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Abstract

The development of NLP models in the health-
care sector faces important challenges due to
the limited availability of patient data, mainly
driven by privacy concerns. This study pro-
poses the generation of synthetic free-text med-
ical reports, specifically focusing on the gas-
troenterology domain, to address the scarcity
of specialised datasets, while preserving pa-
tient privacy. We fine-tune BioGPT on over 90
000 endoscopy reports and integrate Differen-
tial Privacy (DP) into the training process. 10
000 DP-private synthetic reports are generated
by this model. The generated synthetic data is
evaluated across multiple dimensions: similar-
ity to real datasets, language quality, and utility
in both supervised and semi-supervised NLP
tasks. Results suggest that while DP integra-
tion impacts text quality, it offers a promising
balance between data utility and privacy, im-
proving the performance of a real-world down-
stream task. Our study underscores the poten-
tial of synthetic data to facilitate model devel-
opment in the healthcare domain without com-
promising patient privacy.

1 Introduction

The development of computer-aided tools in
medicine, including natural language processing
(NLP), requires real patient data for model train-
ing. However, this development has been signif-
icantly limited due to the lack of availability of
patient data due to privacy concerns, restricted ac-
cess to hospital data, a scarcity of labeled data,
barriers to sharing pretrained models, and a lack of
capable computational resources in many health-
care settings (Wu et al., 2022). The lack of spe-
cialised datasets when developing NLP models can
lead to biased or ungeneralizable models (Panch
et al., 2019; Daneshjou et al., 2021). Recent litera-
ture highlights that open-source, synthetic datasets
could mitigate data scarcity and lead to robust
AI model training, particularly in NLP (Ive et al.,

2020). However, very few studies tackle the gener-
ation of synthetic free text in the medical domain,
with no known studies focusing on gastroenterol-
ogy text reports.

While synthetic data presents a viable solution
to dataset scarcity, ensuring the privacy of patient
data in the original dataset used for training remains
essential. Recent findings suggest that simply de-
identifying the training set by removing names and
unique identifiers is insufficient to prevent patient
re-identification (Sarkar et al., 2024). Despite this,
it is not common practice to include a robust data
privacy framework when generating synthetic med-
ical data (Begoli et al., 2018; Guan et al., 2021).
To maintain stringent patient confidentiality, our
approach incorporates Differential Privacy (DP), a
framework that mathematically guarantees the level
of inability to identify an individual’s data within
a dataset (Dwork et al., 2006). Our approach is
motivated by the fact that only a limited number
of academic papers investigate the application of
differential privacy in the generation of synthetic
data within healthcare (Klymenko et al., 2022).

The quality and utility of these generated reports
must also be rigorously assessed to ensure their
practical application in clinical settings. Utility,
in our context, refers to the degree to which the
synthetic data can be used to perform real-world
tasks, such as text classification. It is crucial to
compare how differential privacy impacts the qual-
ity and utility of synthetic data and whether it can
be used to enhance performance on various tasks.
These tasks can be supervised, such as text classifi-
cation, unsupervised or semi-supervised, like Task
Adaptive Pre-Training Tasks (TAPT).

2 Aims

• We create free text endoscopy reports gener-
ated with differential privacy by fine-tuning a
medical domain GPT-based model.
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• We assess the similarity of DP-generated re-
ports to the original patient data (training
dataset), using a set of experiments that in-
cludes outliers re-generation.

• We aim to quantify the potential quality re-
duction induced by DP by assessing the text
quality of synthetic text reports with and with-
out DP.

• We assess and compare the utility of DP-
generated synthetic reports across supervised
and semi-supervised tasks.

3 Related Work

Generating Synthetic Medical Notes with
Differential Privacy. The generation of synthetic
text data with Differential Privacy (DP) is an
emerging field with limited research. While
(Yue et al., 2022) has provided a comprehensive
framework for generating synthetic text data with
DP, none of the investigated datasets include
medical data. Sarkar et al. (2024) also propose a
framework for synthetic data generation with DP.

