vector of the essay
text for each pair of an essay text and speech
transcription text during the feature extraction of
the RawLSA2000/LDA10. We also used the 800-
dimensional i-vector feature of each speech re-
sponse signal. The text-related features were
then normalized to a zero mean and unit variance
and the i-vector feature were normalized using a
LDA normalization. As shown in Fig. 5(b), the
RawLSA2000/LDA10 and i-vector features were
fed into the LSA/LDA feature layers and the i-
vector layers, respectively. The node values of
the last hidden layer of each feature layers were
then connected to the input layer of the fusion
layers. Each feature layers consisted of an input
layer, the FC hidden layer, and an output layer,

Feature Feature Normalization Accuracy
type dim. method

Official baseline 0.7836

Late fusion: vanilla DNN based ensemble classifier

(a) SV M count
output 66 LDA 0.6309

(b) SV M
LSA2000/LDA10
output 66 LDA 0.8309

(c) DNN
LSA2000/LDA10
output 66 LDA 0.8518

(d) DNN
LSA2000/LDA10
bottleneck 192 LDA 0.8418

(e) RawLSA2000/LDA10 60 LDA 0.8291
(f) i-vectors 800 LDA 0.7900

(g) SV M count
output 66 Mean/Var. 0.8582

(h) SV M
LSA2000/LDA10
output 66 Mean/Var. 0.8482

(i) DNN
LSA2000/LDA10
output 66 Mean/Var. 0.8400

(j) DNN
LSA2000/LDA10
bottleneck 192 Mean/Var. 0.8400

(k) RawLSA2000/LDA10 60 Mean/Var. 0.8473
(l) i-vectors 800 Mean/Var. 0.5864

(e)+(f) late fusion 860 LDA 0.9155

Early fusion: multi-column deep-stacking DNN based ensemble classifier

(e)+(f) (ETRI-SLP) 860 Mean/Var./LDA 0.9164

Table 4: Performance comparison of the proposed method
for the fusion track when evaluating the development
data, where the bolded represent the submitted system.
‘Mean/Var.’ indicates a normalization to a zero mean and
unit variance.

where the FC layers contained 64 and 128 nodes
for RawLSA2000/LDA10 and i-vector, respectively,
with an ELU activation function. And, the fu-
sion layers consisted of an input layer, the first and
sixth DO hidden layers, the fourth, fifth, and sev-
enth FC hidden layers, the second p-norm pool-
ing hidden layer, the third variance normalization
hidden layer, and an output layer, where each FC
layer contained 196 nodes with a tanh activation
function and the p-norm and variance normaliza-
tion layers contained 96 nodes.

Prior to the performance evaluation of the pro-
posed ETRI-SPL NLI for the fusion track, we
evaluated the performance corresponding to the
RawLSA2000/LDA10, the i-vector feature, and the
feature combination, respectively, using a vanilla
DNN based ensemble classifier, as shown in Fig.
5(a). To this end, the extracted features were con-
catenated into one feature and then the concate-
nated feature was normalized using an LDA nor-
malization. The normalized feature was then fed
into the input layer of the vanilla DNN based en-
semble classifier. The vanilla DNN based ensem-
ble classifier consisted of an input layer, the first,
third, fifth, and seventh DO hidden layers, the sec-
ond, fourth, sixth, and eighth FC hidden layers,
and an output layer, where each FC hidden layer
contained 512 nodes with a tanh activation func-
tion.
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It was shown from the second row to the seventh
row of Table 4 that the LSA-LDA features had bet-
ter performances than the count-based feature and
i-vector feature when applying an LDA normaliza-
tion. It was shown from the eighth row to the thir-
teenth row of the table that the count-based feature
and i-vector feature were well matched with a nor-
malization to a zero mean and unit variance and
with an LDA normalization, respectively. From
the fourteenth and fifteenth rows of the table, the
two DNN based ensemble classifiers obtained the
similar accuracies when using the same feature
combination. It was noted from the experiments
that the multi-column deep-stacking DNN based
ensemble classifier worked better than the vanilla
DNN based ensemble classifier when the features
were heterogeneous and the performance differ-
ences were significant.

5 Performance of the test data set and
discussions

This section first reports the official performance
comparison based on the F1 (macro) score for the
1,100 test data set. Moreover, we present the of-
ficial ranks that are grouped by a McNemar’s test.
Thus, we regard that the a same group has a com-
parable performance. After that, we conclude with
our findings and discussions.

Table 5 and Fig. 6 present the performance
comparisons and the confusion matrices of the
submitted ETRI-SPL NLI systems for the essay
track, the speech track, and the fusion track, re-
spectively. For the essay track, the F1 (macro)
scores are 0.7104, 0.8601, and 0.8818, for the
baseline system, the ETRI-SPL system, and the
ItaliaNLP (top-scored) system. In other words, the
proposed system has the improved performance
when compared to the baseline system; however,
the proposed system has a slightly lower perfor-
mance when compared to the top-scored system.
For the speech track, the F1 (macro) scores are
0.7980, 0.8664, and 0.8755, for the baseline sys-
tem, the ETRI-SPL system, and the UnibucKernel
(top-scored) system. That is, the proposed system
has the comparable performance to the top-scored
system. For the fusion track, the F1 (macro) scores
are 0.7901, 0.9220, and 0.9319, for the baseline
system, the ETRI-SPL system, and the UnibucK-
ernel (top-scored) system. That is, the proposed
system also has the comparable performance to the
top-scored system.

Track Team Rank F1 (macro) Accuracy
group

Essay
Baseline - 0.7104 0.7109
ETRI-SLP 2 0.8601 0.8600
ItaliaNLP (Top-scored) 1 0.8818 0.8818

Speech
Baseline - 0.7980 0.7982
ETRI-SLP 1 0.8664 0.8664
UnibucKernel (Top-scored) 1 0.8755 0.8755

Fusion
Baseline - 0.7901 0.7909
ETRI-SLP 1 0.9220 0.9218
UnibucKernel (Top-scored) 1 0.9319 0.9318

Table 5: Performance comparison based on the F1 and ac-
curacy metrics of the proposed method for the essay, speech,
and fusion tracks when evaluating the test data set. The first,
second, third rows of each track indicate the official baseline
system, the proposed system, and the top-scored system, re-
spectively.
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(a) Essay track
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(b) Speech track
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Figure 6: Confusion matrixes of the ETRI-SLP NLI sys-
tems for the essay track, the speech track, and the fusion
track, respectively, when evaluating the test data set.
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In conclusion, we proposed the deep-learning
based NLI using an LSA for the NLI Shared Task
2017. To this end, we extracted the LSA features
using the six unit forms of character 4/5/6-grams
and word 1/2/3-grams. Especially, we used 2,000-
rank LSA features in order to capture the lan-
guage information whereas the lower-rank LSA
feature was used to the document topic-related
applications. Next, the 2000-rank LSA feature
was reduced into a 10-dimensional feature using
LDA. It was noted from the NLI experiments that
the LSA/LDA features performed well in the NLI
Shared Task 2017 when compared to the count-
based features, especially for the speech track.

For a fusion of the heterogeneous features such
as the combination of a text-related feature and an
i-vector feature, we designed two DNN based en-
semble classifiers: (a) the vanilla DNN based en-
semble classifier for late fusion and (b) the multi-
column deep-stacking DNN based ensemble clas-
sifier for early fusion. The vanilla DNN based
ensemble classifier was a late fusion classifier
that combined the independently trained feature-
related classifiers whereas the multi-column deep-
stacking DNN based ensemble classifier was an
early fusion classifier that combined the features
in one fusion network. It was shown from the NLI
experiments that the two DNN based ensemble
classifiers had the comparable performances when
the feature type and the performance were similar
to each other. On the other hand, the multi-column
deep-stacking DNN based ensemble classifier had
a better performance when the the feature type and
the performance were significantly different.

It was shown from the experiments on the NLI
Shared Task 2017 that the F1 (macro) scores were
obtained as 0.8601, 0.8664, and 0.9220, for the
essay track, the speech track, and the fusion track,
respectively. The performances for the speech and
fusion tracks were comparable to the top-ranked
systems whereas the performance for the essay
track had a second-ranked performance.

Our findings from the NLI Shared Task 2017
were summarized as follows:

1. Unit form for a text
We used the six unit forms of character 4/5/6-
grams and word 1/2/3-grams. From the tenth
row to the fourteenth row of Table 3, it was
noted that the combination of the multiple
text-related features had no improvement be-
cause the proposed text-related features were

originated from the same unit forms. There-
fore, we expected that the performance for
the essay track would be improved if the ad-
ditional unit forms were adopted.

2. Feature type for a text: LSA-LDA feature
From the NLI experiments, it was no-
ticed that the 2,000-rank LSA-LDA feature
worked well for the NLI Shared Task 2017.
Especially, LSA-LDA feature had a better
performance than the count-based feature for
the speech track. Moreover, the LSA-LDA
feature worked well on both a normalization
to a zero mean and unit variance and an LDA
normalization whereas the count-based fea-
ture worked on the only normalization to a
zero mean and unit variance.

3. Normalization of an i-vector feature
It was observed from the experiments that the
i-vector feature of a speech response signal
worked well on an LDA normalization than
a normalization to a zero mean and unit vari-
ance.

4. DNN-based ensemble classifier
We attempted to use of a state-of-the-art deep
learning method for the L1 classification by
designing two DNN based ensemble classi-
fiers: (a) the vanilla DNN based ensemble
classifier for late fusion and (b) the multi-
column deep-stacking DNN based ensemble
classifier for early fusion. From the perfor-
mance comparison of the other systems, it
was seen that the proposed classifiers worked
properly. Moreover, the multi-column deep-
stacking DNN based ensemble classifier was
better when the heterogeneous features had
significant performance differences. In ad-
dition, we expected that the more detailed
experiments of the DNN configurations and
the feature combinations would improve the
performance, especially using a more large
amount data (Cheng et al., 2015).
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Abstract

In this paper we describe the approaches
we explored for the 2017 Native Language
Identification shared task. We focused on
simple word and sub-word units avoiding
heavy use of hand-crafted features. Fol-
lowing recent trends, we explored linear
and neural networks models to attempt to
compensate for the lack of rich feature
use. Initial efforts yielded f1-scores of
82.39% and 83.77% in the development
and test sets of the fusion track, and were
officially submitted to the task as team
L2F. After the task was closed, we car-
ried on further experiments and relied on
a late fusion strategy for combining our
simple proposed approaches with modifi-
cations of the baselines provided by the
task. As expected, the i-vectors based sub-
system dominates the performance of the
system combinations, and results in the
major contributor to our achieved scores.
Our best combined system achieves 90.1%
and 90.2% f1-score in the development
and test sets of the fusion track, respec-
tively.

1 Introduction

Native Language Identification (NLI) is the task of
identifying a person’s native language (L1) based
on that person’s written or spoken content in a
learned language (L2). The task has gained in-
creased interest from various research communi-
ties, which led to the first shared task in 2013
(Tetreault et al., 2013). In 2016, a sub-challenge
was held at Interspeech (Schuller et al., 2016) on
identifying the native language based on spoken

∗All authors contributed equally.

responses in English, in contrast to the NLI shared
task, which was based on written responses.

The NLI Shared Task 2017 is the next instance
in this series of shared tasks (Malmasi et al.,
2017), with the distinction of featuring both writ-
ten and spoken based responses as available data.
Spoken responses were available in the form of
speech transcriptions and i-vectors, not actual au-
dio files. Systems could compete in three tracks:
ESSAYS, where only the provided written essays
data could be used; SPEECH, where only the
speech transcriptions and possibly i-vectors could
be used; and FUSION, where all three datasets
could be combined. The task provided a single de-
velopment labeled dataset and two different unla-
beled test sets: one for the ESSAYS and SPEECH
tracks, and another for the FUSION track. Addi-
tionally, each system was allowed to participate in
an open or closed sub-track depending on whether
any external data was used or not, respectively.

In this paper we describe the approaches we
took in the NLI Shared Task 2017, specifically
in the FUSION closed track, where we partici-
pated as team L2F. After having officially submit-
ted a system to the track, we performed further ex-
periments and developed additional systems, in-
cluding a late fusion one that performs 7 absolute
points above the system we submitted.

The best performing systems on a variety of
Natural Language Processing (NLP) and Informa-
tion Retrieval problems, including NLI, are en-
sembles of complex models that employ a myriad
of high-level features (Malmasi and Dras, 2017).
There are, however, some systems with simple
features that are able to surpass complex ensem-
bles, like the previous state of the art in NLI by
Ionescu et al. (2014).

One way of not relying on specially engineered
features is to follow the current trend on using
Neural Networks (NN) and Deep Learning (DL)
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techniques (and doing parameter tuning instead).
Although DL approaches have achieved several
state of the art results in NLP, this is not the case
yet for NLI.

Our line of approach for this task was to bene-
fit from the power of fusion systems while avoid-
ing complex feature engineering and exploring the
usefulness of DL techniques.

2 Related Work

There are several works on NLI based on essays,
most of which are analyzed by Malmasi (2016).
The current state of the art is the recent work
of Malmasi and Dras (2017), which uses ensem-
bles of several classifiers over a large set of fea-
tures. The previous state of the art was the work
of Ionescu et al. (2014), which used only character
p-grams as features.

A recent trend has been the use of speech tran-
scripts and audio features for tasks like dialect
identification (Malmasi et al., 2016; Zampieri
et al., 2017) or of only spoken responses for NLI,
like in the 2016 Computational Paralinguistics
Challenge (ComParE, Schuller et al. (2016)). The
best performing system in ComParE 2016 was the
work of Abad et al. (2016), which also employs a
fusion of systems and highlights the importance of
i-vectors acoustic features.

3 Methodology and Data

The NLI Shared Task 2017 combines the basic
written essay approach with the spoken response
approach by providing a written essay, a speech
transcript, and an i-vector for each subject. For
a thorough description of the datasets, including
the number of samples for training, development
and test, and the 11 L1 classes, see Malmasi et al.
(2017).

Given that the task allowed for the fusion of
all these data, we experimented with several ap-
proaches targeting a final fusion system, all of
which we describe below.

3.1 Language Identification Techniques

Following the success in applying language iden-
tification techniques to L1 identification in speech
(Abad et al., 2016), we explored language identifi-
cation techniques in an initial stage. We trained
the well known langid tool (Lui and Baldwin,
2011) using the data-sets provided in the shared

task. The technique implemented in langid com-
bines a Naive Bayes classifier with byte n-grams
and no assumption over word boundaries. Un-
fortunately, no results outperforming the baseline
could be attained with langid.

Character n-grams are a common feature in NLI
systems and have been shown to provide strong re-
sults (Koppel et al., 2005; Ionescu et al., 2014).
The low performance we attained with langid
might therefore be related with particularities of
the tool. It is also possible that specific tuning
of algorithms for language identification might not
be suitable for L1 identification.

3.2 Sub-word Features

Together with part-of-speech, character-level fea-
tures are a commonly used feature for NLI (Mal-
masi, 2016). Upon manual inspection of the
essays and speech transcriptions corpora of the
shared task, it became clear that spelling or tran-
scription errors were present with high frequency.
This is a scenario in which sub-word units can play
an important role for two main reasons. On the
one hand, sub-word units help alleviate the effect
of rare words that do not appear in the training
corpus, also known as Out of Vocabulary Words
(OOVs). On the other hand, they can capture sys-
tematic sub-word patterns, such as typographical
or transcription errors, that can be specific to a par-
ticular L1 profile.

As an alternative to sub-word units based on
character n-grams, we explored the use of the Byte
Pair Encoding (BPE) approach (Sennrich et al.,
2015). This simple approach, that has recently
help to achieve state-of-the-art results in machine
translation (Sennrich et al., 2015), provides a mid-
dle ground between character and word models.
BPE is a well known compression technique that
is here employed to iteratively merge the charac-
ters or sequences of characters that are most com-
mon into new tokens. The resulting vocabulary
contains many or the original word tokens as well
as fragments of frequent character sequences and
individual characters.

Initial experiments explored the use of BPE to-
kens as a replacement for word tokens in the base-
line system. This yielded however no notable im-
provements over the provided features. One pos-
sible limitation on the use of BPE features com-
pared to Sennrich et al. (2015) is the lack of Re-
current Neural Networks to capture context. With-
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out them, the use of sub-word units might destroy
some useful information at the word token level.
For this reason, further experiments included n-
grams of BPE units as features with n = 1, 2, 3.
It has to be taken into account that n-grams of
BPE features might not only capture whole words
but also sub-word patterns within and across word
boundaries. The use of n-grams together produced
however no improvements compared to the base-
line system.

To provide some additional complementarity
in the final ensemble, a Naive Bayes model was
trained on the same features. Despite its simplic-
ity, the model became competitive after introduc-
ing the n-gram features. Minor improvements over
the baseline on the ESSAYS dataset were then at-
tained by using BPE sub-word units (as we will
see in Section 5, Table 1) and were kept for the
final ensemble due to its complementarity. After
determining the optimal features, the system pa-
rameters were tuned using the development set. A
value of 10000 new BPE symbols was determined
as optimal. The Naive Bayes classifier smooth-
ing, equivalent to an uniform Dirichlet prior for
the likelihood estimation, was set to 1e−4.

