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Abstract

This paper describes UTokyo’s submission to
the AmericasNLP 2021 Shared Task on ma-
chine translation systems for indigenous lan-
guages of the Americas. We present a low-
resource machine translation system that im-
proves translation accuracy using cross-lingual
language model pretraining. Our system
uses an mBART implementation of FAIRSEQ
to pretrain on a large set of monolingual
data from a diverse set of high-resource lan-
guages before finetuning on 10 low-resource
indigenous American languages: Aymara,
Bribri, Asháninka, Guaraní, Wixarika, Náhu-
atl, Hñähñu, Quechua, Shipibo-Konibo, and
Rarámuri. On average, our system achieved
BLEU scores that were 1.64 higher and CHRF
scores that were 0.0749 higher than the base-
line.

1 Introduction

Neural machine translation (NMT) systems have
produced translations of commendable accuracy
under large-data training conditions but are data-
hungry (Zoph et al., 2016) and perform poorly in
low-resource languages, where parallel data is lack-
ing (Koehn and Knowles, 2017).

Many of the indigenous languages of the Ameri-
cas lack adequate amounts of parallel data, so exist-
ing NMT systems have difficulty producing accu-
rate translations for these languages. Additionally,
many of these indigenous languages exhibit linguis-
tic properties that are uncommon in high-resource
languages, such as English or Chinese, that are
used to train NMT systems.

One striking feature of many indigenous Ameri-
can languages is their polysynthesis (Brinton, 1885;
Payne, 2014). Polysynthetic languages display
high levels of inflection and are morphologically
complex. However, NMT systems are weak in
translating “low-frequency words belonging to
highly-inflected categories (e.g. verbs)" (Koehn

and Knowles, 2017). Quechua, a low-resource,
polysynthetic American language, has on average
twice as many morphemes per word compared to
English (Ortega et al., 2020b), which makes ma-
chine translation difficult. Mager et al. (2018b)
shows that information is often lost when translat-
ing polysynthetic languages into Spanish due to a
misalignment of morphemes. Thus, existing NMT
systems are not appropriate for indigenous Amer-
ican languages, which are low-resource, polysyn-
thetic languages.

Despite the scarcity of parallel data for these in-
digenous languages, some are spoken widely and
have a pressing need for improved machine trans-
lation. For example, Quechua is spoken by more
than 10 million people in South America, but some
Quechua speakers are not able to access health care
due to a lack of Spanish ability (Freire, 2011).

Other languages lack a large population of speak-
ers and may appear to have relatively low demand
for translation, but many of these languages are
also crucial in many domains such as health care,
the maintenance of cultural history, and interna-
tional security (Klavans, 2018). Improved trans-
lation techniques for low-resource, polysynthetic
languages are thus of great value.

In light of this, we participated in the Americas-
NLP 2021 Shared Task to help further the develop-
ment of new approaches to low-resource machine
translation of polysynthetic languages, which are
not commonly studied in natural language process-
ing. The task consisted of producing translations
from Spanish to 10 different indigenous American
languages.

In this paper, we describe our system designed
for the AmericasNLP 2021 Shared Task, which
achieved BLEU scores that were 1.64 higher and
CHRF scores that were 0.0749 higher than the base-
line on average. Our system improves translation
accuracy by using monolingual data to improve un-
derstanding of natural language before finetuning



for each of the 10 indigenous languages.

2 Methods

2.1 Data

Our model employs two types of data:

1. 13 GB of monolingual data from Bulgarian,
English, French, Irish, Korean, Latin, Spanish,
Sundanese, Vietnamese, and Yoruba

2. 140 MB of parallel data between Spanish
and Aymara, Bribri, Asháninka, Guaraní,
Wixarika, Náhuatl, Hñähñu, Quechua,
Shipibo-Konibo, and Rarámuri

2.1.1 Monolingual Data
We selected a variety of widely-spoken languages
across the Americas, Asia, Europe, Africa, and
Oceania for the monolingual data we used during
our pretraining, allowing our model to learn from
a wide range of language families and linguistic
features. These monolingual data were acquired
from CC1001 (Wenzek et al., 2020; Conneau et al.,
2020). We use these monolingual data as part of
our pretraining, as this has been shown to improve
results with smaller parallel datasets (Conneau and
Lample, 2019; Liu et al., 2020; Song et al., 2019).

