This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Language Language Models (LLMs) face safety concerns due to potential misuse by malicious users. Recent red-teaming efforts have identified adversarial suffixes capable of jailbreaking LLMs using the gradient-based search algorithm Greedy Coordinate Gradient (GCG). However, GCG struggles with computational inefficiency, limiting further investigations regarding suffix transferability and scalability across models and data. In this work, we bridge the connection between search efficiency and suffix transferability. We propose a two-stage transfer learning framework, DeGCG, which decouples the search process into behavior-agnostic pre-searching and behavior-relevant post-searching. Specifically, we employ direct first target token optimization in pre-searching to facilitate the search process. We apply our approach to cross-model, cross-data, and self-transfer scenarios. Furthermore, we introduce an interleaved variant of our approach, i-DeGCG, which iteratively leverages self-transferability to accelerate the search process. Experiments on HarmBench demonstrate the efficiency of our approach across various models and domains. Notably, our i-DeGCG outperforms the baseline on Llama2-chat-7b with ASRs of 43.9 (+ 22.2) and 39.0 (+19.5) on valid and test sets, respectively. Further analysis on cross-model transfer indicates the pivotal role of first target token optimization in leveraging suffix transferability for efficient searching.
Large vision-language models (LVLMs) suffer from hallucination, resulting in misalignment between the output textual response and the input visual content. Recent research indicates that the over-reliance on the Large Language Model (LLM) backbone, as one cause of the LVLM hallucination, inherently introduces bias from language priors, leading to insufficient context attention to the visual inputs.We tackle this issue of hallucination by mitigating such over-reliance through preference learning. We propose Vision-guided Direct Preference Optimization (V-DPO) to enhance visual context learning at training time. To interpret the effectiveness and generalizability of V-DPO on different types of training data, we construct a synthetic dataset containing both response- and image-contrast preference pairs, compared against existing human-annotated hallucination samples. Our approach achieves significant improvements compared with baseline methods across various hallucination benchmarks. Our analysis indicates that V-DPO excels in learning from image-contrast preference data, demonstrating its superior ability to elicit and understand nuances of visual context. Our code is publicly available at https://github.com/YuxiXie/V-DPOhttps://github.com/YuxiXie/V-DPO.
Humans perform visual perception at multiple levels, including low-level object recognition and high-level semantic interpretation such as behavior understanding. Subtle differences in low-level details can lead to substantial changes in high-level perception. For example, substituting the shopping bag held by a person with a gun suggests violent behavior, implying criminal or violent activity. Despite significant advancements in various multimodal tasks, Large Visual Language Models (LVLMs) remain unexplored in their capabilities to conduct such multi-level visual perceptions.To investigate the perception gap between LVLMs and humans, we introduce MVP-Bench, the first visual–language benchmark systematically evaluating both low- and high-level visual perception of LVLMs. We construct MVP-Bench across natural and synthetic images to investigate how manipulated content influences model perception. Using MVP-Bench, we diagnose the visual perception of 10 open-source and 2 closed-source LVLMs, showing that high-level perception tasks significantly challenge existing LVLMs. The state-of-the-art GPT-4o only achieves an accuracy of 56% on Yes/No questions, compared with 74% in low-level scenarios. Furthermore, the performance gap between natural and manipulated images indicates that current LVLMs do not generalize in understanding the visual semantics of synthetic images as humans do.
We propose a new method, Adversarial In-Context Learning (adv-ICL), to optimize prompts for in-context learning (ICL). Inspired by adversarial learning, adv-ICL is implemented as a two-player game between a generator and discriminator, with LLMs acting as both. In each round, given an input prefixed by task instructions and several exemplars, the generator produces an output. The discriminator then classifies the generator’s input-output pair as model-generated or real data. Based on the discriminator’s loss, a prompt modifier LLM proposes possible edits to the generator and discriminator prompts, and the edits that most improve the adversarial loss are selected. We show that applying adv-ICL results in significant improvements over state-of-the-art prompt optimization techniques for both open and closed-source models on 13 generation and classification tasks including summarization, arithmetic reasoning, machine translation, data-to-text generation, and the MMLU and big-bench hard benchmarks. In addition, our method is computationally efficient, easily extensible to other LLMs and tasks, and effective in low-resource settings.
Chain-of-Thought (CoT) and Program-Aided Language Models (PAL) represent two distinct reasoning methods, each with its own strengths. CoT employs natural language, offering flexibility and interpretability, while PAL utilizes programming language, yielding more structured and rigorous logic. We introduce a model selection method to combine the best of both worlds by employing a large language model (LLM) to dynamically select between them. Our theoretical analysis underscores the feasibility of this method, which is further corroborated by empirical results. Our proposed method demonstrates significant performance improvements across eight reasoning datasets with Codex, ChatGPT, and GPT-4. Additionally, our method is complementary to self-consistency; when integrated, it can further enhance performance while significantly reducing computation costs. Moreover, we achieve new state-of-the-art results on GSM8K and SVAMP, with respective accuracies of 96.8% and 93.7%.
We introduce ECHo (Event Causality Inference via Human-Centric Reasoning), a diagnostic dataset of event causality inference grounded in visio-linguistic social scenarios. ECHo employs real-world human-centric deductive information building on a television crime drama. ECHo requires the Theory-of-Mind (ToM) ability to understand and reason about social interactions based on multimodal information. Using ECHo, we propose a unified Chain-of-Thought (CoT) framework to assess the reasoning capability of current AI systems. Our ToM-enhanced CoT pipeline accommodates various large foundation models in both zero-shot and few-shot visio-linguistic reasoning. We use this framework to scrutinize recent large foundation models such as InstructGPT and MiniGPT-4 on three diagnostic human-centric tasks. Further analysis demonstrates ECHo as a challenging dataset to expose imperfections and inconsistencies in reasoning. Our data and code are publicly available at [https://github.com/YuxiXie/ECHo](https://github.com/YuxiXie/ECHo).
Recent question generation (QG) approaches often utilize the sequence-to-sequence framework (Seq2Seq) to optimize the log likelihood of ground-truth questions using teacher forcing. However, this training objective is inconsistent with actual question quality, which is often reflected by certain global properties such as whether the question can be answered by the document. As such, we directly optimize for QG-specific objectives via reinforcement learning to improve question quality. We design three different rewards that target to improve the fluency, relevance, and answerability of generated questions. We conduct both automatic and human evaluations in addition to thorough analysis to explore the effect of each QG-specific reward. We find that optimizing on question-specific rewards generally leads to better performance in automatic evaluation metrics. However, only the rewards that correlate well with human judgement (e.g., relevance) lead to real improvement in question quality. Optimizing for the others, especially answerability, introduces incorrect bias to the model, resulting in poorer question quality. The code is publicly available at https://github.com/YuxiXie/RL-for-Question-Generation.
This paper proposes the problem of Deep Question Generation (DQG), which aims to generate complex questions that require reasoning over multiple pieces of information about the input passage. In order to capture the global structure of the document and facilitate reasoning, we propose a novel framework that first constructs a semantic-level graph for the input document and then encodes the semantic graph by introducing an attention-based GGNN (Att-GGNN). Afterward, we fuse the document-level and graph-level representations to perform joint training of content selection and question decoding. On the HotpotQA deep-question centric dataset, our model greatly improves performance over questions requiring reasoning over multiple facts, leading to state-of-the-art performance. The code is publicly available at https://github.com/WING-NUS/SG-Deep-Question-Generation.