This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Large language models (LLMs) are still struggling in aligning with human preference in complex tasks and scenarios. They are prone to overfit into the unexpected patterns or superficial styles in the training data. We conduct an empirical study that only selects the top-10% most updated parameters in LLMs for alignment training, and see improvements in the convergence process and final performance. It indicates the existence of redundant neurons in LLMs for alignment training. To reduce its influence, we propose a low-redundant alignment method named **ALLO**, focusing on optimizing the most related neurons with the most useful supervised signals. Concretely, we first identify the neurons that are related to the human preference data by a gradient-based strategy, then identify the alignment-related key tokens by reward models for computing loss. Besides, we also decompose the alignment process into the forgetting and learning stages, where we first forget the tokens with unaligned knowledge and then learn aligned knowledge, by updating different ratios of neurons, respectively. Experimental results on 10 datasets have shown the effectiveness of ALLO. Our code and data will be publicly released.
Reinforcement learning (RL) has been widely used in training large language models (LLMs) for preventing unexpected outputs, e.g., reducing harmfulness and errors. However, existing RL methods mainly adopt instance-level reward, which cannot provide fine-grained supervision for complex reasoning tasks. As a result, the RL training cannot be fully aware of the specific part or step that actually leads to the incorrectness in model response. To address it, we propose a new RL method named RLMEC that incorporates a generative model as the reward model, which is trained by the erroneous solution rewriting task under the minimum editing constraint, which can produce token-level supervision for RL training. Based 0on the generative reward model, we design the token-level RL objective for training and an imitation-based regularization for stabilizing RL process. And these two objectives focus on the revision of the key tokens for the erroneous solution, reducing the effect of other unimportant tokens. Experiment results on 8 tasks have demonstrated the effectiveness of our approach. Our code and data will be publicly released.
Although large language models (LLMs) have achieved excellent performance in a variety of evaluation benchmarks, they still struggle in complex reasoning tasks which require specific knowledge and multi-hop reasoning. To improve the reasoning abilities, we propose ChatCoT, a tool-augmented chain-of-thought reasoning framework for chat-based LLMs (e.g., ChatGPT). In ChatCoT, we model the chain-of-thought (CoT) reasoning as multi-turn conversations, to utilize tools in a more natural way through chatting. At each turn, LLMs can either interact with tools or perform the reasoning. Our approach can effectively leverage the multi-turn conversation ability of chat-based LLMs, and integrate the thought chain following and tools manipulation in a unified way. Specially, we initialize the early turns of the conversation by the knowledge about tools, tasks, and reasoning format, and propose an iterative tool-augmented reasoning step to perform step-by-step tool-augmented reasoning. The experiment results on two complex reasoning datasets (MATH and HotpotQA) have shown the effectiveness of ChatCoT on complex reasoning tasks, achieving a 7.9% relative improvement over the state-of-the-art baseline.
Nowadays, pretrained language models (PLMs) have dominated the majority of NLP tasks. While, little research has been conducted on systematically evaluating the language abilities of PLMs. In this paper, we present a large-scale empirical study on general language ability evaluation of PLMs (ElitePLM). In our study, we design four evaluation dimensions, memory, comprehension, reasoning, and composition, to measure ten widely-used PLMs within five categories. Our empirical results demonstrate that: (1) PLMs with varying training objectives and strategies are good at different ability tests; (2) fine-tuning PLMs in downstream tasks is usually sensitive to the data size and distribution; (3) PLMs have excellent transferability between similar tasks. Moreover, the prediction results of PLMs in our experiments are released as an open resource for more deep and detailed analysis on the language abilities of PLMs. This paper can guide the future work to select, apply, and design PLMs for specific tasks. We have made all the details of experiments publicly available at https://github.com/RUCAIBox/ElitePLM.
To facilitate research on text generation, this paper presents a comprehensive and unified library, TextBox 2.0, focusing on the use of pre-trained language models (PLMs). To be comprehensive, our library covers 13 common text generation tasks and their corresponding 83 datasets and further incorporates 45 PLMs covering general, translation, Chinese, dialogue, controllable, distilled, prompting, and lightweight PLMs. We also implement 4 efficient training strategies and provide 4 generation objectives for pre-training new PLMs from scratch. To be unified, we design the interfaces to support the entire research pipeline (from data loading to training and evaluation), ensuring that each step can be fulfilled in a unified way. Despite the rich functionality, it is easy to use our library, either through the friendly Python API or command line. To validate the effectiveness of our library, we conduct extensive experiments and exemplify four types of research scenarios. The project is released at the link: https://github.com/RUCAIBox/TextBox#2.0.
