Wenxuan Zhou


2024

pdf
mDPO: Conditional Preference Optimization for Multimodal Large Language Models
Fei Wang | Wenxuan Zhou | James Y. Huang | Nan Xu | Sheng Zhang | Hoifung Poon | Muhao Chen
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Direct preference optimization (DPO) has shown to be an effective method for large language model (LLM) alignment. Recent works have attempted to apply DPO to multimodal scenarios but have found it challenging to achieve consistent improvement. Through a comparative experiment, we identify the unconditional preference problem in multimodal preference optimization, where the model overlooks the image condition. To address this problem, we propose mDPO, a multimodal DPO objective that prevents the over-prioritization of language-only preferences by also optimizing image preference. Moreover, we introduce a reward anchor that forces the reward to be positive for chosen responses, thereby avoiding the decrease in their likelihood—an intrinsic problem of relative preference optimization. Experiments on two multimodal LLMs of different sizes and three widely used benchmarks demonstrate that mDPO effectively addresses the unconditional preference problem in multimodal preference optimization and significantly improves model performance, particularly in reducing hallucination.

pdf
WPO: Enhancing RLHF with Weighted Preference Optimization
Wenxuan Zhou | Ravi Agrawal | Shujian Zhang | Sathish Reddy Indurthi | Sanqiang Zhao | Kaiqiang Song | Silei Xu | Chenguang Zhu
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Reinforcement learning from human feedback (RLHF) is a promising solution to align large language models (LLMs) more closely with human values. Off-policy preference optimization, where the preference data is obtained from other models, is widely adopted due to its cost efficiency and scalability. However, off-policy preference optimization often suffers from a distributional gap between the policy used for data collection and the target policy, leading to suboptimal optimization. In this paper, we propose a novel strategy to mitigate this problem by simulating on-policy learning with off-policy preference data. Our Weighted Preference Optimization (WPO) method adapts off-policy data to resemble on-policy data more closely by reweighting preference pairs according to their probability under the current policy. This method not only addresses the distributional gap problem but also enhances the optimization process without incurring additional costs. We validate our method on instruction following benchmarks including Alpaca Eval 2 and MT-bench. WPO not only outperforms Direct Preference Optimization (DPO) by up to 5.6% on Alpaca Eval 2 but also establishes a remarkable length-controlled winning rate against GPT-4-turbo of 76.7% based on Gemma-2-9b-it. We release the code and models at https://github.com/wzhouad/WPO.

pdf
On-the-fly Denoising for Data Augmentation in Natural Language Understanding
Tianqing Fang | Wenxuan Zhou | Fangyu Liu | Hongming Zhang | Yangqiu Song | Muhao Chen
Findings of the Association for Computational Linguistics: EACL 2024

Data Augmentation (DA) is frequently used to provide additional training data without extra human annotation automatically.However, data augmentation may introduce noisy data that impairs training.To guarantee the quality of augmented data,existing methods either assume no noise exists in the augmented data and adopt consistency training or use simple heuristics such as training loss and diversity constraints to filter out “noisy” data.However, those filtered examples may still contain useful information, and dropping them completely causes a loss of supervision signals.In this paper, based on the assumption that the original dataset is cleaner than the augmented data, we propose an on-the-fly denoising technique for data augmentation that learns from soft augmented labels provided by an organic teacher model trained on the cleaner original data.To further prevent overfitting on noisy labels, a simple self-regularization module is applied to force the model prediction to be consistent across two distinct dropouts.Our method can be applied to general augmentation techniques and consistently improve the performance on both text classification and question-answering tasks.

pdf
Getting Sick After Seeing a Doctor? Diagnosing and Mitigating Knowledge Conflicts in Event Temporal Reasoning
Tianqing Fang | Zhaowei Wang | Wenxuan Zhou | Hongming Zhang | Yangqiu Song | Muhao Chen
Findings of the Association for Computational Linguistics: NAACL 2024