3.3 Neural Networks

Neural Networks are being successfully applied to
a varying set of NLP problems. Following the cur-
rent trend, we developed several architectures and
tested them over the ESSAYS and FUSION tracks.

A common choice for treating sequence
data like text are Recurrent Neural Networks
(RNN), usually in their Long-Short Term Memory
(LSTM) or Gated Recurrent Units (GRU) flavors,
which are better able to capture long dependen-
cies than plain RNNs. We decided to use GRUs
(Chung et al., 2015) since they are faster to train
and provide similar results to LSTMs.

We ended up building two networks: one for
the ESSAYS tracks (NN-ESSAYS) and another for
the FUSION track (NN-FUSION). The network
for the FUSION track uses all available data as in-
put: essays, transcripts, and i-vectors. The net-
work for the ESSAYS track only uses the tokens
in the essays.

Our final architecture for the NN-ESSAYS net-
work is composed by the following layers:

• An embedding layer mapping input identi-
fiers to a 300-dimensional space;

• A feed-forward layer with 300 units and
ReLU (Nair and Hinton, 2010) activations;

• A bidirectional GRU layer with 300 units;

• A max-pooling layer applied across the time
dimension;

• A feed-forward layer with 11 units (one for
each language) and softmax activation.

The architecture for the NN-FUSION network is
essentially similar but has to deal with the multiple
inputs:

• The essay and transcript inputs each pass
through the first four layers as in NN-ESSAYS

before being concatenated;

• Each sample i-vector goes through a 400
units, ReLU activated feed-forward layer be-
fore being concatenated with the resulting
concatenation above;

• A final softmax layer is then applied.

Several different architectures were tested, but
none yielded results outperforming the baseline.
As we will see in Section 5, the i-vectors dominate
over the other features.

3.4 I-vector system

The success of the i-vector (Dehak et al., 2011a)
framework in speaker recognition tasks has mo-
tivated the investigation of its application to
other related fields, including language recogni-
tion (Martınez et al., 2011; Dehak et al., 2011b),
where it has become the current de facto stan-
dard for acoustic Spoken Language Recognition
(SLR), and more recently L1 recognition (Abad
et al., 2016).

In the Total-variability modeling approach – so-
called i-vector approach – the variability present in
the high-dimensional GMM super-vector is jointly
modeled as a single low-rank total-variability
space. The low-dimensionality total variability
factors extracted from a given speech segment
form a vector, named i-vector, which represents
the speech segment in a very compact and efficient
way. Thus, the total-variability modeling is used
as a factor analysis based front-end extractor.

In this work, the 800 dimensionality i-vectors
provided in the task were used to build a new
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acoustic L1 classifier. First, we apply i-vector cen-
tering and whitening (Garcia-Romero and Espy-
Wilson, 2011) that is known to contribute to a re-
duction of the channel variability. Moreover, the
resulting centered and whitened i-vectors are nor-
malized to be of unit length.

Second, we explored different classifiers on the
top of the processed i-vectors. Like in Abad et al.
(2016), in which log-linear and non-linear classi-
fiers based on feed-forward networks were inves-
tigated, we could observe that the i-vector front-
end already provides a very good separation of the
classes which leads to similar results for the dif-
ferent modeling techniques.

In particular, we tried to model the distribution
of i-vectors for each language with a single mix-
ture Gaussian distribution with full covariance ma-
trix shared across different target languages since
it has proven very effective (Martınez et al., 2011;
Abad et al., 2016). However, in this case, this
approach showed very similar performance to the
baseline classifier: a multi-class one-vs-rest logis-
tic regression classifier. Consequently, we opted
for the baseline logistic regression approach.

4 Calibration and Fusion Back-End

In this work, we carried out calibration and fusion
of the systems at the output score level using the
FoCal Multi-class Toolkit1. For that purpose, ev-
ery single sub-system is forced to produce an 11-
element score vector si corresponding to each of
the target languages. Then, a Linear Logistic Re-
gression (LLR) is trained to fuse the score outputs
generated by the selected sub-systems in order to
produce fused well-calibrated log-likelihoods l as
follows:

l =
∑

i

αisi + b, (1)

where αi is the weight for sub-system i and b is
the language-dependent shift. For this challenge,
the language with the highest fused log-likelihood
is the hypothesized L1 language.

Notice that, in contrast to Abad et al. (2016),
the use of a Gaussian Back-End to transform the
score-vector of each individual sub-system before
the LLR stage has not been applied, since it did not
reveal to contribute for improved language identi-
fication in the validation experiments.

1https://sites.google.com/site/
nikobrummer/focalmulticlass

During the development of our systems, the
LLR fusion parameters were trained and evalu-
ated on the development set using a kind of 2-fold
cross-validation: development data was randomly
split in two halves, one for parameter estimation
and the other for assessment. This process was
repeated using 10 different random partitions so
that the mean and variance of the systems’ perfor-
mance could be computed. This method allowed
for a comparison and ranking of the different sub-
systems under study. Then, for the trial submis-
sions, no partition was made and all the develop-
ment data was used to train the LLR fusion.

The final combined system for the FUSION
track, which we call FINAL-FUSION, consists in
the LLR fusion of the following 5 systems: i) ES-
SAY baseline; ii) speech transcriptions baseline;
iii) the i-vector system described in Section 3.4;
iv) the NN-ESSAYS system described in Section
3.3; and v) the BPE system described in Section
3.2. We also evaluated a LLR-FUSION system con-
sisting in i), iv) and v) on the ESSAYS track.

5 Results

We first show the results over the development set
in order to justify our approach choices, beginning
with the ESSAYS track. The official evaluation
metric is the macro averaged F1 score.

The organizers provided an already strong base-
line at 72% F1 over essays. As we can see in
Table 1, our BPE based systems and NN system
were only able to be on par with the baseline, with
the Naive Bayes using BPE n-grams only slightly
surpassing it. However, as shown in Table 2, the
Naive Bayes approach is indeed very complemen-
tary to the baseline. It performs well above the
baseline for German, Italian, and Spanish, while
performing much worse for Arabic and Telugu.
The fusion system results confirms this hypoth-
esis, showing the best result for all languages.
The NN model also shows complementarity in a
smaller scale that still provides a positive impact
in the final ensemble.

Considering the FUSION track, both NN-
FUSION and FINAL-FUSION systems significantly
surpassed the baselines, as can be seen in Table
3. This is due mainly because of the use of the
i-vectors in both systems. The NN-FUSION sys-
tem without i-vectors, for example, performed 5
points worse than the baseline with no i-vector
(not shown in the tables).
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System F1 (macro) Accuracy

Baseline (1) 0.7230 0.7236

langid (2) 0.5469
Naive Bayes 1-gram (3) 0.5912 0.5918
NN-ESSAYS (4) 0.7127 0.7145
Naive Bayes 1,2,3-grams (5) 0.7210 0.7227
Naive Bayes BPE 1,2,3-grams (6) 0.7294 0.7309
LLR-FUSION (1)+(4)+(6) 0.7949 0.7945

Table 1: Results for the ESSAYS track over the development dataset for the baseline, the langid, the
Naive Bayes with and without BPE, the essay Neural Network (NN-ESSAYS), and the LLR-FUSION

systems. The best result, excluding the LLR-FUSION, is highlighted in bold.

L1 Baseline NB+BPE NN-ESSAYS FINAL-FUSION

ARA 0.74 0.67 0.65 0.76
CHI 0.75 0.74 0.74 0.84
FRE 0.74 0.77 0.72 0.81
GER 0.79 0.85 0.81 0.93
HIN 0.69 0.66 0.69 0.71
ITA 0.76 0.83 0.80 0.86
JPN 0.74 0.76 0.69 0.82
KOR 0.69 0.70 0.68 0.75
SPA 0.61 0.68 0.66 0.73
TEL 0.73 0.65 0.71 0.77
TUR 0.72 0.70 0.67 0.77
avg 0.72 0.73 0.71 0.79

Table 2: F1 (macro) scores on the ESSAYS track over the development dataset for the baseline, the Naive
Bayes with BPE (NB+BPE), the essay Neural Network (NN-ESSAYS), and the FINAL-FUSION systems.
The best result for each language, excluding the FINAL-FUSION, is highlighted in bold.

System F1 (macro) Accuracy

Baseline fusion 0.7500 0.7500
Baseline fusion+i-vectors 0.7809 0.7827

NN-FUSION 0.8238 0.8245
FINAL-FUSION 0.9011 0.9009

Table 3: Results for the FUSION track over the development dataset for the baselines, the fusion Neural
Network (NN-FUSION), and the FINAL-FUSION systems.

5.1 Test set

As previously mentioned, the NLI Shared Task
2017 provided two test datasets, one for the ES-
SAYS and SPEECH tracks, and one for the FU-
SION track. We focused on the FUSION track test
set for comparing the systems described above.

Table 4 shows the results of our two best single
systems trained only on the ESSAYS dataset. The
difference in performance is proportional to that

on the development set shown in Table 1.

Table 5 shows the results on the FUSION track
for our two fusion systems trained on all avail-
able data: essays, speech transcriptions, and i-
vectors. The NN-FUSION was the only system
we officially submitted to the task. After advanc-
ing with the other complementary systems and the
FINAL-FUSION one, the results we achieved make
it clear Neural Networks are not the best alterna-
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tive for combining multiple sources of informa-
tion, at least not in the simple way we approached
it.

6 Discussion

Concerning the text component of the problem,
we focused on simple word and sub-word features
avoiding excessive use of hand engineered fea-
tures. We also tested linear and recurrent neural
networks based classifiers to attain complemen-
tary models. We then relied on fusion methods
for combining our simple approaches and the task
provided i-vectors.

Compared with the existing results, perfor-
mance on the text component of the tasks was lim-
ited, with small improvements over the baseline.
The obtained models were however complemen-
tary to each other and the baseline system, provid-
ing additional gains when ensembled. The use of
BPE has shown as well to be a possible alternative
to other sub-word units usually employed in NLI
systems.

The outstanding performance of the i-vectors,
consistent with findings of previous works, is the
main driver in the final system’s performance. The
main improvements shown reside therefore in the
alternative fusion strategy followed for the differ-
ent systems.

Following the current trend, a possible line of
work is to explore sub-word information com-
bined with recurrent or convolutional neural ar-
chitectures. In addition, more complex neural ar-
chitectures can also be explored, like hierarchical
classification models with attention, which are re-
cently obtaining good results in other document
classification problems.
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Abstract

In this paper, we describe the approach of
the ItaliaNLP Lab team to native language
identification and discuss the results we
submitted as participants to the essay track
of NLI Shared Task 2017. We introduce
for the first time a 2-stacked sentence-
document architecture for native language
identification that is able to exploit both
local sentence information and a wide set
of general–purpose features qualifying the
lexical and grammatical structure of the
whole document. When evaluated on the
official test set, our sentence-document
stacked architecture obtained the best re-
sult among all the participants of the essay
track with an F1 score of 0.8818.

1 Introduction

Native Language Identification (NLI) is the task
of identifying the native language (L1) of a writer
based on their writing in another language. Since
the seminal work by Koppel et al. (2005), within
the Computational Linguistics community there
has been a growing interest in the NLP–based
Native Language Identification (henceforth, NLI)
task. However, so far, due to the unavailability of
balanced and wide–coverage benchmark corpora
and the lack of evaluation standards it has been dif-
ficult to compare the results achieved for this task
with different methods and techniques (Tetreault
et al., 2012). The First Shared Task on Native Lan-
guage Identification (Tetreault et al., 2013) was the
answer to these mentioned problems.

In this paper, we describe our approach to the
essay track of the 2017 Native Language Identi-
fication Shared Task (Malmasi et al., 2017). Par-
ticipating teams of this task were asked to clas-
sify the native language of writers of 1,100 En-

glish essays solely using the sample of their writ-
ings. 11,100 English essays from non-native En-
glish writing samples from a standardized, mean-
ingful, and authentic assessment context of En-
glish proficiency for academic purposes (the Test
Of English as a Foreign Language, TOEFL) (Blan-
chard et al., 2013) were provided as training data
and the 11 native languages covered by the corpus
are: Arabic, Chinese, French, German, Hindi, Ital-
ian, Japanese, Korean, Spanish, Telugu, and Turk-
ish. Each essay in the TOEFL11 is labeled with an
English language proficiency level.

Following the most common approaches and
starting from the work of (Cimino et al., 2013), we
tackled the Native Language Identification task as
a text classification problem. The main novelty of
our approach is the proposed classification archi-
tecture that combines a sentence and a document
classifier in a 2-stacked sentence-document archi-
tecture. This system is able to exploit both local
sentence information and a wide set of features
extracted from the whole document. The features
range across different levels of linguistic descrip-
tion, from lexical to morpho–syntactic and syntac-
tic information.

The proposed method was prompted by our
studies on sentence and document readability clas-
sification (Dell’Orletta et al., 2014), where we
shown differences between document and sen-
tence classification problems by focusing on the
role of the features and their importance. For ex-
ample, the classification of the readability of a sen-
tence requires a higher number of features, mainly
syntactic ones, and they have different weights
with respect to the weights used in the document
classification problem. In this work, we show how
sentence local information can be exploited also
in NLI task providing to the document classifier
fruitful local information, thus making some fea-
tures more effective.
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2 Related Work

Native Language Identification is most commonly
tackled as a multi-class supervised classification
task combining NLP–enabled feature extraction
and machine learning: see e.g. (Tetreault et al.,
2012), and (Malmasi and Dras, 2017). Among the
different machine learning algorithms used, sys-
tems based on Support Vector Machines obtain the
best accuracies. However, the most successful ap-
proaches made use of classifier ensemble meth-
ods to further improve performance. All recent
state-of-the-art systems have relied on some form
of multiple classifier system. Among the most
recent works, (Ionescu et al., 2014) used multi-
ple string kernels learning using only character n-
gram features, reporting an accuracy of 85.3 on the
TOEFL11 test set, 1.7 higher than the 2013 state
of the art obtained by (Jarvis et al., 2013) in the
first shared task on NLI (Tetreault et al., 2013).
More recently, (Malmasi and Dras, 2017) made a
systematic examination of ensemble methods. By
exploiting a classifier stacking architecture, the au-
thors obtained the current state-of-the-art results
on three datasets from different languages. As in
these previous works, the system presented in this
paper uses a stcked architecture, but differently
from the previous ones combines a sentence and
a document classifier and it is able to exploit in a
profitable way both local sentence information and
global document information.

Typically, the range of features used is wide
and includes characteristics of the linguistic struc-
ture underlying the L2 text, encoded in terms of
sequences of characters, words, grammatical cat-
egories or of syntactic constructions, as well as
of the document structure: note however that, in
most part of the cases, the exploited features are
task–specific. Differently, as in our first system
(Cimino et al., 2013), we resort to a wide set of
features ranging across different levels of linguis-
tic description (i.e. lexical, morpho–syntactic and
syntactic) without any a priori selection: the same
set of features was successfully exploited in dif-
ferent tasks focusing on the linguistic form rather
than the content of texts, such as readability as-
sessment (Dell’Orletta et al., 2014) or the classifi-
cation of textual genres (Dell’Orletta et al., 2012).

3 Description of the system

Our approach to the Native Language Identifica-
tion Task was implemented in a software proto-

type. The main novelty of our approach is the
use of a stack of two SVM classifiers, each one
operating on morpho–syntactically tagged and de-
pendency parsed texts. The first classifier is a L1
sentence classifier that is aimed at classifying the
native language of each sentence of a document.
The predictions of the L1 sentence classifier are
used as features by the L1 document classifier. In
addition to the sentence classifier predictions, the
second classifier exploits widely used features in
native language identification that are used to build
the final statistical model. This statistical model
is finally used to predict the L1 language of un-
seen documents. The highest score of the doc-
ument classifier represents the most probable L1
class. For this work we used LIBLINEAR (Fan
et al., 2008) as machine learning library both for
the sentence and the document classifiers. The
documents were automatically POS tagged by the
Part–Of–Speech tagger described in (Cimino and
Dell’Orletta, 2016) and dependency–parsed by the
DeSR parser (Attardi et al., 2009).

3.1 Training workflow

L1 Gold Labeled
Documents

L1 Gold Labeled
Sentences Generation

K-Fold L1 Sentence
Classifier Training

K-Fold Sentences
L1 Predictions

L1 Predicted
Sentences

L1 Document
classifier

Document
feature extraction

Final statistical model

Figure 1: The training workflow of the 2-stacked
sentence-document architecture.

Since the document classifier exploits the pre-
dictions of the sentence classifier in classification
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of unseen documents, we devised a specific train-
ing workflow that is shown in Figure 1. In the
first step of the workflow, the L1 gold labels of the
training documents are exploited to build an anno-
tated corpus of L1 sentences where each sentence
is labeled according to the label of its belonging
document. Once the L1 gold labeled sentence cor-
pus is generated, this is used to train the sentence
classifier and used to create the training set of the
document classifier. More precisely, the L1 sen-
tence corpus is divided in k different folds 1 where
each fold is used to provide the training examples
for the sentence classifier. By exploiting widely
used NLI features, the sentence classifier produces
a specific statistical model for each of the k folds.

