Xiaochen Wang


2024

pdf
FEDKIM: Adaptive Federated Knowledge Injection into Medical Foundation Models
Xiaochen Wang | Jiaqi Wang | Houping Xiao | Jinghui Chen | Fenglong Ma
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Foundation models have demonstrated remarkable capabilities in handling diverse modalities and tasks, outperforming conventional artificial intelligence (AI) approaches that are highly task-specific and modality-reliant. In the medical domain, however, the development of comprehensive foundation models is constrained by limited access to diverse modalities and stringent privacy regulations. To address these constraints, this study introduces a novel knowledge injection approach, FedKIM, designed to scale the medical foundation model within a federated learning framework. FedKIM leverages lightweight local models to extract healthcare knowledge from private data and integrates this knowledge into a centralized foundation model using a designed adaptive Multitask Multimodal Mixture Of Experts (M3OE) module. This method not only preserves privacy but also enhances the model’s ability to handle complex medical tasks involving multiple modalities. Our extensive experiments across twelve tasks in seven modalities demonstrate the effectiveness of FedKIM in various settings, highlighting its potential to scale medical foundation models without direct access to sensitive data. Source codes are available at https://github.com/XiaochenWang-PSU/FedKIM.

pdf
Unity in Diversity: Collaborative Pre-training Across Multimodal Medical Sources
Xiaochen Wang | Junyu Luo | Jiaqi Wang | Yuan Zhong | Xiaokun Zhang | Yaqing Wang | Parminder Bhatia | Cao Xiao | Fenglong Ma
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Although pre-training has become a prevalent approach for addressing various biomedical tasks, the current efficacy of pre-trained models is hindered by their reliance on a limited scope of medical sources. This limitation results in data scarcity during pre-training and restricts the range of applicable downstream tasks. In response to these challenges, we develop MedCSP, a new pre-training strategy designed to bridge the gap between multimodal medical sources. MedCSP employs modality-level aggregation to unify patient data within individual sources. Additionally, leveraging temporal information and diagnosis history, MedCSP effectively captures explicit and implicit correlations between patients across different sources. To evaluate the proposed strategy, we conduct comprehensive experiments, where the experiments are based on 6 modalities from 2 real-world medical data sources, and MedCSP is evaluated on 4 tasks against 19 baselines, marking an initial yet essential step towards cross-source modeling in the medical domain.

pdf
CoRelation: Boosting Automatic ICD Coding through Contextualized Code Relation Learning
Junyu Luo | Xiaochen Wang | Jiaqi Wang | Aofei Chang | Yaqing Wang | Fenglong Ma
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Automatic International Classification of Diseases (ICD) coding plays a crucial role in the extraction of relevant information from clinical notes for proper recording and billing. One of the most important directions for boosting the performance of automatic ICD coding is modeling ICD code relations. However, current methods insufficiently model the intricate relationships among ICD codes and often overlook the importance of context in clinical notes. In this paper, we propose a novel approach, a contextualized and flexible framework, to enhance the learning of ICD code representations. Our approach, unlike existing methods, employs a dependent learning paradigm that considers the context of clinical notes in modeling all possible code relations. We evaluate our approach on six public ICD coding datasets and the experimental results demonstrate the effectiveness of our approach compared to state-of-the-art baselines.

2023

pdf
Hierarchical Pretraining on Multimodal Electronic Health Records
Xiaochen Wang | Junyu Luo | Jiaqi Wang | Ziyi Yin | Suhan Cui | Yuan Zhong | Yaqing Wang | Fenglong Ma
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Pretraining has proven to be a powerful technique in natural language processing (NLP), exhibiting remarkable success in various NLP downstream tasks. However, in the medical domain, existing pretrained models on electronic health records (EHR) fail to capture the hierarchical nature of EHR data, limiting their generalization capability across diverse downstream tasks using a single pretrained model. To tackle this challenge, this paper introduces a novel, general, and unified pretraining framework called MedHMP, specifically designed for hierarchically multimodal EHR data. The effectiveness of the proposed MedHMP is demonstrated through experimental results on eight downstream tasks spanning three levels. Comparisons against eighteen baselines further highlight the efficacy of our approach.

2022

pdf
Sentence-Level Resampling for Named Entity Recognition
Xiaochen Wang | Yue Wang
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

As a fundamental task in natural language processing, named entity recognition (NER) aims to locate and classify named entities in unstructured text. However, named entities are always the minority among all tokens in the text. This data imbalance problem presents a challenge to machine learning models as their learning objective is usually dominated by the majority of non-entity tokens. To alleviate data imbalance, we propose a set of sentence-level resampling methods where the importance of each training sentence is computed based on its tokens and entities. We study the generalizability of these resampling methods on a wide variety of NER models (CRF, Bi-LSTM, and BERT) across corpora from diverse domains (general, social, and medical texts). Extensive experiments show that the proposed methods improve span-level macro F1-scores of the evaluated NER models on multiple corpora, frequently outperforming sub-sentence-level resampling, data augmentation, and special loss functions such as focal and Dice loss.

2017

pdf
Course Concept Extraction in MOOCs via Embedding-Based Graph Propagation
Liangming Pan | Xiaochen Wang | Chengjiang Li | Juanzi Li | Jie Tang
Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Massive Open Online Courses (MOOCs), offering a new way to study online, are revolutionizing education. One challenging issue in MOOCs is how to design effective and fine-grained course concepts such that students with different backgrounds can grasp the essence of the course. In this paper, we conduct a systematic investigation of the problem of course concept extraction for MOOCs. We propose to learn latent representations for candidate concepts via an embedding-based method. Moreover, we develop a graph-based propagation algorithm to rank the candidate concepts based on the learned representations. We evaluate the proposed method using different courses from XuetangX and Coursera. Experimental results show that our method significantly outperforms all the alternative methods (+0.013-0.318 in terms of R-precision; p<<0.01, t-test).