Event temporal reasoning aims at identifying the temporal relations between two or more events from narratives. However, knowledge conflicts arise when there is a mismatch between the actual temporal relations of events in the context and the prior knowledge or biases learned by the model. In this paper, we propose to detect knowledge-conflict examples in event temporal reasoning using bias indicators, which include event relation prior bias, tense bias, narrative bias, and dependency bias. We define conflict examples as those where event relations are opposite to biased or prior relations. To mitigate event-related knowledge conflicts, we introduce a Counterfactual Data Augmentation (CDA) based method that can be applied to both Pre-trained Language Models (PLMs) and Large Language Models (LLMs) either as additional training data or demonstrations for In- Context Learning. Experiments suggest both PLMs and LLMs suffer from knowledge conflicts in event temporal reasoning, and CDA has the potential for reducing hallucination and improving model performance.

pdf
Contrastive Instruction Tuning
Tianyi Yan | Fei Wang | James Y. Huang | Wenxuan Zhou | Fan Yin | Aram Galstyan | Wenpeng Yin | Muhao Chen
Findings of the Association for Computational Linguistics: ACL 2024

Instruction tuning has been used as a promising approach to improve the performance of large language models (LLMs) on unseen tasks. However, current LLMs exhibit limited robustness to unseen instructions, generating inconsistent outputs when the same instruction is phrased with slightly varied forms or language styles. This behavior indicates LLMs’ lack of robustness to textual variations and generalizability to unseen instructions, potentially leading to trustworthiness issues. Accordingly, we propose Contrastive Instruction Tuning, which maximizes the similarity between the hidden representations of semantically equivalent instruction-instance pairs while minimizing the similarity between semantically different ones. To facilitate this approach, we augment the existing FLAN collection by paraphrasing task instructions. Experiments on the PromptBench benchmark show that CoIN consistently improves LLMs’ robustness to unseen instructions with variations across character, word, sentence, and semantic levels by an average of +2.5% in accuracy.

pdf
Improving Multilingual Instruction Finetuning via Linguistically Natural and Diverse Datasets
Sathish Reddy Indurthi | Wenxuan Zhou | Shamil Chollampatt | Ravi Agrawal | Kaiqiang Song | Lingxiao Zhao | Chenguang Zhu
Findings of the Association for Computational Linguistics: EMNLP 2024

Advancements in Large Language Models (LLMs) have significantly enhanced instruction-following capabilities. However, most Instruction Fine-Tuning (IFT) datasets are predominantly in English, limiting model performance in other languages. Traditional methods for creating multilingual IFT datasets—such as translating existing English IFT datasets or converting existing NLP datasets into IFT datasets by templating—struggle to capture linguistic nuances and ensure prompt (instruction) diversity. To address this issue, we propose a novel method for collecting multilingual IFT datasets that preserves linguistic naturalness and ensures prompt diversity. This approach leverages English-focused LLMs, monolingual corpora, and a scoring function to create high-quality, diversified IFT datasets in multiple languages. Experiments demonstrate that LLMs finetuned using these IFT datasets show notable improvements in both generative and discriminative tasks, indicating enhanced language comprehension by LLMs in non-English contexts. Specifically, on the multilingual summarization task, LLMs using our IFT dataset achieved 17.57% and 15.23% improvements over LLMs fine-tuned with translation-based and template-based datasets, respectively.

2023

pdf
Continual Contrastive Finetuning Improves Low-Resource Relation Extraction
Wenxuan Zhou | Sheng Zhang | Tristan Naumann | Muhao Chen | Hoifung Poon
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Relation extraction (RE), which has relied on structurally annotated corpora for model training, has been particularly challenging in low-resource scenarios and domains. Recent literature has tackled low-resource RE by self-supervised learning, where the solution involves pretraining the entity pair embedding by RE-based objective and finetuning on labeled data by classification-based objective. However, a critical challenge to this approach is the gap in objectives, which prevents the RE model from fully utilizing the knowledge in pretrained representations. In this paper, we aim at bridging the gap and propose to pretrain and finetune the RE model using consistent objectives of contrastive learning. Since in this kind of representation learning paradigm, one relation may easily form multiple clusters in the representation space, we further propose a multi-center contrastive loss that allows one relation to form multiple clusters to better align with pretraining. Experiments on two document-level RE datasets, BioRED and Re-DocRED, demonstrate the effectiveness of our method. Particularly, when using 1% end-task training data, our method outperforms PLM-based RE classifier by 10.5% and 6.1% on the two datasets, respectively.