2.1.2 Parallel Data
The parallel data between Spanish and the indige-
nous American languages were provided by Amer-
icasNLP 2021 (Mager et al., 2021).

We have summarized some important details
of the training data and development/test sets
(Ebrahimi et al., 2021) below. More details about
these data can be found in the AmericasNLP 2021
official repository2.

Aymara The Aymara–Spanish data came from
translations by Global Voices and Facebook AI.
The training data came primarily from Global
Voices3 (Prokopidis et al., 2016; Tiedemann, 2012),
but because translations were done by volunteers,
the texts have potentially different writing styles.
The development and test sets came from transla-
tions from Spanish texts into Aymara La Paz jilata,
a Central Aymara variant.

1http://data.statmt.org/cc-100/
2https://github.com/AmericasNLP/

americasnlp2021/blob/main/data/
information_datasets.pdf

3https://opus.nlpl.eu/GlobalVoices.php

Bribri The Bribri–Spanish data (Feldman and
Coto-Solano, 2020) came from six different
sources (a dictionary, a grammar, two language
learning textbooks, one storybook, and transcribed
sentences from a spoken corpus) and three major
dialects (Amubri, Coroma, and Salitre). Two differ-
ent orthographies are widely used for Bribri, so an
intermediate representation was used to facilitate
training.

Asháninka The Asháninka–Spanish data4 were
extracted and pre-processed by Richard Castro
(Cushimariano Romano and Sebastián Q., 2008;
Ortega et al., 2020a; Mihas, 2011). Though the
texts came from different pan-Ashaninka dialects,
they were normalized using AshMorph (Ortega
et al., 2020a). The development and test sets came
from translations of Spanish texts done by Feli-
ciano Torres Ríos.

Guaraní The Guaraní–Spanish data (Chiruzzo
et al., 2020) consisted of training data from web
sources (blogs and news articles) written in a mix
of dialects and development and test sets written in
pure Guaraní. Translations were provided by Perla
Alvarez Britez.

Wixarika The Wixarika–Spanish data came
from Mager et al. (2018a). The training, devel-
opment, and test sets all used the same dialect
(Wixarika of Zoquipan) and orthography, though
word boundaries were not consistent between the
development/test and training sets. Translations
were provided by Silvino González de la Crúz.

Náhuatl The Náhuatl–Spanish data came from
Gutierrez-Vasques et al. (2016). Náhuatl has a
wide dialectal variation and no standard orthogra-
phy, but most of the training data were close to
a Classical Náhuatl orthographic “standard.” The
development and test sets came from translations
made from Spanish into modern Náhuatl. An ortho-
graphic normalization was applied to these transla-
tions to make them closer to the Classical Náhuatl
orthography found in the training data. This nor-
malization was done by employing a rule-based ap-
proach based on predictable orthographic changes
between modern varieties and Classical Náhuatl.
Translations were provided by Giovany Martinez
Sebastián, José Antonio, and Pedro Kapoltitan.

4https://github.com/hinantin/
AshaninkaMT

http://data.statmt.org/cc-100/
https://github.com/AmericasNLP/americasnlp2021/blob/main/data/information_datasets.pdf
https://github.com/AmericasNLP/americasnlp2021/blob/main/data/information_datasets.pdf
https://github.com/AmericasNLP/americasnlp2021/blob/main/data/information_datasets.pdf
https://opus.nlpl.eu/GlobalVoices.php
https://github.com/hinantin/AshaninkaMT
https://github.com/hinantin/AshaninkaMT


Hñähñu The Hñähñu–Spanish training data
came from translations into Spanish from Hñähñu
text from a set of different sources5. Most of these
texts are in the Valle del Mezquital dialect. The
development and test sets are in the Ñûhmû de Ix-
tenco, Tlaxcala variant. Translations were done by
José Mateo Lino Cajero Velázquez.