The statistical models are then used to predict
the L1 language of the sentences that do not be-
long to the training examples of the generated
folds. For this work we used the LIBLINEAR L2-
regularized logistic regression as learning algo-
rithm since the LIBLINEAR implementation pro-
vides the confidence of belonging to a specific
class for unseen examples. In addition, features
with frequency lower than 2 in the corpus where
discarded. By merging the k folds of the L1 pre-
dicted sentences, a corpus of L1 predicted sen-
tences is obtained and it is used by the document
classifier during its training phase. The document
classifier by exploiting widely used NLI features
and the predictions of the sentence classifier pro-
duces its own statistical model that is finally used
to predict the L1 language of unseen documents.
The document classifier was trained using the LI-
BLINEAR L2-regularized L2-loss support vector
classification that (Jarvis et al., 2013) have shown
to have very good performances in NLI document
classification. Features with frequency lower than
3 in the corpus where discarded.

Once the document classifier is trained, for the
final settings the sentence classifier is trained using
all the sentences of the L1 Gold sentence corpus,
this in order to achieve the best possible accuracy
in classification of unseen sentences.

The prediction workflow of unseen documents,
shown in Figure 2, is similar to the training work-
flow with the exception that the k fold training pro-
cedure is not needed.

All the real valued features were scaled in the
range [0, 1] in order to reduce the training times
and to maximize the classification performances.

1for our runs we have chosen k = 5

Input Document

Sentences Generation

L1 Predicted
Sentences

L1 Document
classifier

Document
feature extraction

Predicted L1 Label

Figure 2: The test workflow of the 2-stacked
sentence-document architecture.

3.2 Sentence and Document Features

Here are described the features used both by the
sentence and the document classifiers. Hereafter
we regard documents and sentences as texts in
order to avoid ambiguities in the description of
the features. In the description below some fea-
tures are calculated as the normalized frequency
and other as the normalized logarithm of the fre-
quency. The choice was made according to empir-
ical evaluation on the development set.

Raw and Lexical Text Features
Text Length, calculated as the number of tokens.
Word Length, calculated as the average number
of characters per word.
Character n-grams, calculated as the logarithm
of the frequency of each character n-gram in the
text and normalized with respect to the text length.
A smoothing term is added to the frequency of
each n-gram in order to avoid 0 values for n-grams
with 1 frequency.
Function word n-grams, calculated as the fre-
quency of each function word n-gram in the text
and normalized with respect to the number of to-
kens in the text. In this work we considered the
words belonging to one of the following fine part-
of-speech categories: determiners, coordinating
conjunctions, preposition or subordinating con-
junctions, interjections.
Word n-grams, calculated as presence or absence
of a word n-gram in the text.
Lemma n-grams, calculated as the frequency of
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each lemma n-gram in the text and normalized
with respect to the number of tokens in the text.

Morpho–syntactic Features
Coarse grained Part-Of-Speech n-grams, calcu-
lated as the logarithm of the frequency of each
coarse grained PoS n-gram in the text and normal-
ized with respect to the number of tokens of the
text.
Coarse grained Part-Of-Speech - Lemma n-
grams: calculated as the frequency of the n-grams
of the Coarse grained Part-of-Speech of the cur-
rent token and its following token lemma. The fre-
quencies are normalized with respect to the num-
ber of tokens of the text.

Syntactic Features
Linear dependency types n-grams, calculated as
the frequency of each dependency n-gram in the
text with respect to the surface linear ordering of
words and normalized with respect to the number
of tokens in the text.
Hierarchical dependency types n-grams calcu-
lated as the logarithm of the frequency of each hi-
erarchy dependency n-gram in the text calculated
with respect to the hierarchical parse tree structure
and normalized with respect to the number of to-
kens in the text. In addition to the dependency re-
lationship, the feature takes into account whether
a node is a left or a right child with respect to its
parent.
Head-dependents of the syntax tree: the distri-
bution of head and its dependents in the syntax
trees.

3.3 Document Classifier Specific Features

In addition to the features described in 3.2, the
document classifier uses the following features.
Raw Features
Essay prompt, included in the TOEFL11 corpus.
Average sentence length and standard devia-
tion, calculated in terms of number of tokens for
each sentence in the document.
Type/Token Ratio. The Type/Token Ratio (TTR)
is a measure of vocabulary variation which has
shown to be a helpful measure of lexical variety
within a text as well as style marker in an author-
ship attribution scenario: a text characterized by
a low type/token ratio will contain a great deal of
repetition whereas a high type/token ratio reflects
vocabulary richness and variation. Due to its sen-
sitivity to sample size, the TTR has been computed

for different chunk lengths. In this work we con-
sidered the first 100, 200, 300 and 400 tokens.

Sentence classifier predictions. Since the sen-
tence classifier provides for each sentence the
probability score of each L1 class, the following
55 features were calculated for each document:
for each L1 language the i) average probability,
ii) the standard deviation of the probabilities, iii)
the probability product, iiii) the maximum proba-
bility and iiiii) the minimum probability of all the
sentences.

3.4 Models

In order to test the performances of the pro-
posed two-stacked sentence-document classifier,
we conducted several experiments exploiting dif-
ferent configurations of our system. Table 1
reports the configurations selected for the offi-
cial runs in terms of features and values of n-
grams used. Stacked1 and Stacked2 use both the
2-stack classifier architecture, but the Stacked2
model does not include the Functional word n-
gram features and the head-dependents features.
Not-stacked1 and Not-stacked2 reflect the previ-
ous two configurations with the exception that the
sentence classifier features were not introduced.
The selection of these models was guided by the
tuning performed on the official NLI Shared Task
2013 and 2017 test sets. Tables 2 and 3 report the
results achieved by the selected models on the of-
ficial 2013 test set and the 2017 development set.

Model Prec. Recall F1-Score
Jarvis (2013) - - 0.836
Cimino (2013) - - 0.779
Stacked1 0.853 0.851 0.851
Not-stacked1 0.850 0.848 0.848
Stacked2 0.851 0.849 0.849
Not-stacked2 0.850 0.847 0.847

Table 2: Results obtained by our models on the
NLI Shared Task 2013 official test set compared
to the overall best run and our best run submitted
in the NLI Shared Task 2013 edition.
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Feature Feature-Configuration Stacked1 Stacked2 Not-stacked1 Not-stacked2
Sentence Classifier and Document Classifier features

Character n-grams up to 8 3 3 3 3
Word n-grams up to 4 3 3 3 3
Lemma n-grams up to 4 3 3 3 3
CPOS n-grams up to 4 3 3 3 3
LEMMA-CPOS n-grams up to 4 3 3 3 3
Functional word n-grams up to 3 3 7 3 7
Linear dependency n-grams up to 4 3 3 3 3
Hierarchical dependency n-grams up to 4 3 3 3 3
Text Length NA 3 3 3 3
Head-Dependents NA 3 7 3 7

Document Classifier specific features
Type Token Ratio 100,200,300,400 3 3 3 3
Essay Prompt NA 3 3 3 3
Average Sentence Length NA 3 3 3 3
Standard Deviation Sentence Length NA 3 3 3 3
Average Sentence L1 Confidence NA 3 3 7 7
Std. Dev. Sentence L1 Confidence NA 3 3 7 7
Product of Sentence L1 Confidences NA 3 3 7 7
Maximum Sentence L1 Confidence NA 3 3 7 7
Minimum Sentence L1 Confidence NA 3 3 7 7

Table 1: Configurations of our system used to train our classifier for the evaluation of the NLI Shared
Task 2017 test set.

Model Prec. Recall F1-Score
Stacked1 0.8551 0.8527 0.8525
Stacked2 0.8567 0.8545 0.8544
Not-stacked1 0.8552 0.8527 0.8526
Not-stacked2 0.8524 0.8500 0.8498

Table 3: Results obtained by our models on the
NLI Shared Task 2017 official development set.

4 Results

Table 4 reports the F1-Score and the overall ac-
curacy achieved by our stacked architecture with
the feature configuration described in section 3.4
on the NLI Shared Task 2017 official test set. In
addition the table reports the results achieved by
two different baselines provided by the shared task
organizers2: a random baseline and a classifier
that uses only word unigrams as features. Figure
3 reports the confusion matrix of our best model
(Stacked2) on the official NLI essay test set. In
addition, Table 5 reports the results obtained by
the non stacked version of our architecture. These
runs were submitted to the organizers of the task
after the official evaluation period.

2A more detailed description of the baseline system is re-
ported in (Malmasi et al., 2017).

System F1-Score Accuracy
Random Baseline 0.0909 0.0909
Organizers baseline 0.7104 0.7109
Stacked1 0.8800 0.8800
Stacked2 0.8818 0.8818

Table 4: Results of our submitted models for the
essay track on the NLI Shared Task 2017 official
test set.
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Figure 3: Confusion Matrix of the Stacked2 model
on the NLI Shared Task 2017 official test set.
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System F1-Score Accuracy
Not-stacked1 0.8727 0.8729
Not-stacked2 0.8764 0.8765

Table 5: Results of our not-stacked systems for the
essay track on the NLI Shared Task 2017 official
test set.

4.1 Discussion

We tested different configurations of our archi-
tecture in order to evaluate the contribution on
the accuracy of: i) the single components of the
2-stacked sentence-document architecture, ii) the
lexical information and iii) the syntactic informa-
tion. We carried out different experiments on the
official NLI Shared Task 2017 development set
and on the official NLI Shared Task 2013 test set
that reflect the questions we wanted to answer,
more specifically the questions are:

• (a) what are the performance obtained by us-
ing the 2-stacked sentence-document archi-
tecture and by using the sentence and docu-
ment classifiers separately?

• (b) what is the contribution of the Lexical in-
formation on the stacked architecture and on
the single components?

• (c) what is the contribution of the Syntactic
information on the stacked architecture and
on the single components?

In order to answer to these questions, we de-
vised 3 different feature configurations: All fea-
tures, that uses all the features described in sec-
tion 3.2; No Lexical, that does not use the word
n-grams features and the character n-grams fea-
tures; No Syntax, that does not use the features
extracted from the dependency syntax trees. For
each configuration three different classifiers were
trained: the Stacked classifier, the Document clas-
sifier (Not-Stacked) and the Sentence classifier
(Sent). We tested the Sentence classifier in the
document classification task by using two different
approaches to assign the most probable L1 class
of a document according to the predictions of the
sentence classifier. The first is a vote approach
(VOTE), where we decided to assign to a docu-
ment the most frequent L1 predicted class among
all the sentences of the document. The second
is an average approach (AVG): since the sentence
classifier assigns for each L1 class its confidence,

we took as L1 document class the one that had the
highest average among all the probabilities of each
sentence. In addition, we tested the accuracy of
the Sentence classifier on sentence classification
using as test sets the sentences belonging to the
documents of the NLI 2017 development set and
of the NLI 2013 test set.

2017 NLI development set
Model Prec. Recall F1-Score

All Features
Stacked 0.8551 0.8527 0.8525
NotStacked 0.8552 0.8527 0.8526
Sent. (AVG) 0.7968 0.7900 0.7886
Sent. (VOTE) 0.7516 0.7436 0.7405

No Lexical
Stacked 0.8070 0.8036 0.8033
Not-stacked 0.7947 0.7927 0.7923
Sent. (AVG) 0.7345 0.7182 0.7148
Sent. (VOTE) 0.6592 0.6409 0.6343

No Syntax
Stacked 0.8545 0.8527 0.8526
Not-stacked 0.8519 0.8500 0.8498
Sent. (AVG) 0.8017 0.7936 0.7925
Sent. (VOTE) 0.7472 0.7409 0.7384

Table 6: Results of our experiments on the NLI
Shared Task 2017 development set.

2013 NLI test set
Model Prec. Recall F1-Score

All features
Stacked 0.8537 0.8518 0.8516
NotStacked 0.8502 0.8482 0.8480
Sent. (AVG) 0.7983 0.7909 0.7896
Sent. (VOTE) 0.7474 0.7418 0.7393

No Lexical
Stacked 0.8042 0.8018 0.8014
Not-stacked 0.7840 0.7818 0.7814
Sent. (AVG) 0.7325 0.7200 0.7160
Sent. (VOTE) 0.6515 0.6373 0.6311

No Syntax
Stacked 0.8571 0.8555 0.8553
Not-stacked 0.8513 0.8491 0.8489
Sent. (AVG) 0.7957 0.7891 0.7880
Sent. (VOTE) 0.7429 0.7373 0.7346

Table 7: Results of our experiments on the official
NLI Shared Task 2013 test set.
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Model Prec. Recall F1-Score
2017 NLI development set

Baseline 0.3533 0.3531 0.3515
All features 0.3937 0.3948 0.3936

2013 NLI test set
Baseline 0.3541 0.3536 0.3519
All features 0.3946 0.3956 0.3946

Table 8: Performances of the sentence classifier
on sentences belonging to the official NLI Shared
Task 2017 development set and on the official NLI
Shared Task 2013 test set.

Tables 6, 7 and 8 report the results of all the
experiments. With the exception of the results
obtained by the All features model on the 2017
development set, the stacked architecture always
outperforms the not-stacked architecture in all the
feature configurations used, showing that our de-
vised stacked architecture is effectively able to ex-
ploit some information hidden in L2 sentences that
are not fully captured at document level. For what
concerns the sentence classifier when used as a
document classifier, the average approach (AVG)
always outperforms the results of VOTE version
in all the configuration tested. We can see also
that for each feature configuration there is a drop
of only 5-6 points with respect to the 2-stacked
classifier.

Table 8 reports the performances of the stan-
dalone sentence classifier on the L1 sentence clas-
sification task. For each dataset we report a base-
line result calculated by using only word unigrams
features. We have chosen this baseline following
the approach used by NLI Shared Task organizers
for calculating their baseline system. The baseline
results are compared with the results achieved by
the All Features configuration. As expected, the
L1 sentence classification task is extremely more
difficult than the L1 document classification task:
the results achieved by the baseline system on the
document classification task are extremely higher
than the ones on the sentence classification task
(+35% in terms of F1-Score). An interesting re-
sult to notice is the contribution in the sentence
and document classification tasks of the features
we used to develop our system. While we can ob-
serve an improvement of almost 14% (F1-Score)
with respect to the baseline system on the L1 doc-
ument classification task, only 4% (F1-Score) of
improvement are achieved on the sentence clas-
sification task, confirming the complexity of the

sentence classification task and the need of a spe-
cific process of feature selection for this task.

For what concerns question (b), we can observe
that the lexical features (word n-grams and charac-
ter n-grams) are extremely relevant for NLI. Both
the All Features Stacked configuration and the No
Syntax Stacked configuration report an accuracy
of approximately 0.85% on the performed exper-
iments, which is almost 5 points more than the
results obtained by using the No Lexical Stacked
configuration. The same drop in classification per-
formance can be also observed when using the not-
stacked architecture and the sentence classifier as
document classifier with the AVG and the VOTE
approaches.

Finally, for what concerns question (c) we can
observe that surprisingly the syntax features bring
almost or no contribution when joined with all the
other features we used. When the results of the
stacked, non-stacked and sentence rows achieved
by the All Features configuration are compared
with the respective ones achieved by the No Syn-
tax configuration, no statistical difference in ac-
curacy can be observed. In our opinion, this re-
sult is due to the correlation of lexical information
and part-of-speech tag information, but a more in
depth analysis would be required to analyze these
results.

5 Conclusions

In this paper, we reported the results of our par-
ticipation to the essay track of the Second Native
Language Identification Shared Task. By resorting
to a novel 2-stacked sentence-document architec-
ture and to a set of general purpose features qual-
ifying the lexical and grammatical structure of a
text, we achieved very promising results and the
first position in this shared task.

We have shown that our novel stacked architec-
ture outperforms the results achieved by a single
document classifier, showing that sentence local
information is useful for NLI.

In future works, we would like to carry out a
more in depth study of the sentence level clas-
sifier, focusing in particular on the features that
most maximize its accuracy on L2 sentences. In
addition, we want to investigate the combination
of different sentence-document models in order to
deepen the study of the interaction between the
sentence and document levels in the task of native
language identification.
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Abstract

We show that text readability prediction
improves significantly from hard param-
eter sharing with models predicting first
pass duration, total fixation duration and
regression duration. Specifically, we in-
duce multi-task Multilayer Perceptrons
and Logistic Regression models over sen-
tence representations that capture various
aggregate statistics, from two different text
readability corpora for English, as well as
the Dundee eye-tracking corpus. Our ap-
proach leads to significant improvements
over Single task learning and over previ-
ous systems. In addition, our improve-
ments are consistent across train sample
sizes, making our approach especially ap-
plicable to small datasets.