pdf
How Fragile is Relation Extraction under Entity Replacements?
Yiwei Wang | Bryan Hooi | Fei Wang | Yujun Cai | Yuxuan Liang | Wenxuan Zhou | Jing Tang | Manjuan Duan | Muhao Chen
Proceedings of the 27th Conference on Computational Natural Language Learning (CoNLL)

Relation extraction (RE) aims to extract the relations between entity names from the textual context. In principle, textual context determines the ground-truth relation and the RE models should be able to correctly identify the relations reflected by the textual context. However, existing work has found that the RE models memorize the entity name patterns to make RE predictions while ignoring the textual context. This motivates us to raise the question: are RE models robust to the entity replacements? In this work, we operate the random and type-constrained entity replacements over the RE instances in TACRED and evaluate the state-of-the-art RE models under the entity replacements. We observe the 30% - 50% F1 score drops on the state-of-the-art RE models under entity replacements. These results suggest that we need more efforts to develop effective RE models robust to entity replacements. We release the source code at https://github.com/wangywUST/RobustRE.

pdf
Robust Natural Language Understanding with Residual Attention Debiasing
Fei Wang | James Y. Huang | Tianyi Yan | Wenxuan Zhou | Muhao Chen
Findings of the Association for Computational Linguistics: ACL 2023

Natural language understanding (NLU) models often suffer from unintended dataset biases. Among bias mitigation methods, ensemble-based debiasing methods, especially product-of-experts (PoE), have stood out for their impressive empirical success. However, previous ensemble-based debiasing methods typically apply debiasing on top-level logits without directly addressing biased attention patterns. Attention serves as the main media of feature interaction and aggregation in PLMs and plays a crucial role in providing robust prediction. In this paper, we propose REsidual Attention Debiasing (READ), an end-to-end debiasing method that mitigates unintended biases from attention. Experiments on three NLU benchmarks show that READ significantly improves the OOD performance of BERT-based models, including +12.9% accuracy on HANS, +11.0% accuracy on FEVER-Symmetric, and +2.7% F1 on PAWS. Detailed analyses demonstrate the crucial role of unbiased attention in robust NLU models and that READ effectively mitigates biases in attention.

pdf
Multi-hop Evidence Retrieval for Cross-document Relation Extraction
Keming Lu | I-Hung Hsu | Wenxuan Zhou | Mingyu Derek Ma | Muhao Chen
Findings of the Association for Computational Linguistics: ACL 2023

Relation Extraction (RE) has been extended to cross-document scenarios because many relations are not simply described in a single document. This inevitably brings the challenge of efficient open-space evidence retrieval to support the inference of cross-document relations,along with the challenge of multi-hop reasoning on top of entities and evidence scattered in an open set of documents. To combat these challenges, we propose Mr.Cod (Multi-hop evidence retrieval for Cross-document relation extraction), which is a multi-hop evidence retrieval method based on evidence path mining and ranking. We explore multiple variants of retrievers to show evidence retrieval is essential in cross-document RE.We also propose a contextual dense retriever for this setting. Experiments on CodRED show that evidence retrieval with Mr.Cod effectively acquires cross-document evidence and boosts end-to-end RE performance in both closed and open settings.

pdf
Context-faithful Prompting for Large Language Models
Wenxuan Zhou | Sheng Zhang | Hoifung Poon | Muhao Chen
Findings of the Association for Computational Linguistics: EMNLP 2023

