Wangjie You

Also published as: WangJie You


2024

pdf
Efficient Domain Adaptation for Non-Autoregressive Machine Translation
WangJie You | Pei Guo | Juntao Li | Kehai Chen | Min Zhang
Findings of the Association for Computational Linguistics: ACL 2024

Domain adaptation remains a challenge in the realm of Neural Machine Translation (NMT), even in the era of large language models (LLMs). Existing non-parametric approaches like nearest neighbor machine translation have made small Autoregressive Translation (AT) models achieve efficient domain generalization and adaptation without updating parameters, but leaving the Non-Autoregressive Translation (NAT) counterparts under-explored. To fill this blank, we introduce Bi-kNN, an innovative and efficient domain adaptation approach for NAT models that tailors a k-nearest-neighbor algorithm for NAT. Specifically, we introduce an effective datastore construction and correlated updating strategies to conform the parallel nature of NAT. Additionally, we train a meta-network that seamlessly integrates the NN distribution with the NMT distribution robustly during the iterative decoding process of NAT. Our experimental results across four benchmark datasets demonstrate that our Bi-kNN not only achieves significant improvements over the Base-NAT model (7.8 BLEU on average) but also exhibits enhanced efficiency.

pdf
Exploring Reversal Mathematical Reasoning Ability for Large Language Models
Pei Guo | WangJie You | Juntao Li | Yan Bowen | Min Zhang
Findings of the Association for Computational Linguistics: ACL 2024

Large language models (LLMs) have presented remarkable capabilities in the wide range of natural language understanding and reasoning tasks. Despite their success, a few works indicate that LLMs suffer from the “reversal curse”, in which LLMs can’t employ the inverted structure “B is A” when they are trained based on “A is B”. To explore the effect of the “reversal curse” for LLMs on complex mathematical reasoning tasks, we present two reversal datasets upon GSM8K and MathQA and verify that LLMs also struggle to solve reversal mathematical problems. We analyze the potential reason and attribute it to the insufficient modeling of the relationship between reasoning steps caused by the left-to-right objective. Consequently, based on the characteristics of multi-step reasoning, we design a novel training method to improve the general and reversal reasoning abilities. Finally, we conduct experiments on four mathematical datasets, and the results demonstrate that our method significantly improves the general reasoning capacities and alleviates the reversal problem. Our datasets and codes are available at https: //github.com/AllForward/ReversalMath.

2023

pdf
INFORM : Information eNtropy based multi-step reasoning FOR large language Models
Chuyue Zhou | Wangjie You | Juntao Li | Jing Ye | Kehai Chen | Min Zhang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Large language models (LLMs) have demonstrated exceptional performance in reasoning tasks with dedicated Chain-of-Thought (CoT) prompts. Further enhancing CoT prompts with exquisite exemplars can significantly improve reasoning performance.However, the effectiveness of CoT prompts may fluctuate dramatically with different choices of in-context examples. Additionally, manual construction of rationale steps can be time-consuming, presenting challenges for the widespread adoption of CoT prompting. In this work, we propose a novel approach by introducing information entropy (IE) as a criteria on for CoT prompt selection. We extend this criterion to the CoT generation and inference stages, automatically generating CoT prompts with higher information entropy scores and adaptively determining the number of samples. These three stages together form our proposed information- entropy-based multi-step reasoning for large language models, named INFORM. Our experiments across seven reasoning benchmarks utilizing two language models(GPT-3.5-Turbo and text-davinci-003) demonstrate the superiority of INFORM both in performance and efficiency.