Simeng Sun


2024

pdf
How Does In-Context Learning Help Prompt Tuning?
Simeng Sun | Yang Liu | Dan Iter | Chenguang Zhu | Mohit Iyyer
Findings of the Association for Computational Linguistics: EACL 2024

Fine-tuning large language models is becoming ever more impractical due to their rapidly-growing scale. This motivates the use of parameter-efficient adaptation methods such as prompt tuning (PT), which adds a small number of tunable embeddings to an otherwise frozen model, and in-context learning (ICL), in which demonstrations of the task are provided to the model in natural language without any additional training. Recently, (CITATION) propose “instruction prompt tuning” (IPT), which combines PT with ICL by concatenating a natural language demonstration with learned prompt embeddings. While all of these methods have proven effective on different tasks, how they interact with each other remains unexplored. In this paper, we empirically study when and how in-context examples improve prompt tuning by measuring the effectiveness of ICL, PT, and IPT on five text generation tasks with multiple base language models. We observe that (1) IPT does not always outperform PT, and in fact requires the in-context demonstration to be semantically similar to the test input to yield improvements; (2) PT is unstable and exhibits high variance, but combining PT and ICL (into IPT) consistently reduces variance across all five tasks; and(3) prompts learned for a specific source task via PT exhibit positive transfer when paired with in-context examples of a different target task. Our results offer actionable insights on choosing a suitable parameter-efficient adaptation method for a given task.

pdf
Suri: Multi-constraint Instruction Following in Long-form Text Generation
Chau Minh Pham | Simeng Sun | Mohit Iyyer
Findings of the Association for Computational Linguistics: EMNLP 2024

Existing research on instruction following largely focuses on tasks with simple instructions and short responses. In this work, we explore multi-constraint instruction following for generating long-form text. We create Suri, a dataset with 20K human-written long-form texts paired with LLM-generated backtranslated instructions that contain multiple complex constraints. Because of prohibitive challenges associated with collecting human preference judgments on long-form texts, preference-tuning algorithms such as DPO are infeasible in our setting; thus, we propose Instructional ORPO (I-ORPO), an alignment method based on the ORPO algorithm. Instead of receiving negative feedback from dispreferred responses, I-ORPO obtains negative feedback from synthetically corrupted instructions generated by an LLM. Using Suri, we perform supervised and I-ORPO fine-tuning on Mistral-7b-Instruct-v0.2. The resulting models, Suri-SFT and Suri-I-ORPO, generate significantly longer texts (5K tokens) than base models without significant quality deterioration. Our human evaluation shows that while both SFT and I-ORPO models satisfy most constraints, Suri-I-ORPO generations are generally preferred for their coherent and informative incorporation of the constraints.

pdf
TopicGPT: A Prompt-based Topic Modeling Framework
Chau Pham | Alexander Hoyle | Simeng Sun | Philip Resnik | Mohit Iyyer
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Topic modeling is a well-established technique for exploring text corpora. Conventional topic models (e.g., LDA) represent topics as bags of words that often require “reading the tea leaves” to interpret; additionally, they offer users minimal control over the formatting and specificity of resulting topics. To tackle these issues, we introduce TopicGPT, a prompt-based framework that uses large language models (LLMs) to uncover latent topics in a text collection. TopicGPT produces topics that align better with human categorizations compared to competing methods: it achieves a harmonic mean purity of 0.74 against human-annotated Wikipedia topics compared to 0.64 for the strongest baseline. Its topics are also more interpretable, dispensing with ambiguous bags of words in favor of topics with natural language labels and associated free-form descriptions. Moreover, the framework is highly adaptable, allowing users to specify constraints and modify topics without the need for model retraining. By streamlining access to high-quality and interpretable topics, TopicGPT represents a compelling, human-centered approach to topic modeling.

pdf
PEARL: Prompting Large Language Models to Plan and Execute Actions Over Long Documents
Simeng Sun | Yang Liu | Shuohang Wang | Dan Iter | Chenguang Zhu | Mohit Iyyer
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)

Strategies such as chain-of-thought prompting improve the performance of large language models (LLMs) on complex reasoning tasks by decomposing input examples into intermediate steps. However, it remains unclear how to apply such methods to reason over long input documents, in which both the decomposition and the output of each intermediate step are non-trivial to obtain. In this work, we propose PEARL, a prompting framework to improve reasoning over long documents, which consists of three stages: action mining, plan formulation, and plan execution. More specifically, given a question about a long document, PEARL decomposes the question into a sequence of actions (e.g., SUMMARIZE, FIND_EVENT, FIND_RELATION) and then executes them over the document to obtain the answer. Each stage of PEARL is implemented via zero-shot or few-shot prompting of LLMs (in our work, GPT-4) with minimal human input. We evaluate PEARL on a challenging subset of the QuALITY dataset, which contains questions that require complex reasoning over long narrative texts. PEARL outperforms zero-shot and chain-of-thought prompting on this dataset, and ablation experiments show that each stage of PEARL is critical to its performance. Overall, PEARL is a first step towards leveraging LLMs to reason over long documents.