Large language models (LLMs) encode parametric knowledge about world facts and have shown remarkable performance in knowledge-driven NLP tasks. However, their reliance on parametric knowledge may cause them to overlook contextual cues, leading to incorrect predictions in context-sensitive NLP tasks (e.g., knowledge acquisition tasks). In this paper, we seek to assess and enhance LLMs’ contextual faithfulness in two aspects: knowledge conflict and prediction with abstention. We demonstrate that LLMs’ faithfulness can be significantly improved using carefully designed prompting strategies. In particular, we identify opinion-based prompts and counterfactual demonstrations as the most effective methods. Opinion-based prompts reframe the context as a narrator’s statement and inquire about the narrator’s opinions, while counterfactual demonstrations use instances containing false facts to improve faithfulness in knowledge conflict situations. Neither technique requires additional training. We conduct experiments on three datasets of two standard NLP tasks, machine reading comprehension and relation extraction, and the results demonstrate significant improvement in faithfulness to contexts. Code and data are released at https://github.com/wzhouad/context-faithful-llm.

pdf
A Causal View of Entity Bias in (Large) Language Models
Fei Wang | Wenjie Mo | Yiwei Wang | Wenxuan Zhou | Muhao Chen
Findings of the Association for Computational Linguistics: EMNLP 2023

Entity bias widely affects pretrained (large) language models, causing them to rely on (biased) parametric knowledge to make unfaithful predictions. Although causality-inspired methods have shown great potential to mitigate entity bias, it is hard to precisely estimate the parameters of underlying causal models in practice. The rise of black-box LLMs also makes the situation even worse, because of their inaccessible parameters and uncalibrated logits. To address these problems, we propose a specific structured causal model (SCM) whose parameters are comparatively easier to estimate. Building upon this SCM, we propose causal intervention techniques to mitigate entity bias for both white-box and black-box settings. The proposed causal intervention perturbs the original entity with neighboring entities. This intervention reduces specific biasing information pertaining to the original entity while still preserving sufficient semantic information from similar entities. Under the white-box setting, our training-time intervention improves OOD performance of PLMs on relation extraction (RE) and machine reading comprehension (MRC) by 5.7 points and by 9.1 points, respectively. Under the black-box setting, our in-context intervention effectively reduces the entity-based knowledge conflicts of GPT-3.5, achieving up to 20.5 points of improvement of exact match accuracy on MRC and up to 17.6 points of reduction in memorization ratio on RE.

pdf
GeoLM: Empowering Language Models for Geospatially Grounded Language Understanding
Zekun Li | Wenxuan Zhou | Yao-Yi Chiang | Muhao Chen
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Humans subconsciously engage in geospatial reasoning when reading articles. We recognize place names and their spatial relations in text and mentally associate them with their physical locations on Earth. Although pretrained language models can mimic this cognitive process using linguistic context, they do not utilize valuable geospatial information in large, widely available geographical databases, e.g., OpenStreetMap. This paper introduces GeoLM, a geospatially grounded language model that enhances the understanding of geo-entities in natural language. GeoLM leverages geo-entity mentions as anchors to connect linguistic information in text corpora with geospatial information extracted from geographical databases. GeoLM connects the two types of context through contrastive learning and masked language modeling. It also incorporates a spatial coordinate embedding mechanism to encode distance and direction relations to capture geospatial context. In the experiment, we demonstrate that GeoLM exhibits promising capabilities in supporting toponym recognition, toponym linking, relation extraction, and geo-entity typing, which bridge the gap between natural language processing and geospatial sciences. The code is publicly available at https://github.com/knowledge-computing/geolm.

pdf
Parameter-Efficient Tuning with Special Token Adaptation
Xiaocong Yang | James Y. Huang | Wenxuan Zhou | Muhao Chen
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

Parameter-efficient tuning aims at updating only a small subset of parameters when adapting a pretrained model to downstream tasks. In this work, we introduce PASTA, in which we only modify the special token representations (e.g., [SEP] and [CLS] in BERT) before the self-attention module at each layer in Transformer-based models. PASTA achieves comparable performance to fine-tuning in natural language understanding tasks including text classification and NER with up to only 0.029% of total parameters trained. Our work not only provides a simple yet effective way of parameter-efficient tuning, which has a wide range of practical applications when deploying finetuned models for multiple tasks, but also demonstrates the pivotal role of special tokens in pretrained language models.

