Siyuan Huang


2024

pdf
Mirror-Consistency: Harnessing Inconsistency in Majority Voting
Siyuan Huang | Zhiyuan Ma | Jintao Du | Changhua Meng | Weiqiang Wang | Zhouhan Lin
Findings of the Association for Computational Linguistics: EMNLP 2024

Self-Consistency, a widely-used decoding strategy, significantly boosts the reasoning capabilities of Large Language Models (LLMs). However, it depends on the plurality voting rule, which focuses on the most frequent answer while overlooking all other minority responses. These inconsistent minority views often illuminate areas of uncertainty within the model’s generation process. To address this limitation, we present Mirror-Consistency, an enhancement of the standard Self-Consistency approach. Our method incorporates a ‘reflective mirror’ into the self-ensemble decoding process and enables LLMs to critically examine inconsistencies among multiple generations. Additionally, just as humans use the mirror to better understand themselves, we propose using Mirror-Consistency to enhance the sample-based confidence calibration methods, which helps to mitigate issues of overconfidence. Our experimental results demonstrate that Mirror-Consistency yields superior performance in both reasoning accuracy and confidence calibration compared to Self-Consistency.

pdf
Not All Experts are Equal: Efficient Expert Pruning and Skipping for Mixture-of-Experts Large Language Models
Xudong Lu | Qi Liu | Yuhui Xu | Aojun Zhou | Siyuan Huang | Bo Zhang | Junchi Yan | Hongsheng Li
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

A pivotal advancement in the progress of large language models (LLMs) is the emergence of the Mixture-of-Experts (MoE) LLMs. Compared to traditional LLMs, MoE LLMs can achieve higher performance with fewer active parameters, but it is still hard to deploy them due to their immense parameter sizes. Different from previous weight pruning methods that rely on specifically designed hardware, this paper mainly aims to enhance the deployment efficiency of MoE LLMs by introducing plug-and-play expert-level sparsification techniques. Specifically, we propose, for the first time to our best knowledge, post-training approaches for task-agnostic and task-specific expert pruning and skipping of MoE LLMs, tailored to improve deployment efficiency while maintaining model performance across a wide range of tasks. Extensive experiments show that our proposed methods can simultaneously reduce model sizes and increase the inference speed, while maintaining satisfactory performance. Code will be made available at https://github.com/Lucky-Lance/Expert_Sparsity.

2021

pdf
Inter-GPS: Interpretable Geometry Problem Solving with Formal Language and Symbolic Reasoning
Pan Lu | Ran Gong | Shibiao Jiang | Liang Qiu | Siyuan Huang | Xiaodan Liang | Song-Chun Zhu
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Geometry problem solving has attracted much attention in the NLP community recently. The task is challenging as it requires abstract problem understanding and symbolic reasoning with axiomatic knowledge. However, current datasets are either small in scale or not publicly available. Thus, we construct a new large-scale benchmark, Geometry3K, consisting of 3,002 geometry problems with dense annotation in formal language. We further propose a novel geometry solving approach with formal language and symbolic reasoning, called Interpretable Geometry Problem Solver (Inter-GPS). Inter-GPS first parses the problem text and diagram into formal language automatically via rule-based text parsing and neural object detecting, respectively. Unlike implicit learning in existing methods, Inter-GPS incorporates theorem knowledge as conditional rules and performs symbolic reasoning step by step. Also, a theorem predictor is designed to infer the theorem application sequence fed to the symbolic solver for the more efficient and reasonable searching path. Extensive experiments on the Geometry3K and GEOS datasets demonstrate that Inter-GPS achieves significant improvements over existing methods. The project with code and data is available at https://lupantech.github.io/inter-gps.