1 Introduction

When we read, our eyes move rapidly back and
forth between fixations. These movements are
called saccades. The distribution of fixations and
saccades can provide us with important insight
about the reader and the text being read. For exam-
ple, long regressive eye movements, which typi-
cally involve regressing more than 10 letter spaces
(Rayner, 1998), may indicate that the reader is fac-
ing some difficulty in understanding the text (Fra-
zier and Rayner, 1982; Rayner, 2012). In addi-
tion, regressions have been shown to occur dur-
ing the disambiguation of a sentence (Frazier and
Rayner, 1982). This relationship between text and
eye movements, has led to an influx of studies in-
vestigating the use of eye tracking data to improve
and test computational models of language i.e.
Barrett et al. (2016); Demberg and Keller (2008);
Klerke et al. (2015). In this study we aim to in-
corporate eye movement data for the task of auto-

matic readability assessment. Automatic readabil-
ity assessment is the task of automatically label-
ing a text with a certain difficulty level. An accu-
rate and robust system has many potential applica-
tions, for example it can help educators obtain ap-
propriate reading materials for students with nor-
mal learning capacities, as well as students with
disabilities and language learners. It can also be
used to assess the performance of machine trans-
lation, text simplification and language generation
systems. Eye-tracking data has previously been
used to evaluate readability models (Green, 2014;
Klerke et al., 2015), however, our main contribu-
tion is to explore the way that eye tracking data can
help improve models for readability assessment
through multi-task learning (Caruana, 1997) and
parser metrics based on the surprisal theory of syn-
tactic complexity (Hale, 2001, 2016). Multi task
learning allows the model to learn various tasks in
parallel and improve performance by sharing pa-
rameters in the hidden layers.

The work most related to ours is by Singh et al.
(2016), who used eye tracking measures taken
from the Dundee corpus in order to predict word
by word reading times for each sentence. Sub-
sequently, they used these word by word read-
ing times as features for predicting readability.
The two tasks were performed separately, and
their feature representations were different from
the ones presented here. In contrast, we present a
model that predicts gaze and sentence-level read-
ability simultaneously.

We use gaze data from the Dundee cor-
pus (Kennedy et al., 2003) and two different
datasets for the readability prediction task: aligned
Wikipedia sentences used for the task of text sim-
plification by Coster and Kauchak (2011) and the
OneStopEnglish dataset used by Vajjala and Meur-
ers (2014).
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Contributions This is, to the best of our knowl-
edge, the first application of multi-task learning to
readability prediction. Our model is also different
from previous applications of multi-task learning
to natural language processing in that we combine
a classification task and a regression task. We ex-
periment with two multi-task learning algorithms,
namely hard parameter sharing for multi-layered
perceptrons (Caruana, 1997) and a novel approach
to hard parameter sharing between logistic and lin-
ear regression. We evaluate our models on Simple
Wikipedia and the OneStopEnglish corpus. Fi-
nally, we present learning curves that show that
the improvements are robust across different sam-
ple sizes.

2 Experiments

Data Our target task is sentence-level readabil-
ity prediction, i.e. a binary classification problem
of sentences into easy-to-read and hard-to-read.

Our main corpus is a sentence-aligned cor-
pus of 137,000 simple versus normal English
sentences from Wikipedia (Coster and Kauchak,
2011). Similar datasets have been used in the past,
e.g., in Ambati et al. (2016) and Hwang et al.
(2015). The easy-to-read sentences were taken
from Simple Wikipedia and paired with sentences
from the standard Wikipedia using cosine similar-
ity.

In addition, we also evaluate our models on
the OneStopEnglish corpus (Vajjala and Meurers,
2014), specifically the elementary-intermediate
and elementary-advanced sentence pairs. This
dataset has been used for readability assessment
(Vajjala and Meurers, 2014) using the WeeBit
model presented by (Vajjala and Meurers, 2012),
so we compare our results with theirs.

Feature representation In this study, features
known to affect the complexity of text, such as
syntactic, lexical and total surprisal (Hale, 2001;
Demberg and Keller, 2008), were used. Most of
these features were extracted using a probabilis-
tic top-down parser introduced by Roark (2001).
After removing duplicate sentences and sentences
with typos, the final corpus used was of about
80,000 sentence pairs. The features extracted are
shown in table 1.

The prefix probability of word wn is explained
by Jelinek and Lafferty (1991) as the probability
that wn occurs as a prefix of some string generated
by a grammar. It is the sum of the probabilities of

Features
1. Prefix probability -word1
2. Total surprisal - word1
3. Syntactic Surprisal -word1
4. Lexical Surprisal - word1
5. Ambiguity - word1
6. Prefix probability -word2
7. Total surprisal - word2
8. Syntactic Surprisal - word2
9. Lexical Surprisal - word2
10. Ambiguity - word2
11. Total surprisal – sent mean
12. Syntactic Surprisal – sent mean
13. Lexical Surprisal – sent mean
14. Ambiguity – sent mean
15. Total surprisal – sent sd
16. Syntactic Surprisal – sent sd
17. Lexical Surprisal – sent sd
18. Ambiguity – sent sd
19. Sentence length
20. Ave. Word length
21. Parse Tree height
22. Num of Subordinate clauses(SBARs)
23. Num of Noun phrases
24. Num of Verb phrases
25. Num of Prepositional phrases
26. Num of Adv phrases
27. Ratio nouns
28. Ratio verbs
29. Ratio adjectives
30. Ratio pronouns
31. Ratio adverbs
32. Ratio Det
33. Mean Age of Acquisition

Table 1: Features extracted for the readability
data.

all trees from the first word to the current word.
Surprisal is then the difference between the log of
the prefix probability of wn and wn−1.

If we describe D(G,W [1, n]) as the set of all
possible leftmost derivations D with respect to
probabilistic context free grammar G and whose
last step used a production with terminal Wn.
We can then express the prefix probability of
W [1, n] with respect to G as PPG(W [1, n]) =∑

D∈D(G,W [1,n]) ρ(D), where ρ(D) is the proba-
bility of the derivation of a certain tree.

The total surprisal of Wn is then defined as:

SG(Wn) = − log
PPG(W [1, n])

PPG(W [1, n− 1])

Syntactic surprisal and lexical surprisal are calcu-
lated to account for high surprisal scores (Roark
et al., 2009). As Roark et al. (2009) mentions, a
word may surprise because it is unconventional,
or because it occurs in an unusual context.

In order to separate the lexical and syntactic
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components of surprisal, the incremental parser
calculates partial derivations immediately before
word Wn is integrated into the syntactic structure.
Syntactic surprisal (SynSG(Wn)) is defined as:

− log

∑
D∈D(G,W [1,n]) ρ(D[1, |D| − 1])

PPG(W [1, n− 1])

and lexical surprisal (LexSG(Wn)) as:

− log
PPG(W [1, n])∑

D∈D(G,W [1,n]) ρ(D[1, |D| − 1])

Where D[1, |D| − 1] is the set of the partial
derivations before each word is integrated into the
structure D(G,W [1, n]). Total surprisal turns out
to be sum of syntactic surprisal and lexical sur-
prisal.

We also obtain an entropy score using the
parser. Entropy over a set of derivations D, de-
noted as H(D), quantifies the uncertainty over the
partial derivations. We call this feature Ambiguity,
defined as:

−
∑
D∈D

ρ(D)∑
D′∈D ρ(D′)

log
ρ(D)∑

D′∈D ρ(D′)

Furthermore, features corresponding to the first
and second words were included, as the initial
words in a sentence allow the reader to make pre-
liminary guesses of what the structure will be for
the rest of the sentence, although these predic-
tions can often turn out to be wrong. In addition,
mean syntactic scores and standard deviations for
all words in the sentence are included as features.
We also include the mean age of acquisition for the
words in a given sentence, using data from Kuper-
man et al. (2012). Finally, we include basic counts
and ratios used previously in readability prediction
such as sentence length, parse tree height, num-
ber of SBAR’s, noun phrases, verb phrases, among
others .

In order to predict gaze, we extract the features
seen in Table 1 from the Dundee corpus. As men-
tioned earlier, these features offer a good repre-
sentation of cognitive load, which is also reflected
in reading times. A feature vector of size 33 was
built for each sentence, and this information was
used in order to predict an average first pass du-
ration, regression path duration and total fixation
duration.

First pass duration refers to the sum of all fix-
ations on a region once the region is first entered
until it is left. Regression path duration includes
regressions made out of a region prior to moving
forward in the text and total fixation duration is
the sum of all fixations in the region including, re-
gressions to that region. As mentioned in Rayner
et al. (2006), these measures typically concern re-
search questions focusing on sentence or discourse
processing.

Logistic/linear regression and MLPs Logistic
Regression (LR) models have been widely used in
document level readability classification i.e. Feng
et al. (2010) and (Xia et al., 2016). LR models
are linear models and can be thought of as single-
layer perceptrons with softmax or sigmoid activa-
tion functions. The objective is typically to mini-
mize a cross-entropy loss function. The same ar-
chitecture can be used for linear regression, how-
ever, when trained to minimize mean squared er-
ror. Here, we compare LR with a 3-layered Multi
Layer Perceptron (MLP). For our MLP architec-
ture, we use sigmoid activation at the input and
output layers and use ReLu activation in the hid-
den layer. The hidden layer contains 100 neu-
rons. All models presented here use the Adam op-
timizer, and a drop-out rate of 0.5. We also use
Adam to learn logistic and linear regression mod-
els.

As already mentioned, we go beyond single-
task LR and MLP models and present two
multi-task learning architectures with heteroge-
neous loss functions (cross-entropy and minimum
squared error). In multi-task learning (Caruana,
1997), the training signals of one task are used as
an inductive bias in order to improve the general-
ization of another task. Specifically, we use the
the task of gaze prediction in order to improve the
generalization of readability prediction.

Multi-task MLP Our multi-task learning archi-
tecture is identical to that of Caruana (1997) and
Collobert et al. (2011), i.e., two MLPs that share
all parameters in their hidden layers. The only
difference is that one of the MLPs in our case is
trained to minimize a minimum squared error to
predict gaze statistics.

Multi-task logistic and linear regression Our
linear multi-task learning model is novel in that it
combines a logistic and a linear regression model
by tying their parameters. As mentioned earlier,
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LR models can be thought of as single-layer per-
ceptrons. We tie a single-layer perceptron with
sigmoid activation to another single-layer percep-
tron with linear activation by sharing their single
layer and giving a higher weight to our main task.
While this is in fact a simpler model than the deep
multi-task learning model above, this model has,
to the best of our knowledge, not been suggested
before, and in many ways, it is surprising that it
works.

Baselines Ambati et al. (2016) obtained 78.87
percent accuracy on the Wikipedia dataset. They
use features extracted from a Combinatory Cate-
gorical Grammar (CCG) parser. We also compare
our results to Vajjala and Meurers (2014), who
use their WeeBit model in order to predict read-
ability at the sentence level. In addition, for the
Wikipedia dataset, we include the best results from
Singh et al. (2016) as it is the study most related
to ours.

3 Results

Our results are shown in Table 2.
For the Wikipedia corpus, our best multi-task

learning system shows an improvement in accu-
racy over previous work by about 8%. A big part
of the improvement can be attributed to using a
deep learning architecture. Single-task MLPs do
about 8% better than logistic regression on this
dataset, in absolute numbers. Multi-task learning
buys us another .5%, absolute. For the advanced-
elementary sentence pairs in the OneStopEnglish
corpus, a slightly larger improvement is seen from
multi-task learning to single-task. For all multi-
task systems, there is an improvement over the
corresponding single-task system with at least two
of the gaze inputs. The best result was achieved
using Multi-Task MLP. Inclusion of gaze data im-
proved our results about 2.6 % over the best single-
task result.

We performed various paired T tests in order
to assess whether or not the improvements ob-
tained using multi-task learning was significant.
We compared the results of each MTL model to
its corresponding STL model. We report p values
using asterisks in Table 2. P values smaller than
0.001 are described using ***, ** indicate p val-
ues ranging from 0.001 to 0.01 and p values from
0.01 to 0.5 are shown with *. No asterisk indicates
that there was no statistically significant changes.

SYSTEMS WIKIPEDIA OSE (A-E) OSE (I-E)

PREVIOUS

Singh 75.21 - -
Ambati 78.87 - -
Vajjala 66.00 61.0 51.0

SINGLE-TASK

LR 78.17 67.23 58.72
MLP 85.95 67.53 59.30

MULTI-TASK LR

1st pass 78.20 67.88 60.71***
Regression 78.15 68.10* 59.68
Total fix 78.60* 68.08** 60.80**

MULTI-TASK MLP

1st pass 86.13 68.08 *** 61.70 ***
Regression 86.11 67.66 61.91***
Total fix 86.45*** 68.51 *** 61.27 ***

Table 2: Accuracy for all models. Most results
obtained using MTL-MLP yield statistically sig-
nificant improvements of STL-MLP (p < 0.001).

4 Discussion

Performance of features The features extracted
using the probabilistic top down parser have previ-
ously been used in order to predict word by word
reading times (Singh et al., 2016; Demberg and
Keller, 2008), but have not been thoroughly ex-
plored in the task of readability prediction. Here,
we used surprisal and entropy, along with other
low-level features in order to predict the reading
level of single sentences. Using the STL-MLP, we
predicted readability using feature groups, sepa-
rated by syntactic features and low level features.
Our syntactic features include features 1-18, while
our low level features are 19-33 in table 1. We
found that low level features are more predictive
for our datasets than syntactic features, however,
it is a combination of both that yields the best re-
sults. These results can be seen in table 3.

Feature Set Wikipedia OSE I-E OSE A-E

Syntactic Features 60.35 54.90 59.79
Low level Features 78.15 57.30 65.17
All Features 85.95 59.30 67.53

Table 3: Accuracy when predicting readability us-
ing features in groups. The results show, that a
combination of both sets of features provide the
best result.

In addition, we performed a single feature eval-
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uation, where each feature was used to predict
readability using the STL-MLP model. The 10
most predictive features for the Wikipedia dataset
are presented in table 4. The results reaffirm the
previous finding that although syntactic features
are predictive of readability, low level features re-
main the most predictive.

Wikipedia

Feature Accuracy

Ratio Verbs 67.90
Ratio Adjectives 66.46
Sentence Length 61.96
Ratio Adverbs 57.53
Mean Age of Acquisition 57.34
Average Word Length 56.17
Ambiguity – sent SD 55.66
Lexical suprisal – sent SD 55.37
Num of verb phrases 55.13
Ambiguity Sent Mean 55.00

Table 4: Accuracy on Wikipedia dataset when pre-
dicting readability using single features.

Effects of using gaze data The main objective
of this study was to explore how the use of eye
tracking data improved our readability prediction
model. Using the Dundee eye tracking corpus, we
were able to learn models for predicting an aver-
age first pass duration, total regression to dura-
tion, and total fixation duration for a given sen-
tence in our readability datasets. Using hard pa-
rameter sharing, we learned to predict a readabil-
ity label and gaze simultaneously. This method
allows us to exploit the information contained in
one task to better generalize another. Our results
demonstrate that gaze data does improve readabil-
ity models significantly.

Learning curves In figure 1 we compare the
learning curves for the best MTL and STL mod-
els for each dataset. We show the accuracy on
both validation sets using varying amounts of train
samples. The first train sample used consisted of
100 sentences. At this small sample size, the ef-
fect of the gaze data is more clear. For example,
for the Wikipedia dataset the validation accuracy
using 100 samples is about 74.5 % for the MTL
MLP system, while for the STL MLP system, the
accuracy is about 10 % lower. At about 20,000
samples the difference in performance between the
two systems begins to level off, however, MTL re-
mains slightly higher the entire time. This is in
line with Caruana (1997), who mentions that the

improvements using MTL are typically stronger
when using smaller sample sizes.

Figure 1: Learning curves for the OSE A-E and
Wikipedia datasets varying the train sample size.
The first sample size consisted of 100 sentences.

Similar results can be seen for the Advanced-
Elementary sentence pairs. We begin training our
model on about 100 samples and incrementally in-
creased the train set size. Neither of the models
achieve high accuracy, however, the MTL system
improves the result about 5 %, and as the training
set size increases, this trend persists. Similar re-
sults are observed for the Intermediate-Advanced
pairs.

5 Conclusion

In this study, we have presented the first applica-
tion of multi-task learning to predicting sentence-
level readability. We presented two models: a
deep learning model and a linear model. The lin-
ear multi-task learning model is novel and yields
statistically significant results, however, the deep
learning model performs better. We present a
learning curve analysis showing that multi-task
learning is more effective with small sample sizes,
however, the improvements are robust across sam-
ple sizes.
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Abstract

NLP applications for learners often rely
on annotated learner corpora. Thereby, it
is important that the annotations are both
meaningful for the task, and consistent and
reliable. We present a new longitudinal
L1 learner corpus for German (handwrit-
ten texts collected in grade 2–4), which is
transcribed and annotated with a target hy-
pothesis that strictly only corrects ortho-
graphic errors, and is thereby tailored to
research and tool development for ortho-
graphic issues in primary school. While
for most corpora, transcription and tar-
get hypothesis are not evaluated, we con-
ducted a detailed inter-annotator agree-
ment study for both tasks. Although we
achieved high agreement, our discussion
of cases of disagreement shows that even
with detailed guidelines, annotators differ
here and there for different reasons, which
should also be considered when work-
ing with transcriptions and target hypothe-
ses of other corpora, especially if no ex-
plicit guidelines for their construction are
known.

