This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
The task of temporal relation extraction (TRE) involves identifying and extracting temporal relations between events from narratives. We identify two primary issues with TRE systems. First, by formulating TRE as a simple text classification task where every temporal relation is independent, it is hard to enhance the TRE model’s representation of meaning of temporal relations, and its facility with the underlying temporal calculus. We solve the issue by proposing a novel Temporally Contrastive learning model (ConTempo) that increase the model’s awareness of the meaning of temporal relations by leveraging their symmetric or antisymmetric properties. Second, the reusability of innovations has been limited due to incompatibilities in model architectures. Therefore, we propose a unified framework and show that ConTempo is compatible with all three main branches of TRE research. Our results demonstrate that the performance gains of ConTempo are more pronounced, with the total combination achieving state-of-the-art performance on the widely used MATRES and TBD corpora. We furthermore identified and corrected a large number of annotation errors present in the test set of MATRES, after which the performance increase brought by ConTempo becomes more apparent.
In this study, we examine the benefits of incorporating discourse information into document-level temporal dependency parsing. Specifically, we evaluate the effectiveness of integrating both high-level discourse profiling information, which describes the discourse function of sentences, and surface-level sentence position information into temporal dependency graph (TDG) parsing. Unexpectedly, our results suggest that simple sentence position information, particularly when encoded using our novel sentence-position embedding method, performs the best, perhaps because it does not rely on noisy model-generated feature inputs. Our proposed system surpasses the current state-of-the-art TDG parsing systems in performance. Furthermore, we aim to broaden the discussion on the relationship between temporal dependency parsing and discourse analysis, given the substantial similarities shared between the two tasks. We argue that discourse analysis results should not be merely regarded as an additional input feature for temporal dependency parsing. Instead, adopting advanced discourse analysis techniques and research insights can lead to more effective and comprehensive approaches to temporal information extraction tasks.
In the midst of a global pandemic, understanding the public’s opinion of their government’s policy-level, non-pharmaceutical interventions (NPIs) is a crucial component of the health-policy-making process. Prior work on CoViD-19 NPI sentiment analysis by the epidemiological community has proceeded without a method for properly attributing sentiment changes to events, an ability to distinguish the influence of various events across time, a coherent model for predicting the public’s opinion of future events of the same sort, nor even a means of conducting significance tests. We argue here that this urgently needed evaluation method does already exist. In the financial sector, event studies of the fluctuations in a publicly traded company’s stock price are commonplace for determining the effects of earnings announcements, product placements, etc. The same method is suitable for analysing temporal sentiment variation in the light of policy-level NPIs. We provide a case study of Twitter sentiment towards policy-level NPIs in Canada. Our results confirm a generally positive connection between the announcements of NPIs and Twitter sentiment, and we document a promising correlation between the results of this study and a public-health survey of popular compliance with NPIs.
We present a new temporal annotation standard, THEE-TimeML, and a corpus TheeBank enabling precise temporal information extraction (TIE) for event-based surveillance (EBS) systems in the public health domain. Current EBS must estimate the occurrence time of each event based on coarse document metadata such as document publication time. Because of the complicated language and narration style of news articles, estimated case outbreak times are often inaccurate or even erroneous. Thus, it is necessary to create annotation standards and corpora to facilitate the development of TIE systems in the public health domain to address this problem. We will discuss the adaptations that have proved necessary for this domain as we present THEE-TimeML and TheeBank. Finally, we document the corpus annotation process, and demonstrate the immediate benefit to public health applications brought by the annotations.