Yuzhe Gu


2024

pdf
ESC: Efficient Speech Coding with Cross-Scale Residual Vector Quantized Transformers
Yuzhe Gu | Enmao Diao
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Neural speech codecs aim to compress input signals into minimal bits while maintaining content quality in a low-latency manner. However, existing neural codecs often trade model complexity for reconstruction performance. These codecs primarily use convolutional blocks for feature transformation, which are not inherently suited for capturing the local redundancies in speech signals. To compensate, they require either adversarial discriminators or a large number of model parameters to enhance audio quality. In response to these challenges, we introduce the Efficient Speech Codec (ESC), a lightweight, parameter-efficient speech codec based on a cross-scale residual vector quantization scheme and transformers. Our model employs mirrored hierarchical window transformer blocks and performs step-wise decoding from coarse-to-fine feature representations. To enhance bitrate efficiency, we propose a novel combination of vector quantization techniques along with a pre-training paradigm. Extensive experiments demonstrate that ESC can achieve high-fidelity speech reconstruction with significantly lower model complexity, making it a promising alternative to existing convolutional audio codecs.

pdf
How did we get here? Summarizing conversation dynamics
Yilun Hua | Nicholas Chernogor | Yuzhe Gu | Seoyeon Jeong | Miranda Luo | Cristian Danescu-Niculescu-Mizil
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Throughout a conversation, the way participants interact with each other is in constant flux: their tones may change, they may resort to different strategies to convey their points, or they might alter their interaction patterns. An understanding of these dynamics can complement that of the actual facts and opinions discussed, offering a more holistic view of the trajectory of the conversation: how it arrived at its current state and where it is likely heading.In this work, we introduce the task of summarizing the dynamics of conversations, by constructing a dataset of human-written summaries, and exploring several automated baselines. We evaluate whether such summaries can capture the trajectory of conversations via an established downstream task: forecasting whether an ongoing conversation will eventually derail into toxic behavior. We show that they help both humans and automated systems with this forecasting task. Humans make predictions three times faster, and with greater confidence, when reading the summaries than when reading the transcripts. Furthermore, automated forecasting systems are more accurate when constructing, and then predicting based on, summaries of conversation dynamics, compared to directly predicting on the transcripts.

pdf
ANAH: Analytical Annotation of Hallucinations in Large Language Models
Ziwei Ji | Yuzhe Gu | Wenwei Zhang | Chengqi Lyu | Dahua Lin | Kai Chen
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Reducing the ‘hallucination' problem of Large Language Models (LLMs) is crucial for their wide applications. A comprehensive and fine-grained measurement of the hallucination is the first key step for the governance of this issue but is under-explored in the community.Thus, we present ANAH, a bilingual dataset that offers ANalytical Annotation of Hallucinations in LLMs within Generative Question Answering.Each answer sentence in our dataset undergoes rigorous annotation, involving the retrieval of a reference fragment, the judgment of the hallucination type, and the correction of hallucinated content. ANAH consists of ~12k sentence-level annotations for ~4.3k LLM responses covering over 700 topics, constructed by a human-in-the-loop pipeline.Thanks to the fine granularity of the hallucination annotations, we can quantitatively confirm that the hallucinations of LLMs progressively accumulate in the answer and use ANAH to train and evaluate hallucination annotators. We conduct extensive experiments on studying generative and discriminative annotators and show that, although current open-source LLMs have difficulties in fine-grained hallucination annotation, the generative annotator trained with ANAH can surpass all open-source LLMs and GPT-3.5, obtain performance competitive with GPT-4, and exhibits better generalization ability on unseen questions.