1 Introduction

Learner corpora cannot only be used to study the
language of learners but they also have a strong
connection to the development of educational ap-
plications. NLP tools can be trained on learner
corpora to be later used in ICALL (intelligent
computer-assisted language learning) systems, to
provide immediate analyses of errors occurring in
the input text (Meurers, 2015; for some examples,
see Barbagli et al., 2016). To enable high-quality
analyses in such a scenario, it is crucial that the un-
derlying training data have been annotated mean-

ingfully and consistently. The identification and
annotation of errors necessarily depends on a tar-
get hypothesis, i.e. the assumed correct form of
the learner’s utterance, be that stated implicitly
or explicitly (Reznicek et al., 2013). The correct
form itself can already serve as error annotation.
This has the advantage that errors do not have to
be cast into pre-defined categories, which might
not capture all cases (Fitzpatrick and Seegmiller,
2004). However, as Reznicek et al. (2013) demon-
strate, there is a possibly infinite number of tar-
get hypotheses for a single utterance, depending
on the linguistic level that is corrected (orthog-
raphy, grammar, lexis, etc.). They argue further
that the usefulness of a target hypothesis depends
on the research purpose, and that its construction
must be comprehensible and transparent to other
researchers.

In this paper, we present a new corpus resource
which is tailored to research on orthography in
texts produced by primary school children in Ger-
many. It features a target hypothesis that strictly
only corrects orthographic errors in order to keep
them apart from other kinds of errors concerning
grammar or semantics. Consider, for instance, the
sentence in example (1):1

(1) Dodo *est das Eis
Dodo eats the ice cream

The correct grammatical form of
*<est>2 in this context would be <isst>
(3RD.PERS.SG.PRES. of ‘(to) eat’). However,
there are two kinds of mistakes in the form
*<est>: Firstly, the <s> has to be doubled,
which is unambiguously an error on the level
of orthography (see e.g. Eisenberg (2013) on

1The English translation in italics represents the intended
meaning.

2Angle brackets mark graphemes, the asterisk indicates
an erroneous form.
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German consonant doubling). Correcting this
error results in the form <esst>, which is the
2ND.PERS.PL.PRES. form of ‘(to) eat’, though.
Now, the level of the second error, which is the
use of <e> for <i>, is ambiguous. We see three
possible analyses: (i) Given that <esst> does
exist in the word’s inflection paradigm, it is clear
that only the grammatical context (agreement with
Dodo, a proper name) reveals it as an error. One
could hence say that a wrong inflectional form
was chosen, which is not an issue of orthography
but of grammar. (ii) Similarly, one could say that
the form was inflected like a weak verb (in which
case esst would indeed be 3RD.PERS.SG.PRES),
which is also a matter of grammar rather than
orthography. (iii) Finally, it is possible that the
learner could not discriminate the phonemes /I/
and /E/. It is known that the discrimination and
representation of lax vowels poses a challenge to
primary school children, which is dealt with on
the level of orthographic competence (May, 2013;
Thelen, 2010). Thus, even for this word alone two
different target hypotheses can be constructed:
one which deals with orthography errors only
(yielding <esst> as an acceptable word form of
the intended lemma), and another one which deals
with errors (possibly) attributable to grammar
(yielding <isst>).

With our work currently focusing on orthogra-
phy, we annotated our corpus with the first type
of target hypothesis, i.e. the one that strictly only
corrects orthographic errors. Keeping orthography
errors apart from grammatical errors is important
for two reasons: Firstly, the empirical questions
we are pursuing concern the relationship of word
properties and spelling errors. Mixing up gram-
matical and orthographic corrections would not
allow to make statements about a child’s ortho-
graphic competence only. Especially if we look
at surface properties of the original and the target
word like character n-gram frequencies, it is im-
portant to base the analysis on the word that the
child in fact targeted, even if it is ungrammatical
in this context. To analyze the interplay of gram-
matical and orthographic errors is then a possible
second step.

Secondly, with regard to tool building, there are
not many applications dealing with primary school
children’s orthography yet (but see Thelen, 2010;
Berkling and Pflaumer, 2014; Berkling and Laval-
ley, 2015). Stüker et al. (2011) have shown, for

instance, that for German, the generic state-of-
the-art spellchecker Hunspell does not work well
on spellings produced by primary school children.
They proposed a phonetic-based approach com-
bined with a language model. On their dataset
of children’s texts, this approach turned out more
successful than Hunspell.

Robust spelling error detection and correction
is a prerequisite for fully automatic applications
dealing with spelling errors, such as the spelling
error analysis tool we are currently developing
(Laarmann-Quante, to appear). Such applications
are needed to assist children individually in the ac-
quisition of spelling competence. Our corpus shall
provide a basis for further developments in this di-
rection.

Both for the study of learner errors as well as
for tool building, it is important that one can rely
on the corpus annotations. Target hypotheses play
a key role here. Rosen et al. (2014) (see also
its discussion in Meurers, 2015) have shown that
differing target hypotheses among annotators ac-
count for a considerable amount of disagreement
in the choice of error tags. They conclude, in line
with Reznicek et al. (2013), that an explicit tar-
get hypothesis is required for annotating learner
errors. While target hypotheses in general are said
to be hard to agree on (Lüdeling, 2008; Fitzpatrick
and Seegmiller, 2004), minimal target hypothe-
ses, i.e. minimal form changes that are required to
make an utterance grammatical (Meurers, 2015),
are generally presented as less problematic for
inter-annotator agreement (see e.g. Reznicek et al.
(2012) on the minimal target hypothesis in the
Falko corpus). However, we are not aware of a
study which systematically evaluates the agree-
ment on such a minimal target hypothesis in a cor-
pus. As example (1) above has shown, even form-
driven distinctions include ambiguities which can
lead to inconsistencies in the annotated data.

We therefore conducted a detailed inter-
annotator agreement study on a subset of our cor-
pus to evaluate the expected reliability of the tar-
get hypothesis annotations, and to raise awareness
for potential inconsistencies, which even detailed
annotation guidelines cannot fully cover. More-
over, even though many learner corpora are built
from hand-written source texts, especially L1 cor-
pora, errors or ambiguities that arise during the
transcription are hardly ever addressed (but see
Abel et al.,2014; Glaznieks et al., 2014). To deal
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with this issue, we also measured agreement on
the transcription of our hand-written source data.

The remainder of the paper is structured as fol-
lows: Section 2 gives an overview of related work,
Section 3 introduces our corpus, Section 4 ex-
plains our guidelines for the transcription and the
target hypothesis, Section 5 presents our study on
inter-annotator agreement and Section 6 concludes
the paper with a summary and outlook. A full
example of a transcribed and normalized text, in-
cluding the scanned handwritten text, can be found
in the Appendix.

2 Related Work

This paper deals with the orthographic annotation
of a new corpus resource with two main novelties:
Firstly, our target hypothesis (which we call “nor-
malization”) strictly only corrects orthographic er-
rors, and secondly, we present a detailed analysis
of the inter-annotator agreement for the target hy-
pothesis. We review shortly how these two aspects
have been handled by other corpora. While there
is an abundant number of L2 learner corpora (see
e.g. the ‘Learner Corpora around the World’ list
maintained by the Centre for English Corpus Lin-
guistics3), L1 written corpora are still relatively
rare (see Abel et al. (2014) and Barbagli et al.
(2016) for overviews). We restrict our discussion
to an exemplary selection of corpora from both ar-
eas.

Not all L1 corpora present an explicit target hy-
pothesis (e.g. Parr, 2010) but if they do, they typ-
ically only annotate one target hypothesis which
corrects orthographic as well as grammatical and
sometimes also lexical errors (Barbagli et al.,
2016; Berkling et al., 2014; Berkling, 2016). In
the corpora described in Berkling et al. (2014) and
Berkling (2016), grammatical errors/corrections
get an extra mark to be excluded from ortho-
graphic analyses but in the target hypothesis,
only the grammatically correct form is given and
spelling errors within the erroneous form are not
considered. For instance, *<Dretet> is corrected
to <tritt> ‘(he/she) kicks’ while an orthograph-
ically correct (but grammatically incorrect form)
would be <tretet>. Furthermore, one cannot
see how ambiguous cases are handled, e.g. *<er
schlaft> is treated as an orthography error and cor-

3https://uclouvain.be/en/
research-institutes/ilc/cecl/
learner-corpora-around-the-world.html,
last access on July 14, 2017

rected to <er schläft> ‘he sleeps’, although the
same ambiguity applies as in example (1) above.4

Only in the Osnabrücker Bildergeschichtenkor-
pus (Thelen, 2000, 2010), words which contain
both grammatical and orthographic errors are as-
signed two target hypotheses; e.g. *<ien> is as-
signed both <ihn> (orthographically correct) and
<ihm> ‘him’ (grammatically correct). However,
decisions about grammatical and orthographic er-
rors are not consistent. For instance, at one point
(er/sie) *<seht> (instead of <sieht> ‘(he/she)
sees’) is marked as a grammatical error, at another
point as an orthographic one.

Two German L2 learner corpora are annotated
with more than one target hypothesis: Falko
(Reznicek et al., 2012) and EAGLE (Boyd, 2010).
Falko treats orthographic and grammatical errors
together at the first layer, though, and seman-
tic/stylistic errors on the second. EAGLE provides
a separate layer for spelling errors but only those
resulting in non-words are considered.

All of the corpora have in common that there
was no evaluation of the annotated target hypoth-
esis and we are only aware of one corpus in which
the transcription was evaluated (Abel et al., 2014;
Glaznieks et al., 2014). The authors also report an
evaluation of the orthographic error annotation but
leave open if the evaluation only concerns the er-
ror categories themselves, or if the corrected forms
have been evaluated as well. They achieved 80%
accuracy, but state that they are not aware of num-
bers to compare with.

3 The Corpus

In her dissertation, Frieg (2014) evaluated the pro-
motion of language skills with the help of “gener-
ative text production” in German primary school
classes. To this end, she collected freely writ-
ten texts from 15 classes of 7 different schools
in North-Rhine Westphalia/Germany over a time
period of over 2.5 years between 2010 and 2012.
Children from grade 2–4, many of them with a mi-
gration background, produced texts at ten differ-
ent points in time. Every two to four months, the
children were asked to write down a picture story
shown in a sequence of six pictures in their class-
rooms.5 All the stories were taken from Schroff
(2000) and deal with two children and their dog,

4The examples <Dretet> and <schlaft> are both taken
from the corpus described in Berkling (2016).

5A sample text is shown in Appendix A.
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who experience different adventures. Over the
whole time course, eight different stories were
used. For more information on the data collection,
see Frieg (2014).

Our corpus is based on scans of the origi-
nal handwritten texts collected in that research
project. Basically, we used all the texts for
which parental consent was given and which con-
tained at least 15 readable words.6 Moreover, we
only included texts for which the entire scan was
readable. This means that scans of bad quality
or in which some lines were cropped were ex-
cluded altogether. Overall, our corpus comprises
1,845 texts7 written by 251 children (47.0% fe-
male, 52.2% male, 0.8% unknown). On average,
there are 7.4 texts (SD: 2.1) per child, with an av-
erage length 109.3 words (SD: 49.9). From the
1,741 texts that have been transcribed and normal-
ized (i.e. assigned a target form) to date, 17.76%
of the words contain one or more spelling er-
rors (counted as mismatches of original and target
word, see Section 4).

Each text is annotated with the following meta-
data: the child’s ID, the grade in which the text
was written, the ID of the class and school of the
child, the topic of the picture story, the child’s
gender and age, language(s) spoken by the child,
and whether they obtained additional tuition in
German as a second language or in their mother
tongue.

4 Transcription and Normalization
Guidelines

In this section, we present the most important
aspects of the guidelines we developed for tran-
scribing the handwritten texts and for providing
an orthographic target hypothesis, called “normal-
ization”. The full guidelines are published in
Laarmann-Quante et al. (2017).

4.1 Transcription

The general rule for transcribing the texts to type-
writing is to stick as closely as possible to the orig-
inal input and not correct any spelling errors or
word separations. In certain cases, the transcriber

6This means in particular that for at least 15 words, one
had to be able to identify a target word. Some texts were
shorter than 15 words altogether and some texts consisted
(primarily) of non-identifiable letter strings.

7The final number of texts will probably be a little lower
because we are still in the process of transcribing the texts
and during this process some scans turn out to be unusable.

is asked to decide in favor of the child, i.e. give the
orthographically correct option a higher weight: if
it is not possible to clearly decide which charac-
ter(s) a stroke represents, whether a letter is up-
percase or lowercase or if there is a space between
words or not. Example (2) gives an example of
such ambiguous cases. In the first word, the first
letter could be a<d> or a capitalized<D>. Since
the word refers to a proper name, the transcription
with the uppercase letter <Dodo> is to be cho-
sen. The second word could be read as <flpster>
(a non-word) or as <fenster> ‘window’. In this
case, the transcriber should decide for the existing
word.

(2)

However, if a character is completely illegi-
ble or non-existent, it is represented by an as-
terisk (*), see example (3), which is transcribed
as <ire Fre*ndin Lars> (with the target hypoth-
esis of <Fre*ndin> being <Freundin> ‘(female)
friend’).

(3)

As we are only interested in the actual text the
child wrote, graphical illustrations, comments of
the teacher, blank lines and meta data like date in-
formation, etc. are ignored. Also, words crossed
out by the child are not transcribed. If the child
indicated a permutation of words or an insertion
of one or more words, the words are inserted in
the intended place. Besides the pure transcription
of perceived characters, transcribers are asked to
maintain information about the formatting of the
text by marking the end of each line with a cir-
cumflex (ˆ). At a later stage, this may help to ex-
plain certain word separations. The end of head-
lines is marked as well, to facilitate a subsequent
grammatical analysis, because headlines often are
incomplete sentences.

4.2 Normalization

The aim of the normalization is to provide an
orthographic target hypothesis, i.e. the orthogra-
phically correct version, for each token. To decide
whether a word form is orthographically correct,
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the Duden8 is used as a reference. If the anno-
tator cannot identify at all which word the child
probably meant, the child’s word is copied and a
question mark (‘?’) is placed in front of it to mark
it as a non-identifiable target.

It is important that only errors are corrected
which can be clearly attributed to orthography and
not to other phenomena such as sentence bound-
aries, inflection, agreement, syntax, semantics,
etc. Example (4) shows an example sentence
which contains both orthographic and grammati-
cal errors.

(4) Dodo bellt ein Vogel an Lea ist auf dem weg
zu Schuhle auf einmal sid sie ire Fre*ndin
Lars
Dodo barks at a bird Lea is on the way to
school suddenly she sees her friend Lars

Following our guidelines, the target hypothesis
is (5a) and not (5b):

(5) a. Dodo bellt ein Vogel an Lea ist auf dem
Weg zu Schule auf einmal sieht sie ihre
Freundin Lars

b. Dodo bellt einen Vogel an . Lea ist auf
dem Weg zur Schule . Auf einmal sieht
sie ihren Freund Lars

Any error which could be a purely grammati-
cal one, like missing agreement (<bellt ein Vo-
gel an>), false prepositions (<zu Schule>), is not
corrected.9 If a word contains both grammati-
cal and orthographic errors, the orthographic er-
rors are corrected but the grammatical errors are
not. For instance, in *<Lea ging früh in die
Schuhlen> ‘Lea went to schools early’ the super-
fluous <h> is corrected (<Schulen>) but not the
inflection of Schulen (which should be Schule).10

Deciding in favor of the child is a principle that
is also pursued in the normalization. For instance,
letter case and word boundaries are only corrected

8www.duden.de
9The only exception is the confusion of <das> (arti-

cle/pronoun) and <dass> (conjunction) which is always cor-
rected, because it is an error commonly counted in ortho-
graphic annotation schemes (Fay, 2010; Thomé and Thomé,
2004).

10Real-word errors can only be detected by considering the
context. In such cases, the target word has to belong to the
(probably) intended lemma. For instance, although <weg>
is an existing word (‘away’), the context could make clear
that ‘Weg’ (‘way’) was meant, hence the real-word error is
corrected.

if there is absolutely no possibility that the child’s
version is correct. For instance, if the child wrote
words separately that could in fact be written sep-
arately in a slightly modified context (as with verb
particles for instance), it is regarded as a syntacti-
cal error and thus not corrected here. For example,
<Ihr Hund wollte mit kommen> ‘Her dog wanted
to come with her’ is not corrected to the more
common form <mitkommen> because it would
be correct if there were some words in between
(e.g.<mit in die Schule kommen> ‘come with her
to school’. The same holds true for wrong letter
case, e.g. if the first word after a sentence bound-
ary mark was not capitalized: As many children
only poorly mark sentence boundaries, one could
argue that it was the wrong choice of punctuation
mark instead (e.g. a period instead of a comma).
Letter case is only corrected if the child wrote
nouns and proper names in lowercase, or if it cap-
italized a word where one cannot at all argue for a
(missing) sentence boundary.

