Xi Ye


2024

pdf bib
Proceedings of the 2nd Workshop on Natural Language Reasoning and Structured Explanations (@ACL 2024)
Bhavana Dalvi Mishra | Greg Durrett | Peter Jansen | Ben Lipkin | Danilo Neves Ribeiro | Lionel Wong | Xi Ye | Wenting Zhao
Proceedings of the 2nd Workshop on Natural Language Reasoning and Structured Explanations (@ACL 2024)

pdf
Crafting In-context Examples according to LMs’ Parametric Knowledge
Yoonsang Lee | Pranav Atreya | Xi Ye | Eunsol Choi
Findings of the Association for Computational Linguistics: NAACL 2024

In-context learning can improve the performances of knowledge-rich tasks such as question answering. In such scenarios, in-context examples trigger a language model (LM) to surface information stored in its parametric knowledge. We study how to better construct in-context example sets, based on whether the model is aware of the in-context examples. We identify ‘known’ examples, where models can correctly answer from their parametric knowledge, and ‘unknown’ ones. Our experiments show that prompting with ‘unknown’ examples decreases the performance, potentially as it encourages hallucination rather than searching for its parametric knowledge. Constructing an in-context example set that presents both known and unknown information performs the best across diverse settings. We perform analysis on three multi-answer question answering datasets, which allows us to further study answer set ordering strategies based on the LM’s knowledge of each answer. Together, our study sheds light on how to best construct in-context example sets for knowledge-rich tasks.

pdf
Effective Large Language Model Adaptation for Improved Grounding and Citation Generation
Xi Ye | Ruoxi Sun | Sercan Arik | Tomas Pfister
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Large language models (LLMs) have achieved remarkable advancements in natural language understanding and generation. However, one major issue towards their widespread deployment in the real world is that they can generate “hallucinated” answers that are not factual.Towards this end, this paper focuses on improving LLMs by grounding their responses in retrieved passages and by providing citations. We propose a new framework, AGREE, Adaptation for GRounding EnhancEment, that improves the grounding from a holistic perspective. Our framework tunes LLMs to self-ground the claims in their responses and provide accurate citations to retrieved documents. This tuning on top of the pre-trained LLMs requires well-grounded responses (with citations) for paired queries, for which we introduce a method that can automatically construct such data from unlabeled queries. The self-grounding capability of tuned LLMs further grants them a test-time adaptation (TTA) capability that can actively retrieve passages to support the claims that have not been grounded, which iteratively improves the responses of LLMs. Across five datasets and two LLMs, our results show that the proposed tuning-based framework generates superior grounded responses with more accurate citations compared to prompting-based approaches and post-hoc citing-based approaches.

pdf
Explanation in the Era of Large Language Models
Zining Zhu | Hanjie Chen | Xi Ye | Qing Lyu | Chenhao Tan | Ana Marasovic | Sarah Wiegreffe
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 5: Tutorial Abstracts)

Explanation has long been a part of communications, where humans use language to elucidate each other and transmit information about the mechanisms of events. There have been numerous works that study the structures of the explanations and their utility to humans. At the same time, explanation relates to a collection of research directions in natural language processing (and more broadly, computer vision and machine learning) where researchers develop computational approaches to explain the (usually deep neural network) models. Explanation has received rising attention. In recent months, the advance of large language models (LLMs) provides unprecedented opportunities to leverage their reasoning abilities, both as tools to produce explanations and as the subjects of explanation analysis. On the other hand, the sheer sizes and the opaque nature of LLMs introduce challenges to the explanation methods. In this tutorial, we intend to review these opportunities and challenges of explanations in the era of LLMs, connect lines of research previously studied by different research groups, and hopefully spark thoughts of new research directions

2023

pdf
EEL: Efficiently Encoding Lattices for Reranking
Prasann Singhal | Jiacheng Xu | Xi Ye | Greg Durrett
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Standard decoding approaches for conditional text generation tasks typically search for an output hypothesis with high model probability, but this may not yield the best hypothesis according to human judgments of quality. Reranking to optimize for “downstream” metrics can more closely optimize for quality, but many metrics of interest are computed with pre-trained language models, which are slow to apply to large numbers of hypotheses. We explore an approach for reranking hypotheses by using Transformers to efficiently encode lattices of generated outputs, a method we call EEL. With a single Transformer pass over the entire lattice, we can approximately compute a contextualized representation of each token as if it were only part of a single hypothesis in isolation. We combine this approach with a new class of token-factored rerankers (TFRs) that allow for efficient extraction of high reranker-scoring hypotheses from the lattice. Empirically, our approach incurs minimal degradation error compared to the exponentially slower approach of encoding each hypothesis individually. When applying EEL with TFRs across three text generation tasks, our results show both substantial speedup compared to naive reranking and often better performance on downstream metrics than comparable approaches.