Privacy Assessment of Synthetic Medical Notes
and Text Similarity. Numerous studies have
shown that Large Language Models (LLMs)
and Generative Models can efficiently produce
synthetic text reports (Melamud and Shivade, 2019;
Abdollahi et al., 2021; Li et al., 2021; Guan et al.,
2018; Tang et al., 2023). However, the privacy
aspect of the synthetic data is often overlooked or
relies on simple downstream analyses. A common
practice in studies involving synthetic patient
text data, especially in those not using DP, is to
employ metrics like the Hamming distance or the
Levenshtein distance to assess the privacy level
of generated reports. These methods measure
how closely synthetic data can be linked to their
original counterparts. A threshold is established,
and synthetic reports are considered vulnerable if
their distances fall below this threshold (Ghosheh
et al., 2024; Yan et al., 2021; Zhang et al., 2020).

Text Quality Assessment of Synthetic Medical
Notes. The text quality of synthetic reports is
often evaluated on a per-report basis, using metrics
(Zhou et al., 2023) such as BLEU, ROUGE,
or BERTScore (Zhang et al., 2019). However,
these measurements require a set of references
with which to compare the synthetic text for

report-level evaluation. For synthetic text that does
not have references, research tends to measure
the distribution similarity on a corpus level using
metrics such as generation perplexity (Fan et al.,
2018), self-BLEU (Zhu et al., 2018) or Mauve
(Pillutla et al., 2021). However, these methods
do not give a score for each single report. In
our recent work (in process of publication), we
trained a language quality model that scores any
generated report without the need for a reference
text. The model is trained on a dataset that is
corrupted by shuffling and inflection of real text.
The model learns the mapping from each corrupted
text, which can be seen as a proxy for model
output, to a quality score, which is calculated by
comparing the corrupted text with its original,
unaltered form. This approach has proven to
align well with human judgment and is effective
in distinguishing higher-quality real texts from
synthetic counterparts of lower language quality
based on the generated scores.

Synthetic Data Utility. Sarkar et al. (2024) as-
sess the utility of DP-generated synthetic reports
through downstream tasks. However, their down-
stream tasks focus on ICD-10 code classification
models trained on synthetic data, which differs sig-
nificantly from our study. We explore the utility of
DP-generated synthetic data both in a supervised
setting, using it for data augmentation, and in a
semi-supervised setting, employing it for further
pre-training of the classifiers, which has not previ-
ously been documented in the literature.

4 Methods

A summary of the overall pipeline is depicted in
Figure 1.

4.1 Data Access

Inclusion criteria Endoscopy reports were ex-
tracted from the electronic patient records (EPR)
of St Thomas’ Hospital in London. Data acquisi-
tion was authorised through an institutional board
review. The dataset includes the following unfil-
tered procedures: Colonoscopy, Gastroscopy, En-
doscopic ultrasound (EUS), Sigmodoiscopy and
Endoscopic retrograde cholangiopancreatography
(ERCP). The records spanned from January 2017
to October 2023.
Exclusion criteria To ensure patient privacy and
comply with UK health service national data
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Figure 1: Summary of the methodology of the study. (a), (b), (c), (d) correspond to the experiments described in
Section 4.8.

opt-out policy (nhs, 2023), all individuals who had
explicitly opted out of having their data used for
research purposes were excluded from the study.

A total of 93162 reports were included, represent-
ing a diverse range of gastrointestinal conditions
and providing a comprehensive dataset for the gen-
eration of synthetic endoscopy text reports.

4.2 Data Pre-processing and De-identification
Our dataset was anonymized, as required by NHS
England and the UK Information Commissioner’s
Office (ICO)’s anonymisation code of practice1.
Direct identifiers (such as names, addresses, and
contact numbers) and indirect identifiers (such as
clinician names and dates) were systematically
removed from the dataset without replacement
using regular expressions.

The remaining pre-processing was performed us-
ing the EndoMineR package2, a tool designed for
the analysis of free-text in endoscopy reports (Zeki,
2018). The package enabled the extraction of rele-
vant sections from endoscopy reports.

4.3 Differential Privacy
Differential Privacy ensures that the output of a
randomized function applied to a dataset is statisti-
cally indistinguishable, up to a specified degree of
error, regardless of whether any single individual’s
data is included in the dataset or not. The notion

1https://transform.england.nhs.uk/information-
governance/guidance/artificial-intelligence/

2https://docs.ropensci.org/EndoMineR/

of (ϵ, δ)-differential privacy, as defined by (Dwork
et al., 2006) and further elaborated in recent litera-
ture (Yue et al., 2022) is as follows:
A randomized function F provides (ϵ, δ)-
differential privacy if for all datasets D1 and
D2 differing on at most one element, and for all
subsets S of the possible outputs of F :

Pr[F (D1) ∈ S] ≤ eϵ × Pr[F (D2) ∈ S] + δ (1)

ϵ (epsilon), also called privacy budget, is a small
non-negative parameter that quantifies the strength
of the privacy guarantee. δ (delta), typically close
to zero, represents the small probability that the ϵ-
differential privacy guarantee may be exceeded. ϵ is
a key feature of differential privacy: a lower value
guarantees greater privacy but generally reduces
the utility of the generated data. In this study, we
set ϵ = 4, and δ to

δ =
1

N · logN
(2)

with N being the number of training samples.
These values have proved to guarantee a robust
level of privacy in previous studies (Yue et al.,
2022).