2023

pdf
Efficiently Upgrading Multilingual Machine Translation Models to Support More Languages
Simeng Sun | Maha Elbayad | Anna Sun | James Cross
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

With multilingual machine translation (MMT) models continuing to grow in size and number of supported languages, it is natural to reuse and upgrade existing models to save computation as data becomes available in more languages. However, adding new languages requires updating the vocabulary, which complicates the reuse of embeddings. The question of how to reuse existing models while also making architectural changes to provide capacity for both old and new languages has also not been closely studied. In this work, we introduce three techniques that help speed up the effective learning of new languages and alleviate catastrophic forgetting despite vocabulary and architecture mismatches. Our results show that by (1) carefully initializing the network, (2) applying learning rate scaling, and (3) performing data up-sampling, it is possible to exceed the performance of a same-sized baseline model with 30% computation and recover the performance of a larger model trained from scratch with over 50% reduction in computation. Furthermore, our analysis reveals that the introduced techniques help learn new directions more effectively and alleviate catastrophic forgetting at the same time. We hope our work will guide research into more efficient approaches to growing languages for these MMT models and ultimately maximize the reuse of existing models.

2022

pdf
ChapterBreak: A Challenge Dataset for Long-Range Language Models
Simeng Sun | Katherine Thai | Mohit Iyyer
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

While numerous architectures for long-range language models (LRLMs) have recently been proposed, a meaningful evaluation of their discourse-level language understanding capabilities has not yet followed. To this end, we introduce ChapterBreak, a challenge dataset that provides an LRLM with a long segment from a narrative that ends at a chapter boundary and asks it to distinguish the beginning of the ground-truth next chapter from a set of negative segments sampled from the same narrative. A fine-grained human annotation reveals that our dataset contains many complex types of chapter transitions (e.g., parallel narratives, cliffhanger endings) that require processing global context to comprehend. Experiments on ChapterBreak show that existing LRLMs fail to effectively leverage long-range context, substantially underperforming a segment-level model trained directly for this task. We publicly release our ChapterBreak dataset to spur more principled future research into LRLMs.

pdf
Alternative Input Signals Ease Transfer in Multilingual Machine Translation
Simeng Sun | Angela Fan | James Cross | Vishrav Chaudhary | Chau Tran | Philipp Koehn | Francisco Guzmán
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recent work in multilingual machine translation (MMT) has focused on the potential of positive transfer between languages, particularly cases where higher-resourced languages can benefit lower-resourced ones. While training an MMT model, the supervision signals learned from one language pair can be transferred to the other via the tokens shared by multiple source languages. However, the transfer is inhibited when the token overlap among source languages is small, which manifests naturally when languages use different writing systems. In this paper, we tackle inhibited transfer by augmenting the training data with alternative signals that unify different writing systems, such as phonetic, romanized, and transliterated input. We test these signals on Indic and Turkic languages, two language families where the writing systems differ but languages still share common features. Our results indicate that a straightforward multi-source self-ensemble – training a model on a mixture of various signals and ensembling the outputs of the same model fed with different signals during inference, outperforms strong ensemble baselines by 1.3 BLEU points on both language families. Further, we find that incorporating alternative inputs via self-ensemble can be particularly effective when training set is small, leading to +5 BLEU when only 5% of the total training data is accessible. Finally, our analysis demonstrates that including alternative signals yields more consistency and translates named entities more accurately, which is crucial for increased factuality of automated systems.

pdf
How Much Do Modifications to Transformer Language Models Affect Their Ability to Learn Linguistic Knowledge?
Simeng Sun | Brian Dillon | Mohit Iyyer
Proceedings of the Third Workshop on Insights from Negative Results in NLP

Recent progress in large pretrained language models (LMs) has led to a growth of analyses examining what kinds of linguistic knowledge are encoded by these models. Due to computational constraints, existing analyses are mostly conducted on publicly-released LM checkpoints, which makes it difficult to study how various factors during training affect the models’ acquisition of linguistic knowledge. In this paper, we train a suite of small-scale Transformer LMs that differ from each other with respect to architectural decisions (e.g., self-attention configuration) or training objectives (e.g., multi-tasking, focal loss). We evaluate these LMs on BLiMP, a targeted evaluation benchmark of multiple English linguistic phenomena. Our experiments show that while none of these modifications yields significant improvements on aggregate, changes to the loss function result in promising improvements on several subcategories (e.g., detecting adjunct islands, correctly scoping negative polarity items). We hope our work offers useful insights for future research into designing Transformer LMs that more effectively learn linguistic knowledge.