pdf
Complementary Explanations for Effective In-Context Learning
Xi Ye | Srinivasan Iyer | Asli Celikyilmaz | Veselin Stoyanov | Greg Durrett | Ramakanth Pasunuru
Findings of the Association for Computational Linguistics: ACL 2023

Large language models (LLMs) have exhibited remarkable capabilities in learning from expla- nations in prompts, but there has been limited understanding of exactly how these explana- tions function or why they are effective. This work aims to better understand the mechanisms by which explanations are used for in-context learning. We first study the impact of two dif- ferent factors on the performance of prompts with explanations: the computation trace (the way the solution is decomposed) and the natural language used to express the prompt. By per- turbing explanations on three controlled tasks, we show that both factors contribute to the ef- fectiveness of explanations. We further study how to form maximally effective sets of expla- nations for solving a given test query. We find that LLMs can benefit from the complemen- tarity of the explanation set: diverse reasoning skills shown by different exemplars can lead to better performance. Therefore, we propose a maximal marginal relevance-based exemplar selection approach for constructing exemplar sets that are both relevant as well as comple- mentary, which successfully improves the in- context learning performance across three real- world tasks on multiple LLMs.

pdf
Explanation Selection Using Unlabeled Data for Chain-of-Thought Prompting
Xi Ye | Greg Durrett
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Recent work has shown how to prompt large language models with explanations to obtain strong performance on textual reasoning tasks, i.e., the chain-of-thought paradigm. However, subtly different explanations can yield widely varying downstream task accuracy. Explanations that have not been “tuned” for a task, such as off-the-shelf explanations written by non-experts, may lead to mediocre performance. This paper tackles the problem of how to optimize explanation-infused prompts in a blackbox fashion. We first generate sets of candidate explanations for each example in the prompt using a leave-one-out scheme, then find an effective combination of these explanations with a two-stage framework. We first evaluate explanations for each in-context example in isolation according to two proxy metrics, log likelihood and accuracy on new examples. Then, we search over combinations of explanations to find one that yields high performance against a silver-labeled development set. Across four textual reasoning tasks spanning question answering, mathematical reasoning, and natural language inference, results show that our proxy metrics correlate with ground truth accuracy and our overall method can effectively improve prompts over crowdworker annotations and naive search strategies

pdf
Assessing Out-of-Domain Language Model Performance from Few Examples
Prasann Singhal | Jarad Forristal | Xi Ye | Greg Durrett
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

While pretrained language models have exhibited impressive generalization capabilities, they still behave unpredictably under certain domain shifts. In particular, a model may learn a reasoning process on in-domain training data that does not hold for out-of-domain test data. We address the task of predicting out-of-domain (OOD) performance in a few-shot fashion: given a few target-domain examples and a set of models with similar training performance, can we understand how these models will perform on OOD test data? We benchmark the performance on this task when looking at model accuracy on the few-shot examples, then investigate how to incorporate analysis of the models’ behavior using feature attributions to better tackle this problem. Specifically, we explore a set of factors designed to reveal model agreement with certain pathological heuristics that may indicate worse generalization capabilities. On textual entailment, paraphrase recognition, and a synthetic classification task, we show that attribution-based factors can help rank relative model OOD performance. However, accuracy on a few-shot test set is a surprisingly strong baseline, particularly when the system designer does not have in-depth prior knowledge about the domain shift.

2022

pdf
RNG-KBQA: Generation Augmented Iterative Ranking for Knowledge Base Question Answering
Xi Ye | Semih Yavuz | Kazuma Hashimoto | Yingbo Zhou | Caiming Xiong
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Existing KBQA approaches, despite achieving strong performance on i.i.d. test data, often struggle in generalizing to questions involving unseen KB schema items. Prior ranking-based approaches have shown some success in generalization, but suffer from the coverage issue. We present RnG-KBQA, a Rank-and-Generate approach for KBQA, which remedies the coverage issue with a generation model while preserving a strong generalization capability. Our approach first uses a contrastive ranker to rank a set of candidate logical forms obtained by searching over the knowledge graph. It then introduces a tailored generation model conditioned on the question and the top-ranked candidates to compose the final logical form. We achieve new state-of-the-art results on GrailQA and WebQSP datasets. In particular, our method surpasses the prior state-of-the-art by a large margin on the GrailQA leaderboard. In addition, RnG-KBQA outperforms all prior approaches on the popular WebQSP benchmark, even including the ones that use the oracle entity linking. The experimental results demonstrate the effectiveness of the interplay between ranking and generation, which leads to the superior performance of our proposed approach across all settings with especially strong improvements in zero-shot generalization.

pdf
Can Explanations Be Useful for Calibrating Black Box Models?
Xi Ye | Greg Durrett
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

NLP practitioners often want to take existing trained models and apply them to data from new domains. While fine-tuning or few-shot learning can be used to adapt a base model, there is no single recipe for making these techniques work; moreover, one may not have access to the original model weights if it is deployed as a black box. We study how to improve a black box model’s performance on a new domain by leveraging explanations of the model’s behavior. Our approach first extracts a set of features combining human intuition about the task with model attributions generated by black box interpretation techniques, then uses a simple calibrator, in the form of a classifier, to predict whether the base model was correct or not. We experiment with our method on two tasks, extractive question answering and natural language inference, covering adaptation from several pairs of domains with limited target-domain data. The experimental results across all the domain pairs show that explanations are useful for calibrating these models, boosting accuracy when predictions do not have to be returned on every example. We further show that the calibration model transfers to some extent between tasks.