2022

pdf
Should We Rely on Entity Mentions for Relation Extraction? Debiasing Relation Extraction with Counterfactual Analysis
Yiwei Wang | Muhao Chen | Wenxuan Zhou | Yujun Cai | Yuxuan Liang | Dayiheng Liu | Baosong Yang | Juncheng Liu | Bryan Hooi
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Recent literature focuses on utilizing the entity information in the sentence-level relation extraction (RE), but this risks leaking superficial and spurious clues of relations. As a result, RE still suffers from unintended entity bias, i.e., the spurious correlation between entity mentions (names) and relations. Entity bias can mislead the RE models to extract the relations that do not exist in the text. To combat this issue, some previous work masks the entity mentions to prevent the RE models from over-fitting entity mentions. However, this strategy degrades the RE performance because it loses the semantic information of entities. In this paper, we propose the CoRE (Counterfactual Analysis based Relation Extraction) debiasing method that guides the RE models to focus on the main effects of textual context without losing the entity information. We first construct a causal graph for RE, which models the dependencies between variables in RE models. Then, we propose to conduct counterfactual analysis on our causal graph to distill and mitigate the entity bias, that captures the causal effects of specific entity mentions in each instance. Note that our CoRE method is model-agnostic to debias existing RE systems during inference without changing their training processes. Extensive experimental results demonstrate that our CoRE yields significant gains on both effectiveness and generalization for RE. The source code is provided at: https://github.com/vanoracai/CoRE.

pdf
Answer Consolidation: Formulation and Benchmarking
Wenxuan Zhou | Qiang Ning | Heba Elfardy | Kevin Small | Muhao Chen
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Current question answering (QA) systems primarily consider the single-answer scenario, where each question is assumed to be paired with one correct answer. However, in many real-world QA applications, multiple answer scenarios arise where consolidating answers into a comprehensive and non-redundant set of answers is a more efficient user interface. In this paper, we formulate the problem of answer consolidation, where answers are partitioned into multiple groups, each representing different aspects of the answer set. Then, given this partitioning, a comprehensive and non-redundant set of answers can be constructed by picking one answer from each group. To initiate research on answer consolidation, we construct a dataset consisting of 4,699 questions and 24,006 sentences and evaluate multiple models. Despite a promising performance achieved by the best-performing supervised models, we still believe this task has room for further improvements.

pdf
Prix-LM: Pretraining for Multilingual Knowledge Base Construction
Wenxuan Zhou | Fangyu Liu | Ivan Vulić | Nigel Collier | Muhao Chen
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Knowledge bases (KBs) contain plenty of structured world and commonsense knowledge. As such, they often complement distributional text-based information and facilitate various downstream tasks. Since their manual construction is resource- and time-intensive, recent efforts have tried leveraging large pretrained language models (PLMs) to generate additional monolingual knowledge facts for KBs. However, such methods have not been attempted for building and enriching multilingual KBs. Besides wider application, such multilingual KBs can provide richer combined knowledge than monolingual (e.g., English) KBs. Knowledge expressed in different languages may be complementary and unequally distributed: this implies that the knowledge available in high-resource languages can be transferred to low-resource ones. To achieve this, it is crucial to represent multilingual knowledge in a shared/unified space. To this end, we propose a unified representation model, Prix-LM, for multilingual KB construction and completion. We leverage two types of knowledge, monolingual triples and cross-lingual links, extracted from existing multilingual KBs, and tune a multilingual language encoder XLM-R via a causal language modeling objective. Prix-LM integrates useful multilingual and KB-based factual knowledge into a single model. Experiments on standard entity-related tasks, such as link prediction in multiple languages, cross-lingual entity linking and bilingual lexicon induction, demonstrate its effectiveness, with gains reported over strong task-specialised baselines.

pdf
GraphCache: Message Passing as Caching for Sentence-Level Relation Extraction
Yiwei Wang | Muhao Chen | Wenxuan Zhou | Yujun Cai | Yuxuan Liang | Bryan Hooi
Findings of the Association for Computational Linguistics: NAACL 2022