4.4 Fine-tuning Bio-GPT with DP for Text
Generation

To generate the synthetic reports, we fine-tuned
BioGPT (generative pre-trained transformer for
biomedical text generation) (Luo et al., 2022)
on our dataset. BioGPTis a transformer-based
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sequence-to-sequence model that relies on the GPT-
2 architecture and comprises 345 million param-
eters. BioGPT has been pre-trained on over 15
million PubMed abstracts and has demonstrated
increased performance compared to its general do-
main counterparts for downstream tasks when fine-
tuned on biomedical data (Turbitt et al., 2023).
We conducted the fine-tuning using the Hugging-
Face Transformers library (Wolf et al., 2020) along
with the Meta AI Opacus library to implement Dif-
ferential Privacy (Yousefpour et al., 2021). Opa-
cus ensures privacy by applying Differentially Pri-
vate Stochastic Gradient Descent (DP-SGD), which
clips the gradients’ L2 norm and adds Gaussian
noise to maintain the privacy of the model parame-
ters during the training process.

All the experiments were executed on an
NVIDIA DGX server running GNU/Linux 5.4.0-
125-generic x86_64, with MLflow integrated into
the CSC MLOPs3 environment to ensure experi-
ment reproducibility, collaboration, and scalability.
The specific hyperparameters considered included
learning rate, batch size, number of epochs,
maximum sequence length, and temperature for
the generation process. Fine-tuning was performed
with causal language modeling (CLM) objective.
The hyperparameter values are described in Table
1.

Table 1: BioGPT fine-tuning hyperparameters

Hyperparameter Value
Batch size per GPU 16
Learning rate 1e-5
Number of training epochs 25
Epsilon ϵ 4

4.5 Generation of DP synthetic endoscopy text
reports

4.5.1 Generation process
Control codes were used to steer the generation of
specific report types (e.g. OGD, colonoscopy, EUS,
ERCP) by the fine-tuned BioGPT model. This tech-
nique facilitated the targeted generation of texts ac-
cording to the different kinds of endoscopic proce-
dures. The input format for this generation process
can be conceptualised as: Input = Control Code +
Separator + Initial Context.

3https://github.com/GSTT-CSC/MLOps

We built a text generation pipeline, refined
through iterative clinician feedback to optimise the
authenticity and relevance of the generated reports.
The key generation hyperparameters were set as
follows:

- Length Constraints: The generated reports’
maximum length was set to 400 words to reflect
the typical lengths of endoscopy reports.

- Temperature: This parameter controls the ran-
domness of the generated output by scaling the
logits before applying softmax, defined by the equa-
tion:

P (token) =
exp( log(oi)T )∑
j exp(

log(oj)
T )

(3)

Here, T represents the temperature, oi the logits,
and P (token) the probability of selecting token
as the next token. The temperature was set to
T = 0.9 based on recommendations from domain
experts to balance creativity with accuracy.

- No Repeat Ngram Size: This parameter was
established at 4 to prevent the repetition of any four-
word sequence within the generated text, enhancing
the uniqueness and readability of the reports.

4.6 Assessment of the Similarity of
DP-generated reports

While DP theoretically offers a high level of pri-
vacy, its practical effectiveness in safeguarding pa-
tient data still requires empirical verification. Re-
cent work has indeed shown that misuses of DP in
Deep Learning have often led to limited actual pri-
vacy (Blanco-Justicia et al., 2022). As discussed in
Section 3, the Hamming and Levensthein distances
are often used to assess the privacy of generated
reports. However, considering the varying lengths
and content complexity of medical reports, these
methods may not fully capture the nuances of text
similarity, and therefore, may not appropriately as-
sess the privacy of generated reports.