Quechua The training set for Quechua–Spanish
data (Agić and Vulić, 2019) came from Jehova’s
Witnesses texts (available in OPUS), sentences ex-
tracted from the official dictionary of the Minis-
ter of Education (MINEDU) in Peru for Quechua
Ayacucho, and dictionary entries and samples col-
lected and reviewed by Diego Huarcaya. Training
sets were provided in both the Quechua Cuzco and
Quechua Ayacucho variants, but our system only
employed Quechua Ayacucho data during training.
The development and test sets came from transla-
tions of Spanish text into Quechua Ayacucho, a
standard version of Southern Quechua. Transla-
tions were provided by Facebook AI.

Shipibo-Konibo The training set of the Shipibo-
Konibo–Spanish data (Galarreta et al., 2017) was
obtained from translations of flashcards and trans-
lations of sentences from books for bilingual ed-
ucation done by a bilingual teacher. Additionally,
parallel sentences from a dictionary were used as
part of the training data. The development and
test sets came from translations from Spanish into
Shipibo-Konibo done by Liz Chávez.

Rarámuri The training set of the Rarámuri–
Spanish data came from a dictionary (Brambila,
1976). The development and test sets came from
translations from Spanish into the highlands Rará-
muri by María del Cármen Sotelo Holguín. The
training set and development/test sets use different
orthographies.

2.2 Preprocessing

We tokenized all of our data together using Sen-
tencePiece (Kudo and Richardson, 2018) in prepa-
ration for our multilingual model. We used a vo-
cabulary size of 8000 and a character coverage of
0.9995, as the wide variety of languages cover a
rich character set.

Then, we sharded our data for faster processing.
With our SentencePiece model and vocabulary, we

5https://tsunkua.elotl.mx/about/

used FAIRSEQ6 (Ott et al., 2019) to build vocabu-
laries and binarize our data.

2.3 Pretraining

We pretrained our model on the 20 languages de-
scribed in 2.1 with an mBART (Liu et al., 2020)
implementation of FAIRSEQ (Ott et al., 2019). We
pretrained on 32 NVIDIA V100 GPUs for three
hours.

Balancing data across languages
Due to the large variability in text data size be-
tween different languages, we used the exponen-
tial sampling technique used in Conneau and Lam-
ple (2019); Liu et al. (2020), where the text is re-
sampled according to smoothing parameter α as
follows:

qi =
pαi∑N
j=1 p

α
j

(1)

In equation 1, qi refers to the resample probabil-
ity for language i, given multinomial distribution
{qi}i=1...N with original sampling probability pi.

As we want our model to work well with the
low-resource languages, we chose a smoothing pa-
rameter of α = 0.25 (compared with α = 0.7 used
in mBART (Liu et al., 2020)) to alleviate model
bias towards the higher proportion of data from
high-resource languages.

Hyperparameters
We used a six-layer Transformer with a hidden di-
mension of 512 and feed-forward size of 2048. We
set the maximum sequence length to 512, with a
batch size of 1024. We optimized the model using
Adam (Kingma and Ba, 2015) using hyperparam-
eters β = (0.9, 0.98) and ε = 10−6. We used a
learning rate of 6 × 10−4 over 10,000 iterations.
For regularization, we used a dropout rate of 0.5
and weight decay of 0.01. We also experimented
with lower dropout rates but found that a higher
dropout rate gave us a model that produces better
translations.

2.4 Finetuning

Using our pretrained model, we performed finetun-
ing on each of the 10 indigenous American lan-
guages with the same hyperparameters used dur-
ing pretraining. For each language, we conducted
our finetuning using four NVIDIA V100 GPUs for
three hours.

6https://github.com/pytorch/fairseq

https://tsunkua.elotl.mx/about/
https://github.com/pytorch/fairseq


Language Baseline1 Dev2 Test13 Test24

BLEU CHRF BLEU CHRF BLEU CHRF BLEU CHRF
Aymara (aym) 0.01 0.157 2.84 0.2338 1.17 0.214 1.03 0.209

Bribri (bzd) 0.01 0.058 1.22 0.1203 1.7 0.143 1.29 0.131
Asháninka (cni) 0.01 0.102 0.48 0.2188 0.2 0.216 0.45 0.214

Guaraní (gn) 0.12 0.193 3.64 0.2492 3.21 0.265 3.16 0.254
Wixarika (hch) 2.2 0.126 4.89 0.2093 7.09 0.238 6.74 0.229