Entity types and textual context are essential properties for sentence-level relation extraction (RE). Existing work only encodes these properties within individual instances, which limits the performance of RE given the insufficient features in a single sentence. In contrast, we model these properties from the whole dataset and use the dataset-level information to enrich the semantics of every instance. We propose the GraphCache (Graph Neural Network as Caching) module, that propagates the features across sentences to learn better representations for RE. GraphCache aggregates the features from sentences in the whole dataset to learn global representations of properties, and use them to augment the local features within individual sentences. The global property features act as dataset-level prior knowledge for RE, and a complement to the sentence-level features. Inspired by the classical caching technique in computer systems, we develop GraphCache to update the property representations in an online manner. Overall, GraphCache yields significant effectiveness gains on RE and enables efficient message passing across all sentences in the dataset.

pdf
Sharpness-Aware Minimization with Dynamic Reweighting
Wenxuan Zhou | Fangyu Liu | Huan Zhang | Muhao Chen
Findings of the Association for Computational Linguistics: EMNLP 2022

Deep neural networks are often overparameterized and may not easily achieve model generalization. Adversarial training has shown effectiveness in improving generalization by regularizing the change of loss on top of adversarially chosen perturbations. The recently proposed sharpness-aware minimization (SAM) algorithm conducts adversarial weight perturbation, encouraging the model to converge to a flat minima. SAM finds a common adversarial weight perturbation per-batch. Although per-instance adversarial weight perturbations are stronger adversaries and can potentially lead to better generalization performance, their computational cost is very high and thus it is impossible to use per-instance perturbations efficiently in SAM. In this paper, we tackle this efficiency bottleneck and propose sharpness-aware minimization with dynamic reweighting (delta-SAM). Our theoretical analysis motivates that it is possible to approach the stronger, per-instance adversarial weight perturbations using reweighted per-batch weight perturbations. delta-SAM dynamically reweights perturbation within each batch according to the theoretically principled weighting factors, serving as a good approximation to per-instance perturbation. Experiments on various natural language understanding tasks demonstrate the effectiveness of delta-SAM.

pdf
Summarization as Indirect Supervision for Relation Extraction
Keming Lu | I-Hung Hsu | Wenxuan Zhou | Mingyu Derek Ma | Muhao Chen
Findings of the Association for Computational Linguistics: EMNLP 2022

Relation extraction (RE) models have been challenged by their reliance on training data with expensive annotations. Considering that summarization tasks aim at acquiring concise expressions of synoptical information from the longer context, these tasks naturally align with the objective of RE, i.e., extracting a kind of synoptical information that describes the relation of entity mentions. We present SuRE, which converts RE into a summarization formulation. SuRE leads to more precise and resource-efficient RE based on indirect supervision from summarization tasks. To achieve this goal, we develop sentence and relation conversion techniques that essentially bridge the formulation of summarization and RE tasks. We also incorporate constraint decoding techniques with Trie scoring to further enhance summarization-based RE with robust inference. Experiments on three RE datasets demonstrate the effectiveness of SuRE in both full-dataset and low-resource settings, showing that summarization is a promising source of indirect supervision signals to improve RE models.

pdf
An Improved Baseline for Sentence-level Relation Extraction
Wenxuan Zhou | Muhao Chen
Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

Sentence-level relation extraction (RE) aims at identifying the relationship between two entities in a sentence. Many efforts have been devoted to this problem, while the best performing methods are still far from perfect. In this paper, we revisit two problems that affect the performance of existing RE models, namely entity representation and noisy or ill-defined labels. Our improved RE baseline, incorporated with entity representations with typed markers, achieves an F1 of 74.6% on TACRED, significantly outperforms previous SOTA methods. Furthermore, the presented new baseline achieves an F1 of 91.1% on the refined Re-TACRED dataset, demonstrating that the pretrained language models (PLMs) achieve high performance on this task. We release our code to the community for future research.