Particular attention must be paid in cases of
noun and verb inflection. Generally, a target word
has to be an existing German word form. How-
ever, if a child e.g. mistakenly inflects a verb as
a weak verb instead of a strong verb (like tref-
fen → *trefften instead of trafen, which is anal-
ogous to meet → *meeted instead of met), this
is considered a grammatical (morphological) er-
ror and, hence, is not corrected. Only the or-
thographic errors in such forms are corrected to
an extent that a plausible word form is obtained
which could be the result of an (incorrect) inflec-
tion of this word or derivation from a related word
form. In some cases, the resulting word form does
exist in the inflection paradigm (<esst>/<lauft>
for <isst>/<läuft> is 2ND.PERS.PL.PRES. of
‘eat’/‘run’) so the child may have picked the
wrong form. In other cases, the word form does
not exist at all (e.g. *<Wänder> for <Wände>
‘walls’, *<springte> for <sprang> ‘jumped’).
Here, the annotator is asked to mark the target hy-
pothesis as non-existing by placing a tilde (∼) in
front of the word (e.g.*schpringte→ ∼springte).

5 Inter-Annotator Agreement

To get a sense of the difficulty of the task, the
effectiveness of the guidelines as well as the ex-
pected consistency of the transcription and nor-
malization in the corpus, we conducted an inter-
annotator agreement study.
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Transcription Normalization

Text ID #char perc κ #tok perc

025-201112-I-Schule 971 98.04 .99 179 94.41
170-201112-IV-Weg 161 97.52 .99 31 83.87
207-200910-II-Weg 414 75.12 .86 82 71.95
324-201011-II-Jenga 314 95.54 .97 59 84.75
331-201011-III-Seilbahn 411 94.89 .97 69 91.30
416-201112-II-Fundbuero 891 98.54 .99 175 96.00
427-200910-I-Eis 248 96.37 .98 51 92.16
436-200910-I-Staubsauger 369 99.19 1.00 64 98.44
486-201011-I-Frosch 536 98.13 .99 99 86.87
604-201011-IV-Weg 712 98.03 .99 135 93.33

all texts taken together 5027 95.82 .98 944 90.78

Table 1: Number of characters (#char), percent agreement (perc) and Fleiss’ κ for transcription, and
numbers of tokens (#tok) and percent agreement for normalization among all four annotators for each
text.

We pseudo-randomly picked ten texts from our
corpus with the condition that the frequency distri-
bution of the different topics was reflected in the
selection. Four trained annotators then indepen-
dently transcribed and normalized the ten texts.
Transcription and normalization were carried out
in a single step, i.e. a word was transcribed and
then immediately normalized. The advantage is
that firstly, as shown in example (2), normalization
does to some extent influence the transcription, so
carrying out the two steps together should lead to
more consistent transcriptions and normalizations.
Secondly, it turned out to be more time-efficient to
carry out both steps at once. The transcription and
normalization were written in a csv-file with one
token per line. Clear technical mistakes were au-
tomatically corrected so that, for instance, whites-
pace that was accidentally added to a token would
not be taken into account when computing agree-
ment.

5.1 Agreement on Transcription

To evaluate agreement on the transcription, we
chose a character-based procedure. We interpreted
the transcription as an annotation task in which a
region of pixels in the scan has to be assigned a
tag. The tagset in this case consists of the letters of
the alphabet, numbers and punctuation marks. In
addition to raw percent agreement, we also com-
puted chance-corrected agreement according to
Cohen’s κ (for pairwise comparisons) and Fleiss’
κ (for comparisons of more than two annotators).

The transcription of each annotator was ex-
tracted from the csv-file and transformed into one
long string with token boundaries indicated by
spaces. The different transcriptions were then au-
tomatically aligned.11 If one annotator transcribed
a character (or a whitespace, i.e. a token boundary)
where others did not, the missing characters were
indicated by a ‘#’ in the alignment. An example
is given in (6), showing the scan and the transcrip-
tions by the four annotators A1–A4.

(6)
A1: mit#der Seil bahn und sie hate

A2: mit#der seil bahn und sie hate

A3: mit#der Seil#bahn und sie hate

A4: mit der Seil bahn und sie hate

Table 1 shows the agreement results for each
text.12 Transcription agreement is generally very
high (mostly > 94%, κ > .97). One can also ob-
serve a quite high variance with agreement rang-

11Only in the texts 207-200910-II-Weg and 331-201011-
III-Seilbahn, parts of the alignments had to be corrected man-
ually because in the former, one annotator accidentally left
out two lines, and in the second, one word led to so different
transcriptions (see example (7)) that the automatic alignment
did not produce the optimal result.

12#char refers to the maximum number of characters
that were transcribed, i.e. if one transcriber transcribed a
character where the others did not (= empty string), this
would still count in the maximum number of characters.
Agreement was computed with the software tool R and
the package “irr”, https://cran.r-project.org/
web/packages/irr/.
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ing from 94.89–99.19%, indicating that there are
simple, clearly-written texts as well as texts that
are rather difficult to decipher. Text 207-200910-
II-Weg sticks out with a much lower agreement
result than the others. This is due to one annotator
accidentally skipping two lines in the scan.

The agreement figures in Table 1 represent
agreement between all four annotators, i.e. one an-
notator with a deviant transcription already results
in considerably lower agreement scores. Table 2
shows the agreement between pairs, triples, and
all four annotators. One can see that agreement is
highest among annotators A1, A2 and A4: both as
pairs and triples, they achieved κ = .99 (Cohen’s
κ in the case of pairs of annotators, Fleiss’ κ with
triples and all four annotators). These annotators
had most experience with the texts and the guide-
lines: at the time of the agreement study, A1 and
A2 had been working in the project for half a year,
A3 for one month and A4 for more than 2 years.
All in all, one can conclude that the transcriptions
are very consistent.

Transcription Norm.
Annotators perc κ perc

A1+A2 99.26 .99 97.03
A1+A3 96.36 .96 93.43
A1+A4 99.30 .99 97.35
A2+A3 96.44 .96 93.01
A2+A4 99.28 .99 96.29
A3+A4 96.46 .96 92.80

A1+A2+A3 96.06 .97 92.06
A1+A2+A4 98.93 .99 95.34
A1+A3+A4 96.06 .97 91.84
A2+A3+A4 96.12 .97 91.31

A1+A2+A3+A4 95.82 .98 90.78

Table 2: Agreement results for pairs, triples, and
all four annotators for transcription and normaliza-
tion

5.2 Analysis of Disagreements in the
Transcription

After the agreement study, the four annotators
came up with a gold standard and categorized each
disagreement. They identified seven categories,
see Table 3.13

13Percent figures in Tables 3 and 4 do not add up to 100%
due to rounding errors.

Category Freq Perc

careless mistake (CM) 112 53%
consequential error (CE) 28 13%
upper-/lowercase (UL) 27 13%
ambiguous case (A) 19 9%
word boundary (WB) 11 5%
guidelines not obeyed (G) 7 3%
influence of normalization (N) 4 2%
A or CM 2 1%

total 210 100%

Table 3: Sources of disagreements in the transcrip-
tion

Careless mistakes (CM) have the largest share
with 112 cases (53%) but 92 of them go back to the
two missed lines by one of the annotators. Eight of
the other 20 are due to forgotten linebreak marks,
so only 12 actually refer to forgotten or confused
characters. Whenever a disagreement automati-
cally led to another disagreement, this is counted
as a consequential error (CE), e.g. if a linebreak
mark was forgotten, consequentially the whites-
pace following this linebreak mark was also miss-
ing. Upper-/lowercase (UL) and word boundaries
(WB) were often ambiguous (see example (6)).
While most of them could be resolved by major-
ity vote or a second close look, three cases were
particularly ambiguous and could only be decided
after long discussion.

Eight of the other 19 ambiguous cases (A) re-
fer to punctuation marks (period, comma or just
a spot on the paper?), the others to characters
(e.g. <v>/<w>, <u>/<a>). The hardest case
is shown in example (7), presenting the scan and
the four transcriptions (it was agreed that the gold
transcription should be <Kn**lt>, and the target
hypothesis, judging from the context, should be
<knallt> ‘bangs’):

(7)
Knalt, Kabolt, Ka*dt, Knalt

The seven cases of disagreement with regard to
the guidelines (G) refer to highly specific cases
where the numbers of the pictures or an ending
formula like “The End” were not transcribed al-
though it was asked for in the guidelines.

Finally, in four cases the transcription was influ-
enced by the normalization (N): an erronous word
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was transcribed without the errors, according to
the target hypothesis. It is often claimed that tran-
scribing texts is difficult because one is tempted
to correct errors when transcribing. Our figures
do not support this claim, at least if one had some
training (the overlooking of errors only happened
to the annotator with the least training). In one
case, the annotator had a different normalization
in mind which influenced the transcription, see ex-
ample (8):

(8)

Three annotators transcribed <Eis getlt> and
normalized it as <Eis geteilt> ‘shared the ice
cream’, one annotator transcribed<Eis gellt> and
normalized it as <Eisgeld> ‘ice cream money’.

5.3 Agreement on Normalization

Agreement on normalization, i.e. the target hy-
pothesis, was evaluated on a token basis. The nor-
malized forms were automatically aligned token-
wise, with a ‘#’ indicating a split/merge or miss-
ing token. Choosing a correct target form for
a transcribed word cannot be meaningfully inter-
preted as a categorization task, given that the the-
oretically possible number of targets is infinite.
Therefore, chance-corrected agreement could not
be computed, so we only report raw percent agree-
ment. Table 114 shows the agreement between all
four annotators for each text. One can see that
overall, agreement is lower than for the transcrip-
tions and that there is considerably more varia-
tion across the texts (83.87–98.44%, without the
text with the two missed lines). The pairwise and
three-way comparisons of annotators in Table 2
also show that agreement is highest among anno-
tators A1, A2 and A4.

Since the annotators based the target hypothesis
on their own transcriptions, missing tokens in the
transcription automatically led to missing tokens
in the normalization. Also, different transcriptions
could lead to different normalizations. Therefore,
we additionally computed normalization agree-
ment of all four annotators for words with uni-

14As with characters (see footnote 12), #tok refers to the
maximum number of tokens in the normalization. According
to the gold standard, there were 939 target tokens in total,
198 (21.1%) of which contained orthographic errors, i.e. the
transcribed and normalized token differed.

form transcriptions. Tokens that got the same tran-
scription by all annotators (849 instances) showed
a percent agreement of 96.70% (as compared to
tokens that were transcribed by all annotators but
possibly in different ways (912), with an agree-
ment of 93.97%).

Normalization is clearly more demanding than
transcription but the results seem satisfying.

5.4 Analysis of Disagreements in
Normalization

Again, after the agreement study, a gold standard
was constructed by the annotators, and seven cat-
egories were identified to classify the disagree-
ments, see Table 4.

Category Freq Perc

token not transcribed (NT) 28 33%
token transcr. differently (DT) 16 19%
other word was meant (O) 12 14%
normalization wrong (W) 9 11%
mistake was overlooked (MO) 8 9%
unintuitive form req. (UF) 6 7%
word boundaries (WB) 3 4%
DT and UF 3 4%

total 85 100%

Table 4: Sources of disagreements in the target hy-
pothesis

As discussed above, missing (NT) or differ-
ent (DT) transcriptions have a big influence on
the agreement on the target hypothesis (44 cases,
i.e. 52% in total). Twelve tokens were normal-
ized differently (DT) in that target words with dif-
ferent lemmas were chosen (e.g. <noch> ‘still’,
vs. <nach> (preposition ‘to’)). Nine times a nor-
malization was wrong (W): either a particular rule
in our guidelines was not followed (e.g. *<hilt>
was normalized to <hält> ‘holds’ instead of
<hielt> ‘held’, which is phonetically more simi-
lar), or the target form was not standard German
(e.g. <ist Zuhause> instead of <ist zuhause>
‘is at home’). In eight cases, a spelling mistake
was overlooked in the normalization (MO), and
in six cases our guidelines were not followed in
that they required to choose a form which was
marked in some way or not the most intuitive
one (UF): On the one hand, this concerns marked
spellings that only recently have been adapted
by the Duden (e.g. non-standard <kuckt> for
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<guckt> ‘he/she looks’). On the other hand,
our requirement not to correct grammatical er-
rors and certain capitalizations was not obeyed
in five cases (e.g. <wegfahrt> was changed to
<wegfährt> ‘drive away’, an agreement error);
three of them were also mixed with a different
transcription (DT and UF). Finally, three times
word boundaries could be interpreted in different
ways (WB), e.g. Dann ist alles auf Mickel drauf
gefallen vs. draufgefallen ‘Then everything fell
down on Mickel’.

6 Conclusion and Future Work

In this paper, we propose a way of annotating or-
thographic target hypotheses in a new longitudinal
L1 learner corpus of German with freely written
texts from children of grades 2–4.

By annotating the corpus with a target hypothe-
sis that strictly only corrects orthographic errors, it
is tailored to research and tool development for or-
thographic issues in primary school. Having a tar-
get hypothesis for learner data is important in sev-
eral ways: Firstly, it makes explicit what the anno-
tator thought the child wanted to write. Secondly,
it can be used to analyze in which way an ob-
served spelling deviates from the correct spelling,
and, hence, what kind of error the child made.
Third, the standardized spelling can facilitate fur-
ther (semi-)automatic processing of the texts.

Given the lack of evaluation of transcriptions
and target hypotheses in existing corpora, we con-
ducted a detailed inter-annotator agreement study
on both tasks and discussed the sources of incon-
sistencies. Although agreement was very high and
should allow for robust analyses and tool develop-
ments based on our corpus, we showed that some
ambiguities always remain, even if the task only
concerns ‘minimal’ changes and detailed guide-
lines are provided. Young children’s handwriting
has been shown to be difficult to decipher, and
in some cases leading to different transcriptions.
Similarly for normalization, different sources for
disagreements or errors on the annotator’s side
were identified, which to some extent certainly
generalize to other corpora and should be kept in
mind.

When all texts are transcribed and normalized,
our corpus will be made available15. It can be used

15See https://www.linguistics.rub.
de/litkey/Scientific/Corpusanalysis/
Resources.html.

for theoretical research on spelling acquisition but
also in applied contexts, e.g. by teachers who want
to look up frequently misspelled words. It is also
intended for training, developing and evaluating
automatic spelling correction and spelling assess-
ment tools.

Our next step is to enrich the corpus with fur-
ther annotations regarding word properties and or-
thographic errors (Laarmann-Quante et al., 2016).
We also started to work on tools for automatic
spelling error analysis (Laarmann-Quante, 2016,
to appear). In the long term, we plan to consider
grammatical errors as well.
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A Full Example of Original Text, Transcription and Normalization

Original Text (Scan)

Figure 1: Example of an original text in the corpus
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Transcription and Normalization

CHILD TARGET

Dodo Dodo
und und
der der
Staubsauger Staubsauger
\h \h
Lars Lars
staubsaugte staubsaugte
. .
Dodo Dodo
schläfte ˜schläfte
, ,
ˆ
1 1
Auge Auge
war war
ofen offen
. .
Seine Seine
Knochen Knochen
lagen lagen
ˆ
unten unten
auf auf
den den
Tepich Teppich
, ,
und und
Lars Lars
hate hatte
das das
mit mit
den den
Staubsauger Staubsauger
ˆ
auf_gesaugt aufgesaugt
. .
Lars Lars
wolte wollte
den den
Stabsau-ˆgerbeutel Staubsaugerbeutel
ausleren ausleeren
. .
Nur Nur
Dodo Dodo
zite ˜ziehte
an an
Lars Lars
ˆ
Bein Bein
, ,
weil weil
er er
die die
Knochen Knochen
aufgesaugt aufgesaugt
hate hatte
. .
ˆ
Dodo Dodo
zite ˜ziehte
an an
den den
ˆ
Staubsaugerbeutel Staubsaugerbeutel
. .
Lars Lars

CHILD (cont.) TARGET (cont.)

fragte fragte
sich sich
warum warum
ˆ
Dodo Dodo
an an
den den
Staubsaugerbeutel Staubsaugerbeutel
zite ˜ziehte
? ?
ˆ
Dodo Dodo
zite ˜ziehte
mit mit
seinen seinen
Pfoten Pfoten
den den
ˆ
Stabsaugerbeutel Staubsaugerbeutel
und und
der der
Staubsaugerbeutel Staubsaugerbeutel
ˆ
viel fiel
aus aus
der der
Hand Hand
von von
Lars Lars
. .
Und Und
der der
ˆ
Staubsaugerbeutel Staubsaugerbeutel
ist ist
geplazt geplatzt
. .
ˆ
Dodo Dodo
hate hatte
zwar zwar
angst Angst
von von
den den
ˆ
Gereusch Geräusch
, ,
aber aber
den den
Knochen Knochen
hate hatte
er er
auch auch
. .
ˆ
Und Und
war war
glücklich glücklich
auser außer
Lars Lars
, ,
er er
war war
ˆ
wütend wütend
. .
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Abstract

We explore various supervised learning
strategies for automated scoring of content
knowledge for a large corpus of 130 dif-
ferent content-based questions spanning
four subject areas (Science, Math, English
Language Arts, and Social Studies) and
containing over 230,000 responses scored
by human raters. Based on our analy-
ses, we provide specific recommendations
for content scoring. These are based on
patterns observed across multiple ques-
tions and assessments and are, therefore,
likely to generalize to other scenarios and
prove useful to the community as auto-
mated content scoring becomes more pop-
ular in schools and classrooms.