ROUGE-L (Lin, 2004) is a metric which is
particularly valuable for evaluating text similarity
in generation tasks where structural coherence and
order of information are crucial. Unlike BLEU,
which focuses on precision by measuring how
many words in the generated text appear in the
reference texts, ROUGE-L relies on recall, assess-
ing how much of the original report is captured
in the generated text. Specifically, ROUGE-L
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relies on the longest common sub-sequence (LCS)
shared between the generated and reference texts,
providing a measure of the longest sequence of
words appearing in both texts in the same order.
ROUGE-L is a normalized metric, therefore
making it robust to length variations between the
original and generated reports. Our approach to
assess the similarity of DP-generated synthetic
reports is the following:

1. Distribution Analysis of ROUGE-L scores:
We compute the ROUGE-L score between each
synthetic report and each of the original patient
reports. We then keep the highest ROUGE-L score
for each of the synthetic reports and compute the
resulting distribution. This process is done both for
synthetic data generated with and without DP. We
then compare DP and non-DP distributions to as-
sess the impact of DP on text similarity and privacy
enhancement.

2. Inclusion of distinctive outliers: 34 outliers
with unique combinations of endoscopic findings
are included in the training set. These outliers are
text reports of typical length, containing phrasings
or combinations of medical conditions not typically
found in endoscopy reports. Developed in collabo-
ration with a gastroenterologist, they are distinctive
enough that reproducing them directly in synthetic
reports could result in patient re-identification.

4.7 Evaluating the Text Quality of
DP-generated reports

To evaluate the language quality of generated re-
ports with and without DP, we use the language
scoring model introduced in Section 3 (in process
of publication), this model takes an individual re-
port as input and assign a score to it based on its
language quality. The score ranges from 0 to 1,
with higher scores indicating better language qual-
ity of the text.

4.8 Evaluating the Utility of DP-generated
reports in Downstream Tasks

4.8.1 Baseline Description and Evaluation
Metrics

The utility of the generated synthetic reports was
evaluated by trying to improve a clinically relevant
4-class classification problem. This involves cate-
gorising endoscopy free-text reports based on the
length of an endoscopically detectable premalig-
nant lesion: Barrett’s Oesophagus (BO) (Fitzgerald

et al. (2014); Hameeteman et al. (1989)). The cate-
gories are: Long, Short, No Barrett’s, and Insuffi-
cient, relating to the detection of a long or short seg-
ment of BO, a definite lack of detection of BO, or
an insufficient description, respectively. The base-
line model, detailed in Table 3, is a BERT-based
transformer with a linear layer for classification,
currently used in clinical practice. It was trained
with optimized hyperparameters described in the
Appendix (4).

This baseline (Figure 1.a) will be compared
against three distinct approaches (Figure 1.b,c,d),
as detailed in the subsequent sections (4.8.2, 4.8.3).
Given the slightly imbalanced nature of the original
training set and the varying clinical relevance of
the classes, per-class metrics such as AUC-ROC
and F1-Score were recorded. The performance of
the baseline and subsequent models was assessed
on a test set, using an 80/20 stratified split for each
random seed. Results were averaged across three
random seeds to ensure robustness.

4.8.2 Synthetic Data Augmentation
The first approach to enhancing the baseline model
involved augmenting the training set with 735
DP synthetic gastroscopy reports specifically
related to Barrett’s Oesophagus. Each report
was manually annotated by a domain expert. An
overview of the class distributions before synthetic
data augmentation is presented in the Appendix
(5). The BERT-based classifier was then retrained
using the augmented dataset while maintaining
the same hyperparameters to allow for a direct
comparison of performance changes.

4.8.3 Task-Adaptive Pretraining with
Synthetic Data

In the current NLP landscape, LLMs are typically
pre-trained on general domain dataset using tasks
such as Masked Language Modeling (MLM) and
Next Sentence Prediction (NSP) (Devlin et al.,
2019; Liu et al., 2019). Although these models
exhibit strong performance across various down-
stream tasks, research has shown that continued
pre-training on domain-specific texts can further en-
hance their effectiveness (Gururangan et al., 2020;
Li et al., 2023; Shi et al., 2023; Margatina et al.,
2022). In this study, the target domain is gastroen-
terology text reports. Our second experiment in-
volves task-adaptive pre-training (TAPT) of the
baseline model using two separate datasets:
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1. Synthetic Data: 10,000 synthetic endoscopy
text reports generated with our Differential
Privacy pipeline.