2021

pdf
Contrastive Out-of-Distribution Detection for Pretrained Transformers
Wenxuan Zhou | Fangyu Liu | Muhao Chen
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Pretrained Transformers achieve remarkable performance when training and test data are from the same distribution. However, in real-world scenarios, the model often faces out-of-distribution (OOD) instances that can cause severe semantic shift problems at inference time. Therefore, in practice, a reliable model should identify such instances, and then either reject them during inference or pass them over to models that handle another distribution. In this paper, we develop an unsupervised OOD detection method, in which only the in-distribution (ID) data are used in training. We propose to fine-tune the Transformers with a contrastive loss, which improves the compactness of representations, such that OOD instances can be better differentiated from ID ones. These OOD instances can then be accurately detected using the Mahalanobis distance in the model’s penultimate layer. We experiment with comprehensive settings and achieve near-perfect OOD detection performance, outperforming baselines drastically. We further investigate the rationales behind the improvement, finding that more compact representations through margin-based contrastive learning bring the improvement. We release our code to the community for future research.

pdf
Learning from Noisy Labels for Entity-Centric Information Extraction
Wenxuan Zhou | Muhao Chen
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Recent information extraction approaches have relied on training deep neural models. However, such models can easily overfit noisy labels and suffer from performance degradation. While it is very costly to filter noisy labels in large learning resources, recent studies show that such labels take more training steps to be memorized and are more frequently forgotten than clean labels, therefore are identifiable in training. Motivated by such properties, we propose a simple co-regularization framework for entity-centric information extraction, which consists of several neural models with identical structures but different parameter initialization. These models are jointly optimized with the task-specific losses and are regularized to generate similar predictions based on an agreement loss, which prevents overfitting on noisy labels. Extensive experiments on two widely used but noisy benchmarks for information extraction, TACRED and CoNLL03, demonstrate the effectiveness of our framework. We release our code to the community for future research.

2019

pdf
A Variational Approach to Weakly Supervised Document-Level Multi-Aspect Sentiment Classification
Ziqian Zeng | Wenxuan Zhou | Xin Liu | Yangqiu Song
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

In this paper, we propose a variational approach to weakly supervised document-level multi-aspect sentiment classification. Instead of using user-generated ratings or annotations provided by domain experts, we use target-opinion word pairs as “supervision.” These word pairs can be extracted by using dependency parsers and simple rules. Our objective is to predict an opinion word given a target word while our ultimate goal is to learn a sentiment polarity classifier to predict the sentiment polarity of each aspect given a document. By introducing a latent variable, i.e., the sentiment polarity, to the objective function, we can inject the sentiment polarity classifier to the objective via the variational lower bound. We can learn a sentiment polarity classifier by optimizing the lower bound. We show that our method can outperform weakly supervised baselines on TripAdvisor and BeerAdvocate datasets and can be comparable to the state-of-the-art supervised method with hundreds of labels per aspect.

2018

pdf
Self-regulation: Employing a Generative Adversarial Network to Improve Event Detection
Yu Hong | Wenxuan Zhou | Jingli Zhang | Guodong Zhou | Qiaoming Zhu
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Due to the ability of encoding and mapping semantic information into a high-dimensional latent feature space, neural networks have been successfully used for detecting events to a certain extent. However, such a feature space can be easily contaminated by spurious features inherent in event detection. In this paper, we propose a self-regulated learning approach by utilizing a generative adversarial network to generate spurious features. On the basis, we employ a recurrent network to eliminate the fakes. Detailed experiments on the ACE 2005 and TAC-KBP 2015 corpora show that our proposed method is highly effective and adaptable.

2016

pdf
Image-Image Search for Comparable Corpora Construction
Yu Hong | Liang Yao | Mengyi Liu | Tongtao Zhang | Wenxuan Zhou | Jianmin Yao | Heng Ji
Proceedings of the Sixth Workshop on Hybrid Approaches to Translation (HyTra6)

We present a novel method of comparable corpora construction. Unlike the traditional methods which heavily rely on linguistic features, our method only takes image similarity into consid-eration. We use an image-image search engine to obtain similar images, together with the cap-tions in source language and target language. On the basis, we utilize captions of similar imag-es to construct sentence-level bilingual corpora. Experiments on 10,371 target captions show that our method achieves a precision of 0.85 in the top search results.