Xiangyu Zhao


2024

pdf
UniFashion: A Unified Vision-Language Model for Multimodal Fashion Retrieval and Generation
Xiangyu Zhao | Yuehan Zhang | Wenlong Zhang | Xiao-Ming Wu
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

The fashion domain encompasses a variety of real-world multimodal tasks, including multimodal retrieval and multimodal generation. The rapid advancements in artificial intelligence generated content, particularly in technologies like large language models for text generation and diffusion models for visual generation, have sparked widespread research interest in applying these multimodal models in the fashion domain. However, tasks that use embeddings, such as image-to-text or text-to-image retrieval, have been largely ignored from this perspective due to the diverse nature of the multimodal fashion domain. And current research on multi-task single models lack focus on image generation. In this work, we present UniFashion, a unified framework that simultaneously tackles the challenges of multimodal generation and retrieval tasks within the fashion domain, integrating image generation with retrieval tasks and text generation tasks. UniFashion unifies embedding and generative tasks by integrating a diffusion model and LLM, enabling controllable and high-fidelity generation. Our model significantly outperforms previous single-task state-of-the-art models across diverse fashion tasks, and can be readily adapted to manage complex vision-language tasks. This work demonstrates the potential learning synergy between multimodal generation and retrieval, offering a promising direction for future research in the fashion domain.

pdf
Mitigating Hallucinations of Large Language Models in Medical Information Extraction via Contrastive Decoding
Derong Xu | Ziheng Zhang | Zhihong Zhu | Zhenxi Lin | Qidong Liu | Xian Wu | Tong Xu | Xiangyu Zhao | Yefeng Zheng | Enhong Chen
Findings of the Association for Computational Linguistics: EMNLP 2024

The impressive capabilities of large language models (LLMs) have attracted extensive interests of applying LLMs to medical field. However, the complex nature of clinical environments presents significant hallucination challenges for LLMs, hindering their widespread adoption. In this paper, we address these hallucination issues in the context of Medical Information Extraction (MIE) tasks by introducing ALternate Contrastive Decoding (ALCD). We begin by redefining MIE tasks as an identify-and-classify process. We then separate the identification and classification functions of LLMs by selectively masking the optimization of tokens during fine-tuning. During the inference stage, we alternately contrast output distributions derived from sub-task models. This approach aims to selectively enhance the identification and classification capabilities while minimizing the influence of other inherent abilities in LLMs. Additionally, we propose an alternate adaptive constraint strategy to more effectively adjust the scale and scope of contrastive tokens. Through comprehensive experiments on two different backbones and six diverse medical information extraction tasks, ALCD demonstrates significant improvements in resolving hallucination issues compared to conventional decoding methods.

pdf
MILL: Mutual Verification with Large Language Models for Zero-Shot Query Expansion
Pengyue Jia | Yiding Liu | Xiangyu Zhao | Xiaopeng Li | Changying Hao | Shuaiqiang Wang | Dawei Yin
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Query expansion, pivotal in search engines, enhances the representation of user information needs with additional terms. While existing methods expand queries using retrieved or generated contextual documents, each approach has notable limitations. Retrieval-based methods often fail to accurately capture search intent, particularly with brief or ambiguous queries. Generation-based methods, utilizing large language models (LLMs), generally lack corpus-specific knowledge and entail high fine-tuning costs. To address these gaps, we propose a novel zero-shot query expansion framework utilizing LLMs for mutual verification. Specifically, we first design a query-query-document generation method, leveraging LLMs’ zero-shot reasoning ability to produce diverse sub-queries and corresponding documents. Then, a mutual verification process synergizes generated and retrieved documents for optimal expansion. Our proposed method is fully zero-shot, and extensive experiments on three public benchmark datasets are conducted to demonstrate its effectiveness over existing methods. Our code is available online at https://github.com/Applied-Machine-Learning-Lab/MILL to ease reproduction.

pdf
EasyGen: Easing Multimodal Generation with BiDiffuser and LLMs
Xiangyu Zhao | Bo Liu | Qijiong Liu | Guangyuan Shi | Xiao-Ming Wu
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We present EasyGen, an efficient model designed to enhance multimodal understanding and generation by harnessing the capabilities of diffusion models and large language models (LLMs). Unlike existing multimodal models that predominately depend on encoders like CLIP or ImageBind and need ample amounts of training data to bridge modalities, EasyGen leverages BiDiffuser, a bidirectional conditional diffusion model, to foster more efficient modality interactions. EasyGen achieves text generation by training a projection layer linking BiDiffuser and an LLM, and facilities image generation by training an adapter to align the LLM’s text space with the BiDiffuser’s image space. Comprehensive quantitative and qualitative experiments show that EasyGen excels in data-efficient training, high-quality image generation, and extendibility, effectively addressing the challenges in multimodal generation.

pdf
Multi-perspective Improvement of Knowledge Graph Completion with Large Language Models
Derong Xu | Ziheng Zhang | Zhenxi Lin | Xian Wu | Zhihong Zhu | Tong Xu | Xiangyu Zhao | Yefeng Zheng | Enhong Chen
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Knowledge graph completion (KGC) is a widely used method to tackle incompleteness in knowledge graphs (KGs) by making predictions for missing links. Description-based KGC leverages pre-trained language models to learn entity and relation representations with their names or descriptions, which shows promising results. However, the performance of description-based KGC is still limited by the quality of text and the incomplete structure, as it lacks sufficient entity descriptions and relies solely on relation names, leading to sub-optimal results. To address this issue, we propose MPIKGC, a general framework to compensate for the deficiency of contextualized knowledge and improve KGC by querying large language models (LLMs) from various perspectives, which involves leveraging the reasoning, explanation, and summarization capabilities of LLMs to expand entity descriptions, understand relations, and extract structures, respectively. We conducted extensive evaluation of the effectiveness and improvement of our framework based on four description-based KGC models, for both link prediction and triplet classification tasks. All codes and generated data will be publicly available after review.

2019

pdf
A Semi-Supervised Stable Variational Network for Promoting Replier-Consistency in Dialogue Generation
Jinxin Chang | Ruifang He | Longbiao Wang | Xiangyu Zhao | Ting Yang | Ruifang Wang
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Neural sequence-to-sequence models for dialog systems suffer from the problem of favoring uninformative and non replier-specific responses due to lack of the global and relevant information guidance. The existing methods model the generation process by leveraging the neural variational network with simple Gaussian. However, the sampled information from latent space usually becomes useless due to the KL divergence vanishing issue, and the highly abstractive global variables easily dilute the personal features of replier, leading to a non replier-specific response. Therefore, a novel Semi-Supervised Stable Variational Network (SSVN) is proposed to address these issues. We use a unit hypersperical distribution, namely the von Mises-Fisher (vMF), as the latent space of a semi-supervised model, which can obtain the stable KL performance by setting a fixed variance and hence enhance the global information representation. Meanwhile, an unsupervised extractor is introduced to automatically distill the replier-tailored feature which is then injected into a supervised generator to encourage the replier-consistency. Experimental results on two large conversation datasets show that our model outperforms the competitive baseline models significantly, and can generate diverse and replier-specific responses.