2. Real Patient Data: 10,000 endoscopy text re-
ports extracted from the hospital’s Electronic
Patient Records (EPR) that were not part of
the training or evaluation sets of the baseline
model. These reports were selected to match
the variety and number found in the synthetic
dataset.

We used these datasets to conduct domain-adaptive
pre-training on the pre-trained BERT model
before fine-tuning it for classification tasks and
evaluation. Domain-adaptative pre-training was
performed using a Masked Language Modeling
(MLM) objective. The aim of this experiment is to
quantify the utility of synthetic data in comparison
to original patient data in terms of enhancing the
model’s performance on downstream tasks. In
both cases, TAPT experiments were conducted
using the hyperparameters listed in Table (2).

Table 2: Hyperparameters for TAPT Experiments

Hyperparameter Value
Number of Pretraining Epochs 100
Number of Fine-tuning Epochs 8
Pretraining Learning Rate 1e-4
Fine-tuning Learning Rate 6.85e-5
Warming Up Steps 1000

5 Results

5.1 Generation of DP Synthetic Reports
10,000 DP synthetic reports were generated using
the input defined in 4.5. We compare the output of
the model, before and after fine-tuning, as depicted
in Figure 2.

We observe that before fine-tuning, the output of
the model resembles a PubMed abstract that men-
tions the report type, gastroscopy in this case. How-
ever, it appears like a study rather than an individual
patient’s endoscopy report. After fine-tuning, the
model’s output presents as a well-formatted gas-
troscopy report, with findings related to Barrett’s
Oesophagus.

5.2 Text Similarity Analysis
The distributions of maximum ROUGE-L scores
between original and synthetic reports (both DP

Figure 2: Comparison of BioGPT output for the genera-
tion of synthetic reports, before (left) and after (right)
fine-tuning.

Figure 3: Distributions of maximum ROUGE-L scores
between original and synthetic reports, with (left) and
without (right) Differential Privacy.

and non DP) are depicted in Figure 3. We ob-
serve a significant shift in distribution between
the synthetic reports generated with Differential
Privacy compared to those generated without it.
The ROUGE-L scores for the DP-generated reports
span from 0.058 to 0.690, with an average of 0.226,
indicating that the DP-generated reports signifi-
cantly differ from the training set. In contrast, the
ROUGE-L scores for the non-DP-generated reports
span from 0.165 to 1.0, with an average of 0.660,
indicating that some generated reports are highly
similar to the training set.

After careful review of the synthetic reports gen-
erated with and without Differential Privacy (DP)
with a domain expert, we confirmed that no outlier
was directly regenerated in either the synthetic DP
or non-DP reports.
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Figure 4: Distributions of synthetic data language qual-
ity scores with (left) and without (right) Differential
Privacy.

5.3 Language Quality Evaluation
Figure 4 shows that synthetic reports generated
without DP exhibit language scores centred around
higher values. While synthetic reports generated
with DP have a similar tendency, their scores are
more distributed toward the lower end, resulting
in a broader, shorter-tailed distribution. Despite
this variation, the overall spread remains relatively
constrained, indicating a slight reduction in the text
quality of reports generated with DP.

5.4 Utility Evaluation
The results of the three utility evaluation experi-
ments are summarized in Table 3. The optimized
baseline model already achieves high performance
across all classes, with the ‘Long’ class showing
the highest average F1-score (0.958) and the ‘In-
sufficient’ class the lowest (0.822).

The most notable conclusion from these experi-
ments is that task-adaptive pretraining considerably
improves the baseline performance for all classes,
especially for the ‘Insufficient’ class, which sees
an F1-score increase of 0.089. The ‘Long’ class,
which already performed well, also shows an im-
provement of 0.022.

The primary goal of this paper is to assess the
utility of synthetic data generated with differential
privacy. As expected, the baseline improvement
using DP synthetic data is not as significant as
with real patient data, likely due to the set privacy
level (epsilon = 4). However, TAPT using synthetic

data with DP still enhances the F1 scores across all
classes, with the ‘Insufficient’ class showing the
most significant improvement of 0.034. The Long
class, despite its high performance, also showed
an improvement while performing TAPT with DP
synthetic data, with an F1 score improvement of
0.003.

Data augmentation with labelled synthetic DP
text reports also improved performance across most
classes, though results were more inconsistent.
This variability may be due to the limited number
of additional annotated reports, as the annotation
process is time-consuming and constrained by a
shortage of expert annotators.