In this paper, we release an open-source library, called TextBox, to provide a unified, modularized, and extensible text generation framework. TextBox aims to support a broad set of text generation tasks and models. In our library, we implement 21 text generation models on 9 benchmark datasets, covering the categories of VAE, GAN, and pretrained language models. Meanwhile, our library maintains sufficient modularity and extensibility by properly decomposing the model architecture, inference, and learning process into highly reusable modules, which allows users to easily incorporate new models into our framework. The above features make TextBox especially suitable for researchers and practitioners to quickly reproduce baseline models and develop new models. TextBox is implemented based on PyTorch, and released under Apache License 2.0 at the link https://github.com/RUCAIBox/TextBox.
Owing to the continuous efforts by the Chinese NLP community, more and more Chinese machine reading comprehension datasets become available. To add diversity in this area, in this paper, we propose a new task called Sentence Cloze-style Machine Reading Comprehension (SC-MRC). The proposed task aims to fill the right candidate sentence into the passage that has several blanks. We built a Chinese dataset called CMRC 2019 to evaluate the difficulty of the SC-MRC task. Moreover, to add more difficulties, we also made fake candidates that are similar to the correct ones, which requires the machine to judge their correctness in the context. The proposed dataset contains over 100K blanks (questions) within over 10K passages, which was originated from Chinese narrative stories. To evaluate the dataset, we implement several baseline systems based on the pre-trained models, and the results show that the state-of-the-art model still underperforms human performance by a large margin. We release the dataset and baseline system to further facilitate our community. Resources available through https://github.com/ymcui/cmrc2019
In this paper, we introduce TextBrewer, an open-source knowledge distillation toolkit designed for natural language processing. It works with different neural network models and supports various kinds of supervised learning tasks, such as text classification, reading comprehension, sequence labeling. TextBrewer provides a simple and uniform workflow that enables quick setting up of distillation experiments with highly flexible configurations. It offers a set of predefined distillation methods and can be extended with custom code. As a case study, we use TextBrewer to distill BERT on several typical NLP tasks. With simple configurations, we achieve results that are comparable with or even higher than the public distilled BERT models with similar numbers of parameters.
Machine Reading Comprehension (MRC) has become enormously popular recently and has attracted a lot of attention. However, the existing reading comprehension datasets are mostly in English. In this paper, we introduce a Span-Extraction dataset for Chinese machine reading comprehension to add language diversities in this area. The dataset is composed by near 20,000 real questions annotated on Wikipedia paragraphs by human experts. We also annotated a challenge set which contains the questions that need comprehensive understanding and multi-sentence inference throughout the context. We present several baseline systems as well as anonymous submissions for demonstrating the difficulties in this dataset. With the release of the dataset, we hosted the Second Evaluation Workshop on Chinese Machine Reading Comprehension (CMRC 2018). We hope the release of the dataset could further accelerate the Chinese machine reading comprehension research. Resources are available: https://github.com/ymcui/cmrc2018
Cloze-style reading comprehension is a representative problem in mining relationship between document and query. In this paper, we present a simple but novel model called attention-over-attention reader for better solving cloze-style reading comprehension task. The proposed model aims to place another attention mechanism over the document-level attention and induces “attended attention” for final answer predictions. One advantage of our model is that it is simpler than related works while giving excellent performance. In addition to the primary model, we also propose an N-best re-ranking strategy to double check the validity of the candidates and further improve the performance. Experimental results show that the proposed methods significantly outperform various state-of-the-art systems by a large margin in public datasets, such as CNN and Children’s Book Test.
Reading comprehension has embraced a booming in recent NLP research. Several institutes have released the Cloze-style reading comprehension data, and these have greatly accelerated the research of machine comprehension. In this work, we firstly present Chinese reading comprehension datasets, which consist of People Daily news dataset and Children’s Fairy Tale (CFT) dataset. Also, we propose a consensus attention-based neural network architecture to tackle the Cloze-style reading comprehension problem, which aims to induce a consensus attention over every words in the query. Experimental results show that the proposed neural network significantly outperforms the state-of-the-art baselines in several public datasets. Furthermore, we setup a baseline for Chinese reading comprehension task, and hopefully this would speed up the process for future research.