This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
The rapid development of social media has led to an increase in online harassment and offensive speech, posing significant challenges for effective content moderation. Existing automated detection models often exhibit a bias towards predicting offensive speech based on specific vocabulary, which not only compromises model fairness but also potentially exacerbates biases against vulnerable and minority groups. Addressing these issues, this paper proposes a bias self-awareness and data self-iteration framework for mitigating model biases. This framework aims to “giving control back to models: enabling offensive language detection models to autonomously identify and mitigate biases” through bias self-awareness algorithms and self-iterative data augmentation method. Experimental results demonstrate that the proposed framework effectively reduces the false positive rate of models in both in-distribution and out-of-distribution tests, enhances model accuracy and fairness, and shows promising performance improvements in detecting offensive speech on larger-scale datasets.
Word sense disambiguation (WSD) can be viewed as two subtasks: textual word sense disambiguation (Textual-WSD) and visual word sense disambiguation (Visual-WSD). They aim to identify the most semantically relevant senses or images to a given context containing ambiguous target words. However, existing WSD models seldom address these two subtasks jointly due to lack of images in Textual-WSD datasets or lack of senses in Visual-WSD datasets. To bridge this gap, we propose PolCLIP, a unified image-text WSD model. By employing an image-text complementarity strategy, it not only simulates stable diffusion models to generate implicit visual representations for word senses but also simulates image captioning models to provide implicit textual representations for images. Additionally, a disambiguation-oriented image-sense dataset is constructed for the training objective of learning multimodal polysemy representations. To the best of our knowledge, PolCLIP is the first model that can cope with both Textual-WSD and Visual-WSD. Extensive experimental results on benchmarks demonstrate the effectiveness of our method, achieving a 2.53% F1-score increase over the state-of-the-art models on Textual-WSD and a 2.22% HR@1 improvement on Visual-WSD.
The advent of artificial intelligence has led to a growing emphasis on data-driven modeling in macroeconomics, with agent-based modeling (ABM) emerging as a prominent bottom-up simulation paradigm. In ABM, agents (*e.g.*, households, firms) interact within a macroeconomic environment, collectively generating market dynamics. Existing agent modeling typically employs predetermined rules or learning-based neural networks for decision-making. However, customizing each agent presents significant challenges, complicating the modeling of agent heterogeneity. Additionally, the influence of multi-period market dynamics and multifaceted macroeconomic factors are often overlooked in decision-making processes.In this work, we introduce **EconAgent**, a large language model-empowered agent with human-like characteristics for macroeconomic simulation. We first construct a simulation environment that incorporates various market dynamics driven by agents’ decisions regarding work and consumption. Through the perception module, we create heterogeneous agents with distinct decision-making mechanisms. Furthermore, we model the impact of macroeconomic trends using a memory module, which allows agents to reflect on past individual experiences and market dynamics.Simulation experiments show that EconAgent can make realistic decisions, leading to more reasonable macroeconomic phenomena compared to existing rule-based or learning-based agents. Our codes are released at https://github.com/tsinghua-fib-lab/ACL24-EconAgent.
Visual Word Sense Disambiguation (WSD), as a fine-grained image-text retrieval task, aims to identify the images that are relevant to ambiguous target words or phrases. However, the difficulties of limited contextual information and cross-linguistic background knowledge in text processing make this task challenging. To alleviate this issue, we propose a Fine-grained Contrastive Language-Image Learning (FCLL) model, which learns fine-grained image-text knowledge by employing a new fine-grained contrastive learning mechanism and enriches contextual information by establishing relationship between concepts and sentences. In addition, a new multimodal-multilingual knowledge base involving ambiguous target words is constructed for visual WSD. Experiment results on the benchmark datasets from SemEval-2023 Task 1 show that our FCLL ranks at the first in overall evaluation with an average H@1 of 72.56\% and an average MRR of 82.22\%. The results demonstrate that FCLL is effective in inference on fine-grained language-vision knowledge. Source codes and the knowledge base are publicly available at https://github.com/CharlesYang030/FCLL.
Knowledge graph (KG) embedding is a fundamental task in natural language processing, and various methods have been proposed to explore semantic patterns in distinctive ways. In this paper, we propose to learn an ensemble by leveraging existing methods in a relation-aware manner. However, exploring these semantics using relation-aware ensemble leads to a much larger search space than general ensemble methods. To address this issue, we propose a divide-search-combine algorithm RelEns-DSC that searches the relation-wise ensemble weights independently. This algorithm has the same computation cost as general ensemble methods but with much better performance. Experimental results on benchmark datasets demonstrate the effectiveness of the proposed method in efficiently searching relation-aware ensemble weights and achieving state-of-the-art embedding performance. The code is public at https://github.com/LARS-research/RelEns.
While hyper-parameters (HPs) are important for knowledge graph (KG) learning, existing methods fail to search them efficiently. To solve this problem, we first analyze the properties of different HPs and measure the transfer ability from small subgraph to the full graph. Based on the analysis, we propose an efficient two-stage search algorithm KGTuner, which efficiently explores HP configurations on small subgraph at the first stage and transfers the top-performed configurations for fine-tuning on the large full graph at the second stage. Experiments show that our method can consistently find better HPs than the baseline algorithms within the same time budget, which achieves 9.1% average relative improvement for four embedding models on the large-scale KGs in open graph benchmark. Our code is released in https://github.com/AutoML-Research/KGTuner.
Recently, knowledge-enhanced pre-trained language models (KEPLMs) improve context-aware representations via learning from structured relations in knowledge bases, and/or linguistic knowledge from syntactic or dependency analysis. Unlike English, there is a lack of high-performing open-source Chinese KEPLMs in the natural language processing (NLP) community to support various language understanding applications. In this paper, we revisit and advance the development of Chinese natural language understanding with a series of novel Chinese KEPLMs released in various parameter sizes, namely CKBERT (Chinese knowledge-enhanced BERT). Specifically, both relational and linguistic knowledge is effectively injected into CKBERT based on two novel pre-training tasks, i.e., linguistic-aware masked language modeling and contrastive multi-hop relation modeling. Based on the above two pre-training paradigms and our in-house implemented TorchAccelerator, we have pre-trained base (110M), large (345M) and huge (1.3B) versions of CKBERT efficiently on GPU clusters. Experiments demonstrate that CKBERT consistently outperforms strong baselines for Chinese over various benchmark NLP tasks and in terms of different model sizes.