6 Discussion and Conclusion

We have fine-tuned a pre-trained large language
model with Differential Privacy to generate privacy-
preserved synthetic endoscopy reports. We lever-
aged a highly specific in-house training set of over
90,000 endoscopy free-text reports. Using our
pipeline, we generated a set of 10,000 diverse syn-
thetic endoscopy reports, available for further re-
search on a per-query basis. The utility of the syn-
thetic reports was assessed by attempting to im-
prove a clinically useful high performing classifi-
cation baseline. The synthetic reports were used to
augment the training set of the baseline and to pre-
train the baseline classifier using a task-adaptive
pretraining framework. A pre-training experiment
with real patient data was also conducted for direct
comparison.

Table 3 demonstrates that DP-generated syn-
thetic data can significantly improve the perfor-
mance of a real-world downstream task. Specif-
ically, our study demonstrates the superiority of
TAPT methods. It is important to highlight that,
in comparison to supervised-learning approaches,
TAPT does not require additional labeled data
points, which significantly reduces the need for
data annotation resources, a primary bottleneck
in developing robust supervised learning models.
However, the best-performing model remains the
one pre-trained with real patient data.

The privacy preservation of DP-generated re-
ports is quantified by assessing their similarity to
the original data compared to that of synthetic data
generated without DP. We observed an important
difference in ROUGE-L scores between the DP and
non-DP generated synthetic reports. Therefore, we
can conclude that, in our study, DP effectively pre-
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Table 3: Comparison of model performance across different approaches, including the baseline BERT-based model
(a), synthetic data augmentation with 735 differentially private reports (b), task-adaptive pretraining with 10,000
real patient reports (c), and task-adaptive pretraining with 10,000 differentially private synthetic reports (d).

Approach Long No Barretts Short Insufficient
AUROC F1 AUROC F1 AUROC F1 AUROC F1

(a) Baseline 0.9880.008 0.9580.005 0.9920.005 0.9240.020 0.9840.012 0.9250.013 0.9790.013 0.8220.034
(b) Data augmentation 0.9970.001 0.9610.016 0.9820.005 0.9140.017 0.9870.004 0.9440.010 0.9670.031 0.7980.029
(c) TAPT with real data 0.9970.002 0.9800.003 0.9970.002 0.9610.014 0.9940.002 0.9670.010 0.9880.004 0.9110.022
(d) TAPT with DP synthetic 0.9910.005 0.9610.025 0.9890.006 0.9350.025 0.9870.007 0.9450.024 0.9800.005 0.8560.053

vents the replication of sensitive training samples.
A set of outliers was also introduced in the training
set, and we concluded that unique clinical findings
could not be regenerated by the models.

6.1 Limitations and Future Work

While this study aims to explore various methods
to assess the utility and privacy of DP-generated
endoscopy text reports, we acknowledge several
limitations. First, we used a fixed value of the
privacy parameter epsilon throughout this study.
Future work should assess the impact of epsilon on
the privacy-utility trade-off.

We have compared the performance of a clas-
sification baseline to several approaches leverag-
ing generated synthetic reports (Table 3), but we
have not compared the baseline to a classifier solely
trained on synthetic data due to the limited avail-
ability of high-quality annotation resources. More-
over, future work should also consider comparing
our approach with other existing methods of syn-
thetic data generation and privacy protection to
provide a more comprehensive evaluation.

It is also important to highlight that the gener-
ative models were fine-tuned on endoscopy data
from a London hospital, which might introduce
population bias or an over-representation of spe-
cific endoscopic conditions due to the local context.

In this study, we assessed the text quality of the
generated text; however, no evaluation of clinical
relevance was conducted. Clinical accuracy is es-
sential for specific downstream tasks as it ensures
the medical reliability of the generated reports and
prevents confusion. Users should remain mindful
of this aspect when using our synthetic reports.
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A Classification baseline details

Table 4: Classification Baseline Hyperparameters

Hyperparameter Search Space Baseline model value
Batch size {16, 32, 64} 32
Learning rate [1e-6, 1e-3] 6.85e-5
Number of training epochs [1, 10] 8
Warming steps fraction [0.1, 0.5] 0.4

Table 5: Class Distributions Before and After Data Aug-
mentation

Class Before Augmentation After Augmentation
Insufficient 279 475
Long 1,649 1,688
Short 1,901 1,901
No Barrett’s 288 788
Total Reports 4,117 4,852
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