1 Introduction

Automatic scoring of free-text content-based
questions is a challenging task. Although it may
appear similar to the task of automatically scoring
student responses for writing quality (Page, 1966;
Landauer et al., 2003; Attali and Burstein, 2006),
it has important differences. Scoring for content
deals with responses to open-ended questions de-
signed to test primarily what the student knows,
has learned, or can do in a specific subject area
such as Computer Science, Math, Biology, or Mu-
sic with fluency being secondary. It is not impor-
tant if the student makes some spelling mistakes
or grammatical errors as long as the desired spe-
cific information (e.g., scientific principles, trends
in a graph, or details from a reading passage) is
included in the response.

Assessing the content of student responses re-
quires a different set of features that pay atten-
tion to whether students are using the right con-
cepts, the right relationships between those con-

cepts, and whether they are providing the right
amount of detail. In addition, scoring for content
generally requires building separate scoring mod-
els for each question since each question usually
focuses on a specific set of concepts within a spe-
cific subject area. However, automated scoring for
writing quality can utilize “generic” scoring mod-
els that can be used to assess student responses in-
dependent of the question to which they were writ-
ten since the aspects of writing being measured are
topic-independent (Attali and Burstein, 2006).

In this paper, we focus on a content scoring
approach that learns a scoring model by extract-
ing a large number of sparse, binary features from
human-scored responses to a given question. The
model can then predict scores for previously un-
seen responses to the question. There are many
decisions that one needs to make for such an ap-
proach: what machine learning algorithm is likely
to give the best performance? Is it better to
use regression or classification? Is it worth al-
locating additional data and time for tuning the
hyper-parameters of the learning algorithm? For
many practical applications, the amount of human-
scored data available may not even be sufficient
for model training and evaluation let alone for
these types of meta-analyses.

We conduct analyses on a large corpus of real
student responses to identify patterns that are con-
sistent across multiple questions and contexts and
are, therefore, likely to generalize to other sce-
narios. Our corpus contains 130 different ques-
tions spanning four different subject areas and
more than 230,000 human-scored responses. To
our knowledge, this is the largest collection of re-
sponses ever used in a study on automated content
scoring. The large number of questions allows us
to test many of our hypotheses in a rigorous man-
ner and convert the answers into specific recom-
mendations for the community that we hope will
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be useful in guiding further development of super-
vised content scoring models.

2 Related Work

Content scoring is sometimes also referred to in
the literature as “short-answer” scoring. Although
it is true that many content-based questions tend
to be very specific and elicit responses that are rel-
atively short, this is not always the case. Previ-
ously published studies have considered responses
that span a range of lengths — from a few words
(Basu et al., 2013) to a few dozen words (Madnani
et al., 2013; Horbach et al., 2013) to a few hundred
words (Madnani et al., 2016). Given that the pri-
mary facet of interest is the content of the response
and not its length, we refer to the task as “content
scoring” in the rest of the paper.

Content scoring approaches fall into two gen-
eral categories: (a) reference-based where re-
sponses are scored on the basis of their simi-
larity to reference answers provided by the au-
thors of the question or selected from exist-
ing high-scoring responses (Alfonseca and Pérez,
2004; Nielsen et al., 2008; Meurers et al., 2011;
Sukkarieh et al., 2011; Horbach et al., 2013;
Pado and Kiefer, 2015). These studies gener-
ally use a small number of continuous-valued fea-
tures, often with a single model trained for mul-
tiple questions. (b) response-based which use a
large number of detailed features extracted from
the student responses themselves (e.g., word n-
grams, etc.) and human scores assigned to the
responses to learn a supervised machine-learning
model (Mohler et al., 2011; Dzikovska et al., 2013;
Ramachandran et al., 2015; Zesch et al., 2015; Zhu
et al., 2016). Response-based approaches gen-
erally require training a separate model for each
question.

The choice of whether the reference-based ap-
proach is better than the response-based approach
depends on the open-ended nature of the ques-
tion and whether there is a sufficient number
of human-scored responses available. Sakaguchi
et al. (2015) — who explored the combination of
the two approaches — observed that if sufficient
human-scored data is available, response-based
approaches often work better than reference-based
approaches. Since several of the questions in our
dataset are relatively open-ended and we have suf-
ficient scored data available for all of them, we fo-
cus on the response-based approach in this paper.

Our study is different from the work we have
discussed so far in that its goal is not simply to
obtain the best performance for a given question
or a set of questions. Instead, we focus on meta-
analyses of scoring performance as a function of
modeling strategies and data set characteristics.
Some previous studies have considered the choice
of learner in automated scoring for writing qual-
ity. Chen and He (2013) compared support vec-
tor classification, regression, and ranking for au-
tomatically scoring writing quality using a sin-
gle dataset. Chen et al. (2016) reported that us-
ing support vector regression with a radial kernel
produced better performance than a simple linear
model. In addition, several studies (Feng et al.,
2003; Haberman and Sinharay, 2010; Santos et al.,
2012) have consistently reported that use of prob-
abilistic classifiers such as cumulative logistic re-
gression might be more appropriate for the task
of automated scoring than linear regression since
such models incorporate the assumption that the
score is categorical in nature. All of these stud-
ies used a small number of continuous-valued fea-
tures.

More generally in the machine learning liter-
ature, papers have analyzed and compared the
performance of different learning algorithms on
standard machine learning datasets from the UCI
repository and/or synthetic datasets (Caruana and
Niculescu-Mizil, 2006; Matykiewicz and Pestian,
2012; Doan and Kalita, 2015). These studies
reported substantial variability in learner perfor-
mance across problems which suggests that the
learners that performed best for other applications
may not necessarily do so for our task.

The work that might be closest to ours is that
of Heilman and Madnani (2015) who explored the
impact of the amount of training data available
on content scoring performance across a range of
questions. However, they used a much smaller set
of 44 questions and did not investigate any ques-
tions about specific modeling strategies such as
the choice of learning algorithm or the impact of
hyper-parameter tuning.

2.1 Research Questions

We aim to answer the following specific questions
about supervised learning specifically in the con-
text of automated scoring of content:

1. What type of learner has the best perfor-
mance for response-based automated content
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Subject N Number of
Responses

Score
Range

Grade
Level Task Type Response

Lengths

Science 89 454–5824
0–4,
0–6,
1–5

6–10

Explanations and arguments em-
bedded in inquiry science units that
call for students to use evidence to
link ideas.

47–320
chars

English
Language
Arts

23 737–2685
0–2,
0–3,
0–4

7–10
Summarization, argument develop-
ment, and analysis of English read-
ing passages.

105–506
chars

Math 15 669–3265
0–2,
0–3,
0–4

7–9
Explanation of how mathematical
principles apply to given situations
involving linear equations.

40–150
chars

Social
Studies

3 3000–3100 0–3 9–12
Summarization of stories and pas-
sages focused on social issues.

150–180
chars

Table 1: A detailed breakdown of our corpus by subject. N: number of questions; Number of Responses:
minimum and maximum number of human-scored responses available for questions on this subject;
Score Range: ranges of possible scores that can be awarded to responses for questions on this subject
according to the human-authored scoring rubrics; Grade Level: the grades of students whose responses
were used for analysis; Response Lengths: minimum and maximum number of characters in responses
to questions on a given subject.

scoring? Do non-linear learners offer a sub-
stantial advantage over linear models? Do
margin-based methods such as support vec-
tor machines perform better than bagging en-
sembles like random forests?

2. How do probabilistic classifiers perform
compared to regressors when predicting real-
valued scores?

3. Do hyper-parameters matter? Is it worth
spending extra time and effort to tune the
hyper-parameters of any given learner over
simply using the default values provided by
the implementation being used?

3 Methodology

Before we provide more details of our corpus and
the specific learning strategies, we would like to
describe two factors that will be shared by all
strategies in order to perform a controlled compar-
ison: (a) the features and (b) the evaluation metric.

Features. Since the goal of this paper is to com-
pare modeling strategies, we need to use the same
fixed set of features for all strategies in order to ob-
tain a meaningful comparison. We use a set of fea-
tures that have been employed in many previously
published response-based approaches to building
content scoring models (Heilman and Madnani,
2015; Zesch et al., 2015; Sakaguchi et al., 2015;

Madnani et al., 2016). We extract the following
features for all of the responses in our corpus:

(a) character n-grams including whitespace and
punctuation (n=2–5)

(b) word n-grams (n=1,2)

(c) triples extracted over dependency parses ob-
tained from ZPar (Zhang and Clark, 2011),
and

(d) length bins (specifically, whether the log of 1
plus the number of characters in the response,
rounded down to the nearest integer, equals x,
for all possible x from the training set). For
example, consider a question for which the
responses in the training data are between 50
and 200 characters long. For this question,
we will have 3 length bins numbered from 5
(blog2 51c) to 7 (blog2 201c). For a new re-
sponse of length 150 characters, length bin 7
(blog2 151c) would be the binary feature that
gets a value of 1 with the other two bins get-
ting the value of 0.

All of the features are binary (indicating pres-
ence or absence) and can be thought to indirectly
approximate the requirements of content scoring
we described earlier: good responses generally
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contain (a) the right concepts (approximately cap-
tured by words and bigrams), (b) the right syntac-
tic relationships between those concepts (approx-
imately captured by dependency triples), and (c)
the right amount of detail (coarsely captured by
length bins).

The character n-grams serve to capture spelling
and morphological variations such that responses
are not excessively penalized for misspellings or
for using the incorrect morphological variants. For
example, if the correct response to a question must
contain the phrase ”temperature increased”, a can-
didate response containing the phrase ”temprature
increase” (with a misspelling and an incorrect verb
form) can still get credit for that concept.

Metric. Human scores generally tend to be in-
tegers, while automated scores can be either inte-
gers or real values on a continuous scale. One ad-
vantage of the real-valued scores is that they allow
for more fine-grained distinction than a small set
of integers. In this paper, we predict real-valued
scores on a continuous scale and evaluate the accu-
racy of the predicted scores by using mean squared
error (MSE) as our default metric. Although some
previous studies have used quadratically-weighted
kappa (QWK) as another possible metric for eval-
uating content-scoring models, more recent work
has shown that QWK may possess properties that
render it less than suitable for automated scoring
evaluation (Yannakoudakis and Cummins, 2015).

3.1 Data

Our corpus contains over 230,000 human-scored
responses that were collected in response to 130
different questions. The questions spanned 4 sub-
ject areas: Science, English Language Arts, Math,
and Social Studies and are administered as part of
several different assessments. The 130 questions
include the 10 content-based questions from the
Automated Student Assessment Prize competition
organized by the Hewlett Foundation that are pub-
licly available.1 The remaining questions are in
active use in various classroom settings and are
not publicly available. Table 1 shows a detailed
breakdown of the corpus.

3.2 Learners

Table 2 summarizes the learners considered in this
study. We choose learners that (a) have either

1https://www.kaggle.com/c/asap-sas/
data

been shown to perform well with feature sets com-
parable to ours in previously published work —
Mohler et al. (2011), Sakaguchi et al. (2015), and
Zesch et al. (2015) all used support vector ma-
chines; Ramachandran et al. (2015) use a random
forest regressor — or (b) are generally known to
perform well with a large number of sparse fea-
tures (Hastie et al., 2001; Fan et al., 2008; Chang
and Lin, 2011). We use the scikit-learn (Pedregosa
et al., 2011) implementations for all learners.

All the implementations incorporate some
means of reducing learner variance either by de-
sign — random forests average over a large num-
ber of decision trees trained using bootstrapped
samples — or by explicitly incorporating some
form of regularization, e.g., an `2-penalty over the
feature weights for logistic regression and a mis-
classification error penalty for SVMs.

The first four learners are classifiers. Since we
are interested in predicting continuous values eval-
uated by using mean squared error, we would ex-
pect that classifiers that simply produce the most
likely (integer) score would generally do worse
than regressors, which produce continuous val-
ues. Therefore, for all four classifiers, we use
the predict proba() method of their scikit-
learn implementations to obtain probability distri-
butions2 over the possible score points and then
compute the expected value using the distribu-
tion as the final classifier prediction.3 For the
“Rescaled Support Vector Regressor”, we simply
rescale the predictions obtained from the regres-
sor using the mean and standard deviation of the
human scores for the training data. This form of
post-processing has been shown to be particularly
effective as evidenced by its use in many of the
top submissions to the Kaggle automated scoring
competitions.

3.3 Experiments

Although we have a fairly large number of re-
sponses for each question, we choose to use cross-
validation instead of a single train-test split in or-

2scikit-learn has two implementations available for a sup-
port vector classifier with a linear kernel: one using Lib-
SVM (Chang and Lin, 2011) and another using LibLin-
ear (Fan et al., 2008). We use the former since the latter
doesn’t support probabilistic classification.

3The probabilities can vary in reliability depending on the
calibration algorithm chosen to convert the predictions of the
classifier into posterior probabilities (Platt, 1999; Zadrozny
and Elkan, 2002). For this paper, we assume that scikit-learn
provides reasonably well-calibrated implementations.
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Learner Type Linear Grid
Random Forest Classifier Classifier No max depth: [1, 5, 10, None]
Logistic Regression Classifier Yes C: [10−3, 10−2, . . . , 103, 104]
SVC (linear) Classifier Yes C: [10−3, 10−2, . . . , 103, 104]

SVC (RBF) Classifier No
C: [10−3, 10−2, . . . , 103, 104],
γ: [ 1
‖F‖ , 10−7, 106, . . . , 10−3]

Random Forest Regressor Regressor No max depth: [1, 5, 10, None]
SVR (linear) Regressor Yes C: [10−3, 10−2, . . . , 103, 104]

SVR (RBF) Regressor No
C: [10−3, 10−2, . . . , 103, 104],
γ: [ 1
‖F‖ , 10−7, 106, . . . , 10−3]

Rescaled SVR (RBF) Regressor No
C: [10−3, 10−2, . . . , 103, 104],
γ: [ 1
‖F‖ , 10−7, 106, . . . , 10−3]

Table 2: Learners chosen for this study and their characteristics. “linear” and “RBF” refer to linear and
radial basis function kernels. The Grid column shows the grid of possible values searched when tuning
the hyper-parameters for each learner. C denotes the complexity parameter that controls the amount of
regularization for the learner. γ denotes the kernel coefficient for the RBF kernel ( 1

‖F‖ — where ‖F‖
refers to the number of features — is a commonly used value for γ and we include it in the grid). The
max depth parameter for random forests controls the maximum depth of the tree. Setting it to None
tells scikit-learn to automatically compute that number based on internal calculations.

der to average over any possible biases that a sin-
gle split might yield. We perform two sets of 5-
fold cross-validation experiments for each of the
eight learners. For both sets of experiments, the
folds are stratified by the human scores, e.g., all
train/test splits have similar distributions of human
scores.

In the first set of cross-validation experi-
ments, we train each learner using default hyper-
parameters for each of the five folds. We com-
pute the MSE for each of the five folds by com-
paring to the human scores and then use their
average as the final MSE for the learner. For
the second set of experiments, instead of us-
ing the default hyper-parameter values, we run
scikit-learn’s GridSearchCV over the (four-
fold) “training” set inside each of the five top-
level cross-validation runs in order to search a
pre-specified parameter grid for values that yield
the lowest estimated MSE. The learner with these
tuned hyper-parameters is then used to make pre-
dictions on the fifth held-out fold as per usual. As
before, we use the average MSE value across the
five folds as the final MSE value for the learner.

Table 2 shows the hyper-parameter grids that we
search for each of the eight learners in the sec-
ond set of experiments. Although there are sev-
eral hyper-parameters that can be tuned for each
learner, we focus on parameters that are more

likely to have a significant impact on performance,
e.g., those that control regularization and, hence,
over-fitting. Any parameters not included in the
grids are assigned default values by scikit-learn.

Both sets of cross-validation experiments (with
and without hyper-parameter tuning) were con-
ducted using the SKLL toolkit which makes it
easy to run scikit-learn experiments with multiple
learners in batch mode.4

4 An Aside: Feature Characteristics

Before we delve into the analyses of modeling
strategies, it might be instructive to explore some
characteristics of our feature set. On average, we
extract a total of ∼46,000 binary features for each
question. As expected, the largest set of features
are the character n-grams (about 3x as large as the
word n-grams and the dependency triples). The
length bin features constitute the smallest set with
at most a dozen or so features.

We also wanted to explore how the number of
features extracted for a given question varies by
(a) the average length of a response for that ques-
tion and by (b) the number of responses available
for that question. Figure 1 shows correlations be-
tween the average number of features and the aver-
age response length and number of responses for

4http://github.com/
EducationalTestingService/skll
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Figure 1: Joint distributions plots showing the impact of response length (in characters; left) and the
number of available responses (right) on the number of features extracted for the questions in our corpus.
Each plot is composed of a scatterplot with points denoting the 130 questions as well as histogram and
density plots for each of the two variables being correlated. r = Pearson’s correlation coefficient.

each question. As one might expect, the number
of extracted features is larger for longer responses
and for more numerous responses. We also ob-
serve that the average length of the response has
a substantially larger impact on the number of
extracted features than the number of responses
available.5 This intuitively makes sense since
among the answers to the same question, there is
a higher likelihood of newer words (and character
sequences and dependency relations, etc.) being
encountered within the same response as it grows
longer, than across different responses.