Náhuatl (nah) 0.01 0.157 0.3 0.253 0.55 0.239 1.2 0.238
Hñähñu (oto) 0 0.054 0.04 0.1035 2.45 0.152 1.28 0.133

Quechua (quy) 0.05 0.304 1.46 0.3155 2.35 0.332 2.47 0.33
Shipibo-Konibo (shp) 0.01 0.121 0.49 0.176 0.33 0.163 0.71 0.175

Rarámuri (tar) 0 0.039 0.12 0.1163 0.1 0.122 0.06 0.123
1 Baseline test results provided by AmericasNLP 2021, from a system where the development set was not used for

training
2 Our own results on the development set
3 Our official test results for our system where the development set was used for training
4 Our official test results for our system where the development set was not used for training

Table 1: Results

2.5 Evaluation

Using the SacreBLEU library7 (Post, 2018), we
evaluated our system outputs with detokenized
BLEU (Papineni et al., 2002; Post, 2018). Due to
the polysynthetic nature of the languages involved
in this task, we also used CHRF (Popović, 2015)
to measure performance at the character level and
better see how well morphemes or parts of mor-
phemes were translated, rather than whole words.
For these reasons, we focused on optimizing the
CHRF score.

3 Results

We describe our results in Table 1. Our test re-
sults (Test1 and Test2) show considerable improve-
ments over the baseline provided by AmericasNLP
2021. We also included our own results on the de-
velopment set (Dev) for comparison. The trends we
saw in the Dev results parallel our test results; lan-
guages for which our system achieved high scores
in Dev (e.g. Wixarika and Guaraní) also demon-
strated high scores in Test1 and Test2. Likewise,
languages for which our system performed rela-
tively poorly in Dev (e.g. Rarámuri, whose poor
performance may be attributed to the difference in
orthographies between the training set and develop-
ment/test sets) also performed poorly in Test1 and
Test2. This matches the trend seen in the baseline
scores.

The baseline results and Test2 results were both
7https://github.com/mjpost/sacrebleu

produced using the same test set and by systems
where the development set was not used for train-
ing. Thus, the baseline results and Test2 results
can be directly compared. On average, our system
used to produce the Test2 results achieved BLEU
scores that were 1.54 higher and CHRF scores that
were 0.0725 higher than the baseline. On the same
test set, our Test1 system produced higher BLEU
and CHRF scores for nearly every language. This
is expected, as the system used to produce Test1
was trained on slightly more data; it used the devel-
opment set of the indigenous American languages
provided by AmericasNLP 2021 in addition to the
training set.

If we factor in our results from Test1 to our
Test2 results, we achieved BLEU scores that were
1.64 higher and CHRF scores that were 0.0749
higher than the baseline on average. Overall, we
attribute this improvement in scores primarily to
the cross-lingual language model pretraining (Con-
neau and Lample, 2019) we performed, allowing
our model to learn about natural language from the
monolingual data before finetuning on each of the
10 indigenous languages.

4 Conclusions and Future Work

We described our system to improve low-resource
machine translation for the AmericasNLP 2021
Shared Task. We constructed a system using the
mBART implementation of FAIRSEQ to translate
from Spanish to 10 different low-resource indige-
nous languages from the Americas. We demon-

https://github.com/mjpost/sacrebleu


strated strong improvements over the baseline by
pretraining on a large amount of monolingual data
before finetuning our model for each of the low-
resource languages.

We are interested in using dictionary augmenta-
tion techniques and creating pseudo-monolingual
data to use during the pretraining process, as
we have seen improved results with these two
techniques when translating several low-resource
African languages. We can also incorporate these
two techniques in an iterative pretraining proce-
dure (Tran et al., 2020) to produce more pseudo-
monolingual data and further train our pretrained
model for potentially better results.

Future research should also explore using prob-
abilistic finite-state morphological segmenters,
which may improve translations by exploiting regu-
lar agglutinative patterns without the need for much
linguistic knowledge (Mager et al., 2018a) and thus
may work well with the low-resource, polysyn-
thetic languages dealt with in this paper.
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