2021

pdf
Optimal Neural Program Synthesis from Multimodal Specifications
Xi Ye | Qiaochu Chen | Isil Dillig | Greg Durrett
Findings of the Association for Computational Linguistics: EMNLP 2021

Multimodal program synthesis, which leverages different types of user input to synthesize a desired program, is an attractive way to scale program synthesis to challenging settings; however, it requires integrating noisy signals from the user, like natural language, with hard constraints on the program’s behavior. This paper proposes an optimal neural synthesis approach where the goal is to find a program that satisfies user-provided constraints while also maximizing the program’s score with respect to a neural model. Specifically, we focus on multimodal synthesis tasks in which the user intent is expressed using a combination of natural language (NL) and input-output examples. At the core of our method is a top-down recurrent neural model that places distributions over abstract syntax trees conditioned on the NL input. This model not only allows for efficient search over the space of syntactically valid programs, but it allows us to leverage automated program analysis techniques for pruning the search space based on infeasibility of partial programs with respect to the user’s constraints. The experimental results on a multimodal synthesis dataset (StructuredRegex) show that our method substantially outperforms prior state-of-the-art techniques in terms of accuracy and efficiency, and finds model-optimal programs more frequently.

pdf
Connecting Attributions and QA Model Behavior on Realistic Counterfactuals
Xi Ye | Rohan Nair | Greg Durrett
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

When a model attribution technique highlights a particular part of the input, a user might understand this highlight as making a statement about counterfactuals (Miller, 2019): if that part of the input were to change, the model’s prediction might change as well. This paper investigates how well different attribution techniques align with this assumption on realistic counterfactuals in the case of reading comprehension (RC). RC is a particularly challenging test case, as token-level attributions that have been extensively studied in other NLP tasks such as sentiment analysis are less suitable to represent the reasoning that RC models perform. We construct counterfactual sets for three different RC settings, and through heuristics that can connect attribution methods’ outputs to high-level model behavior, we can evaluate how useful different attribution methods and even different formats are for understanding counterfactuals. We find that pairwise attributions are better suited to RC than token-level attributions across these different RC settings, with our best performance coming from a modification that we propose to an existing pairwise attribution method.

2020

pdf
Benchmarking Multimodal Regex Synthesis with Complex Structures
Xi Ye | Qiaochu Chen | Isil Dillig | Greg Durrett
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Existing datasets for regular expression (regex) generation from natural language are limited in complexity; compared to regex tasks that users post on StackOverflow, the regexes in these datasets are simple, and the language used to describe them is not diverse. We introduce StructuredRegex, a new regex synthesis dataset differing from prior ones in three aspects. First, to obtain structurally complex and realistic regexes, we generate the regexes using a probabilistic grammar with pre-defined macros observed from real-world StackOverflow posts. Second, to obtain linguistically diverse natural language descriptions, we show crowdworkers abstract depictions of the underlying regex and ask them to describe the pattern they see, rather than having them paraphrase synthetic language. Third, we augment each regex example with a collection of strings that are and are not matched by the ground truth regex, similar to how real users give examples. Our quantitative and qualitative analysis demonstrates the advantages of StructuredRegex over prior datasets. Further experimental results using various multimodal synthesis techniques highlight the challenge presented by our dataset, including non-local constraints and multi-modal inputs.

pdf
Sketch-Driven Regular Expression Generation from Natural Language and Examples
Xi Ye | Qiaochu Chen | Xinyu Wang | Isil Dillig | Greg Durrett
Transactions of the Association for Computational Linguistics, Volume 8

Recent systems for converting natural language descriptions into regular expressions (regexes) have achieved some success, but typically deal with short, formulaic text and can only produce simple regexes. Real-world regexes are complex, hard to describe with brief sentences, and sometimes require examples to fully convey the user’s intent. We present a framework for regex synthesis in this setting where both natural language (NL) and examples are available. First, a semantic parser (either grammar-based or neural) maps the natural language description into an intermediate sketch, which is an incomplete regex containing holes to denote missing components. Then a program synthesizer searches over the regex space defined by the sketch and finds a regex that is consistent with the given string examples. Our semantic parser can be trained purely from weak supervision based on correctness of the synthesized regex, or it can leverage heuristically derived sketches. We evaluate on two prior datasets (Kushman and Barzilay 2013; Locascio et al. 2016) and a real-world dataset from Stack Overflow. Our system achieves state-of-the-art performance on the prior datasets and solves 57% of the real-world dataset, which existing neural systems completely fail on.1