5 Results

5.1 Effects of Modeling Strategies

Table 3 shows the mean squared error — averaged
across all 130 questions in our corpus — for all
eight learners both with and without tuned hyper-
parameters. We observe that the best performance
is achieved by probabilistic support vector classi-
fiers with linear and RBF kernels.

5.1.1 General Learner Properties
We first explored whether general properties of the
learners such as being linear vs. non-linear or be-
ing a probabilistic classifier vs. a regressor had

5We removed an extreme outlier from the left plot to min-
imize its impact on the correlation.

Learner Average MSE
not tuned tuned

Logistic Regression .401 .391
Random Forest Classifier .385 .368
Random Forest Regressor .356 .356
SVC (linear) .336 .326
SVR (linear) .514 .388
SVC (RBF) .434 .321
SVR (RBF) .723 .342
Rescaled SVR .546 .343

Table 3: Average MSE across 130 questions for
each of the eight learners using hyper-parameter
values that are either not tuned (default) values or
tuned via grid search. Lower values are better.

a statistically significant impact on model perfor-
mance across different learners and questions.

We used a hierarchical mixed-effects linear
model (Snijders and Bosker, 2011) implemented
in R via the lmerTest package (Bates et al.,
2015; Kuznetsova et al., 2016) to determine which
modeling decisions have a statistically significant
effect on model MSE over multiple questions. As
our dependent variable, we used the standardized
MSE value for each question and each learner.
We also included the identity of each question and
learner as a random factor to account for any ran-
dom effects that might stem from characteristics
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unique to any particular question or learner. We
used the following learner properties as indepen-
dent variables, specified as discrete factors with a
fixed set of possible values (shown in quotes):

• Type. Is the learner a (probabilistic) “classi-
fier” or a “regressor”?

• Linearity. Is the learner “linear” or “non-
linear”?

• Family. Is the learner logistic regression
(“LR”), a random forest (“RF”), or a support
vector machine (“SVM”)?

• Tuning. Are the learner hyper-parameters
“tuned” or “not tuned”?

We generally focused on the main effects of
each factor but also included interactions between
the Tuning factor and the other factors.6 The
equation describing the mixed-effects model is
shown below:

MSE ∼ Type ∗ Tuning
+ Family ∗ Tuning
+ Linearity ∗ Tuning
+ (1|question) + (1|learner) (1)

where MSE denotes the dependent variable; Type,
Family, Linearity, and Tuning denote the
learner factors we defined earlier, used here as
fixed effects; the ∗ operator indicates an interac-
tion between two factors; question and learner
denote the question and learner identity respec-
tively; and (1|X) denotes the addition of a ran-
dom intercept to the model for X . The reference
values for the learner factors are: “classifier” (for
Type), “SVM” (for Family), “non-linear” (for
Linearity) and “tuned” (for Tuning).

The standardized coefficients for the model with
all four fixed effects and the interactions are shown
in Table 4. The coefficient in each row corre-
sponds to the estimated difference in MSE (in
number of standard deviations) relative to a learner

6Any other higher-level interactions cannot be consis-
tently evaluated using our set of learners. For exam-
ple, to consider the interaction between learner Type and
Linearity, we would want several learners representing
each of the four possible combinations of linear and non-
linear regressors and classifiers. In our chosen set of learn-
ers, linear regressors are represented only by SVR (linear)
which makes it impossible to tell whether any patterns ob-
served for linear regressors are actually meaningful or just
quirks of SVR (linear).

Factor Coef. p-value
1 Intercept −.322 .02
2 “linear” .094 .47
3 “regressor” .087 .43
4 “LR” .205 .27
5 “RF” .113 .38
6 “not tuned” .596 <.00001
7 “LR”: “not tuned” −.090 .15
8 “RF”: “not tuned” −.799 <.00001
9 “linear”: “not tuned” −.542 <.00001

10 “regressor”: “not tuned” .395 <.00001

Table 4: Standardized coefficients and p-values
for fixed factors and interactions included in the
mixed-effects model (Equation 1). N=130 ques-
tions × 8 learners × 2 tuning conditions=2,080.

with the chosen reference values for the learner
factors. Note that since lower values are better for
MSE, positive coefficients actually indicate worse
performance and vice versa.

These results clearly show that not tuning the
hyper-parameters leads to significantly worse per-
formance (higher MSE) irrespective of learner
(row 6). They also show that tuning interacts sig-
nificantly with learner family, with linearity, and
with learner type. For example, row 8 shows that
the difference between “tuned” and “ not tuned”
versions of “RF” is significantly lower than the
corresponding difference for the reference learner
family (“SVM”). Therefore, we can infer that not
tuning has a significantly larger detrimental effect
on SVMs than on random forests. Similarly, we
can infer that not tuning is significantly worse for
the (reference) non-linear learners than for linear
ones (row 9), and for regressors than for the (ref-
erence) classifiers (row 10).

The results also show that overall there are no
significant differences in performance due to lin-
earity (row 2), learner type (row 3), and learner
family (rows 4 and 5). We want to be particularly
clear about the interpretation of these rows. For
example, row 2 states that just because you pick
a non-linear model does not automatically mean
that you will obtain better performance than a lin-
ear model, and so on. The specifics matter. That
is, these results do not say anything about the dif-
ferences between the specific learner instantiations
used in our study.
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5.1.2 Comparing Specific Learners
In the previous section, we considered whether
there are any general learner properties that would
lead to consistently significant differences in per-
formance. However, one may also reasonably ask
which of the particular learners in our study turned
out to be most accurate. To answer this question,
we fit another mixed-effects model, which also
used MSE as a dependent variable and question as
a random factor, but uses the learner as a fixed fac-
tor instead of a random factor. Unlike the model
described by Equation 1 — where we treated the
chosen learners as a sample from the population of
all possible learners — in this model we are specif-
ically interested in the differences within this set of
learners. This model is described by the equation:

MSE ∼ Learner ∗ Tuning + (1|question) (2)

We set the reference learner to be the best per-
forming one from Table 3 – the SVC with RBF
kernel and tuned hyper-parameters. The model co-
efficients (not shown here due to lack of space)
confirmed the consistently useful effect of tun-
ing we observed in the previous section as well
as the different effect sizes of tuning for different
learners. They also showed that, among the tuned
learners, the reference learner significantly outper-
formed all other learners except for SVC (linear)
with tuned hyper-parameters. We discuss the im-
plication of these results in §6 and conclude with
practical recommendations in §7.

6 Discussion

In this paper, we considered the effect that differ-
ent modeling strategies have on the accuracy of au-
tomated content scoring. We analyzed the perfor-
mance of 8 different learners on a very large cor-
pus of real student responses to evaluate both the
impact of general learner characteristics as well as
differences between specific learner instantiations.

We found that no individual learner characteris-
tic had a consistent effect on model performance
across all learners and questions. For example,
SVM-based probabilistic classifiers with tuned
hyper-parameters outperformed all other learners,
but this was no longer the case for SVM-based re-
gressors or even SVM-based learners with default
hyper-parameters. Similarly, (linear) logistic re-
gression performed worse than random forests, but
an SVC with a linear kernel performed compara-
bly to SVC with an RBF kernel. In other words,

our results indicate that no general family of learn-
ers is likely to be the most appropriate for this
task out of the box: when choosing a learner, one
should take into account all the factors considered
in this study.

At the same time, we found that tuning hyper-
parameters significantly improves model perfor-
mance for all learners even when a moderate num-
ber of responses is available to train the model
for each question (the models in our study were
trained on an average on 1,400 responses). Finally,
we identified probabilistic support vector classi-
fiers with linear or RBF kernel and tuned hyper-
parameters as the best performing learners across
multiple questions in our corpus.

The sample of learners used in our paper is not
exhaustive by any means. We focused on learn-
ers that have generally been shown to work well
with similar features. There are other learners that
we did not include in our study such as deep neu-
ral networks, nearest neighbor regressors etc. We
leave the analysis of additional learner types for
future work.

In addition to modeling choices, content scoring
performance is also affected by data-related fac-
tors. In our analyses, we accounted for potential
variation in baseline performance for each ques-
tion by adding the question as a random factor to
both mixed-effects models (Equations 1 and 2).
We also conducted an additional exploratory study
to evaluate whether the variation in performance
of SVC (RBF), our best performing model, could
be explained by specific question characteristics:
the number of responses available, the number of
different score levels, and the subject area. We
found that the number of score levels had a mod-
erate effect with model performance being higher
for questions with a greater number of score lev-
els, but there was no further effect of the number
of responses available or of the subject area.

Of course, this does not mean that these pa-
rameters are not important for model performance.
In fact, Heilman and Madnani (2015) reported a
strong effect of the training size on the model per-
formance for content scoring. A more likely ex-
planation is that our data did not contain sufficient
contrasts to establish such an effect: their study
systematically considered training sets with N be-
tween 100 and 1,600, while in our study the N
varied between 454 and 5,824 with the median
at 1,350. It is also possible that the effects of
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the training size were confounded by other data-
related factors. Furthermore, model performance
may also be affected by the reliability of human
scores, the context in which the assessment was
delivered, and many other factors. We leave a
more detailed exploration of such factors to future
work.

7 Recommendations

Based on the observed results for general learner
properties (§5.1.1) and for the specific learners
(§5.1.2), we can provide the following recommen-
dations to practitioners building automated con-
tent scoring models specifically when using fea-
tures similar to ours:

1. It is generally beneficial to tune the hyper-
parameters for every learner, if sufficient data
and resources are available. 7

2. If the goal is to pick a single learner that per-
forms well for any question, the probabilistic
SVC with an RBF kernel and with the C and
γ parameters properly tuned via grid-search
is likely to be a very good choice.

3. Not tuning the hyper-parameters has a sub-
stantial detrimental effect for non-linear
SVMs, especially the regressors. If tuning
is not possible due to lack of data or an-
other reason, consider using random forests
or probabilistic SVC with a linear kernel. If
using scikit-learn/SKLL directly, these can
be used “out of the box”. However, if us-
ing another library, manually set the hyper-
parameter values to be the same as the scikit-
learn/SKLL defaults.
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Danforth, Douglas, 11
Dell’Orletta, Felice, 430
Ding, Yuning, 357
Dinu, Liviu P., 398
Dipper, Stefanie, 444
Dwiastuti, Meisyarah, 249

Ehlert, Anna, 444
Evanini, Keelan, 62
Evans, Richard, 121

Fairon, Cédrick, 169
Farag, Youmna, 149
Felice, Mariano, 287
Flint, Emma, 91
François, Thomas, 169
Fyshe, Alona, 217

Gonzalez-Garduño, Ana Valeria, 438
Gordon, Jonathan, 109, 261
Goutte, Cyril, 367
Grigonyte, Gintare, 235, 282

Hamill, Christopher, 62
Hearst, Marti A., 303
Hladka, Barbora, 198
Holub, Martin, 198
Honari Jahromi, Maryam, 217
Horbach, Andrea, 159, 357

Ionescu, Radu Tudor, 224
Ircing, Pavel, 198

Jaffe, Evan, 11
Jeon, Hyung-Bae, 413
Jiang, Shu, 143
Jin, Lifeng, 11

Kepler, Fabio, 423
Kochmar, Ekaterina, 293
Kolb, Peter, 44
Kübler, Sandra, 405
Kulmizev, Artur, 382
Kurohashi, Sadao, 133

Laarmann-Quante, Ronja, 444
Lakhani, Aazim, 217
Lee, Chong Min, 86, 159
Lee, John, 143
Lee, Yun-Keun, 413
Lee, Yun-Kyung, 413
Léger, Serge, 367
Li, Wen, 390
Ling, Guangming, 101
Litman, Diane, 52
Loughnane, Robyn, 44
Loukina, Anastassia, 22, 457
Lugini, Luca, 52

Madnani, Nitin, 457
Malmasi, Shervin, 62
Markov, Ilia, 374
McCaffrey, Dan, 101

469



McCurdy, Kate, 44
Meurers, Detmar, 334
Mitkov, Ruslan, 271
Mohammadi, Elham, 210

Nadeem, Farah, 319
Napoles, Courtney, 180, 345
Napolitano, Diane, 62
Natarajan, Prem, 109
Ng, Hwee Tou, 327
Nissim, Malvina, 382

O’Reilly, Tenaha, 22
Oh, Yoo Rhee, 413
Orasan, Constantin, 121
Ortmann, Katrin, 444
Ostendorf, Mari, 319
Östling, Robert, 235, 282

Pado, Ulrike, 1
Park, Jeon-Gue, 413
Plank, Barbara, 235, 382
Ponzetto, Simone Paolo, 271
Popescu, Marius, 224
Pugh, Robert, 62

Qian, Yao, 62

Rama, Taraka, 255
Rei, Marek, 33, 149, 188, 287
Rifqi Fatchurrahman, Muhammad, 249
Riordan, Brian, 159
Roekhaut, Sophie, 169
Rohanian, Omid, 121

Sabatini, John, 22
Sakaguchi, Keisuke, 180
Sari, Yunita, 249
Satria, Arief Yudha, 76
Scholten-Akoun, Dirk, 357
Selent, Stefan, 44
Søgaard, Anders, 438
Sheng, Emily, 109, 261
Shutova, Ekaterina, 293
Sidorov, Grigori, 374
Smiley, Charese, 405
Song, Hwa Jeon, 413
Štajner, Sanja, 271
Stasaski, Katherine, 303
Strapparava, Carlo, 374
Svec, Jan, 198

Tack, Anaïs, 169
Tetreault, Joel, 62, 180

Tokunaga, Takenobu, 76
Tolmachev, Arseny, 133

Vajjala, Sowmya, 240
van Noord, Gertjan, 382
Veisi, Hadi, 210
Vogel, Maurice, 444

White, Michael, 11
Wieling, Martijn, 382
Wolska, Magdalena, 313

Yaneva, Victoria, 121, 271
Yannakoudakis, Helen, 33
Yuan, Zheng, 287

Zajic, Zbynek, 198
Zampieri, Marcos, 398
Zesch, Torsten, 159, 357
Zimmerman, Laura, 11
Zou, Liang, 390


	Program
	Question Difficulty -- How to Estimate Without Norming, How to Use for Automated Grading
	Combining CNNs and Pattern Matching for Question Interpretation in a Virtual Patient Dialogue System
	Continuous fluency tracking and the challenges of varying text complexity
	Auxiliary Objectives for Neural Error Detection Models
	Linked Data for Language-Learning Applications
	Predicting Specificity in Classroom Discussion
	A Report on the 2017 Native Language Identification Shared Task
	Evaluation of Automatically Generated Pronoun Reference Questions
	Predicting Audience's Laughter During Presentations Using Convolutional Neural Network
	Collecting fluency corrections for spoken learner English
	Exploring Relationships Between Writing & Broader Outcomes With Automated Writing Evaluation
	An Investigation into the Pedagogical Features of Documents
	Combining Multiple Corpora for Readability Assessment for People with Cognitive Disabilities
	Automatic Extraction of High-Quality Example Sentences for Word Learning Using a Determinantal Point Process
	Distractor Generation for Chinese Fill-in-the-blank Items
	An Error-Oriented Approach to Word Embedding Pre-Training
	Investigating neural architectures for short answer scoring
	Human and Automated CEFR-based Grading of Short Answers
	GEC into the future: Where are we going and how do we get there?
	Detecting Off-topic Responses to Visual Prompts
	Combining Textual and Speech Features in the NLI Task Using State-of-the-Art Machine Learning Techniques
	Native Language Identification Using a Mixture of Character and Word N-grams
	Ensemble Methods for Native Language Identification
	Can string kernels pass the test of time in Native Language Identification?
	Neural Networks and Spelling Features for Native Language Identification
	A study of N-gram and Embedding Representations for Native Language Identification
	A Shallow Neural Network for Native Language Identification with Character N-grams
	Fewer features perform well at Native Language Identification task
	Structured Generation of Technical Reading Lists
	Effects of Lexical Properties on Viewing Time per Word in Autistic and Neurotypical Readers
	Transparent text quality assessment with convolutional neural networks
	Artificial Error Generation with Machine Translation and Syntactic Patterns
	Modelling semantic acquisition in second language learning
	Multiple Choice Question Generation Utilizing An Ontology
	Simplifying metaphorical language for young readers: A corpus study on news text
	Language Based Mapping of Science Assessment Items to Skills
	Connecting the Dots: Towards Human-Level Grammatical Error Correction
	Question Generation for Language Learning: From ensuring texts are read to supporting learning
	Systematically Adapting Machine Translation for Grammatical Error Correction
	Fine-grained essay scoring of a complex writing task for native speakers
	Exploring Optimal Voting in Native Language Identification
	CIC-FBK Approach to Native Language Identification
	The Power of Character N-grams in Native Language Identification
	Classifier Stacking for Native Language Identification
	Native Language Identification on Text and Speech
	Native Language Identification using Phonetic Algorithms
	A deep-learning based native-language classification by using a latent semantic analysis for the NLI Shared Task 2017
	Fusion of Simple Models for Native Language Identification
	Stacked Sentence-Document Classifier Approach for Improving Native Language Identification
	Using Gaze to Predict Text Readability
	Annotating Orthographic Target Hypotheses in a German L1 Learner Corpus
	A Large Scale Quantitative Exploration of Modeling Strategies for Content Scoring