2021

pdf
Energy-Based Reranking: Improving Neural Machine Translation Using Energy-Based Models
Sumanta Bhattacharyya | Amirmohammad Rooshenas | Subhajit Naskar | Simeng Sun | Mohit Iyyer | Andrew McCallum
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

The discrepancy between maximum likelihood estimation (MLE) and task measures such as BLEU score has been studied before for autoregressive neural machine translation (NMT) and resulted in alternative training algorithms (Ranzato et al., 2016; Norouzi et al., 2016; Shen et al., 2016; Wu et al., 2018). However, MLE training remains the de facto approach for autoregressive NMT because of its computational efficiency and stability. Despite this mismatch between the training objective and task measure, we notice that the samples drawn from an MLE-based trained NMT support the desired distribution – there are samples with much higher BLEU score comparing to the beam decoding output. To benefit from this observation, we train an energy-based model to mimic the behavior of the task measure (i.e., the energy-based model assigns lower energy to samples with higher BLEU score), which is resulted in a re-ranking algorithm based on the samples drawn from NMT: energy-based re-ranking (EBR). We use both marginal energy models (over target sentence) and joint energy models (over both source and target sentences). Our EBR with the joint energy model consistently improves the performance of the Transformer-based NMT: +3.7 BLEU points on IWSLT’14 German-English, +3.37 BELU points on Sinhala-English, +1.4 BLEU points on WMT’16 English-German tasks.

pdf
Revisiting Simple Neural Probabilistic Language Models
Simeng Sun | Mohit Iyyer
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Recent progress in language modeling has been driven not only by advances in neural architectures, but also through hardware and optimization improvements. In this paper, we revisit the neural probabilistic language model (NPLM) of Bengio et al. (2003), which simply concatenates word embeddings within a fixed window and passes the result through a feed-forward network to predict the next word. When scaled up to modern hardware, this model (despite its many limitations) performs much better than expected on word-level language model benchmarks. Our analysis reveals that the NPLM achieves lower perplexity than a baseline Transformer with short input contexts but struggles to handle long-term dependencies. Inspired by this result, we modify the Transformer by replacing its first self-attention layer with the NPLM’s local concatenation layer, which results in small but consistent perplexity decreases across three word-level language modeling datasets.

pdf
Do Long-Range Language Models Actually Use Long-Range Context?
Simeng Sun | Kalpesh Krishna | Andrew Mattarella-Micke | Mohit Iyyer
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Language models are generally trained on short, truncated input sequences, which limits their ability to use discourse-level information present in long-range context to improve their predictions. Recent efforts to improve the efficiency of self-attention have led to a proliferation of long-range Transformer language models, which can process much longer sequences than models of the past. However, the ways in which such models take advantage of the long-range context remain unclear. In this paper, we perform a fine-grained analysis of two long-range Transformer language models (including the Routing Transformer, which achieves state-of-the-art perplexity on the PG-19 long-sequence LM benchmark dataset) that accept input sequences of up to 8K tokens. Our results reveal that providing long-range context (i.e., beyond the previous 2K tokens) to these models only improves their predictions on a small set of tokens (e.g., those that can be copied from the distant context) and does not help at all for sentence-level prediction tasks. Finally, we discover that PG-19 contains a variety of different document types and domains, and that long-range context helps most for literary novels (as opposed to textbooks or magazines).

pdf
IGA: An Intent-Guided Authoring Assistant
Simeng Sun | Wenlong Zhao | Varun Manjunatha | Rajiv Jain | Vlad Morariu | Franck Dernoncourt | Balaji Vasan Srinivasan | Mohit Iyyer
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

While large-scale pretrained language models have significantly improved writing assistance functionalities such as autocomplete, more complex and controllable writing assistants have yet to be explored. We leverage advances in language modeling to build an interactive writing assistant that generates and rephrases text according to fine-grained author specifications. Users provide input to our Intent-Guided Assistant (IGA) in the form of text interspersed with tags that correspond to specific rhetorical directives (e.g., adding description or contrast, or rephrasing a particular sentence). We fine-tune a language model on a dataset heuristically-labeled with author intent, which allows IGA to fill in these tags with generated text that users can subsequently edit to their liking. A series of automatic and crowdsourced evaluations confirm the quality of IGA’s generated outputs, while a small-scale user study demonstrates author preference for IGA over baseline methods in a creative writing task. We release our dataset, code, and demo to spur further research into AI-assisted writing.

2020

pdf
Hard-Coded Gaussian Attention for Neural Machine Translation
Weiqiu You | Simeng Sun | Mohit Iyyer
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Recent work has questioned the importance of the Transformer’s multi-headed attention for achieving high translation quality. We push further in this direction by developing a “hard-coded” attention variant without any learned parameters. Surprisingly, replacing all learned self-attention heads in the encoder and decoder with fixed, input-agnostic Gaussian distributions minimally impacts BLEU scores across four different language pairs. However, additionally, hard-coding cross attention (which connects the decoder to the encoder) significantly lowers BLEU, suggesting that it is more important than self-attention. Much of this BLEU drop can be recovered by adding just a single learned cross attention head to an otherwise hard-coded Transformer. Taken as a whole, our results offer insight into which components of the Transformer are actually important, which we hope will guide future work into the development of simpler and more efficient attention-based models.

2019

pdf
The Feasibility of Embedding Based Automatic Evaluation for Single Document Summarization
Simeng Sun | Ani Nenkova
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

ROUGE is widely used to automatically evaluate summarization systems. However, ROUGE measures semantic overlap between a system summary and a human reference on word-string level, much at odds with the contemporary treatment of semantic meaning. Here we present a suite of experiments on using distributed representations for evaluating summarizers, both in reference-based and in reference-free setting. Our experimental results show that the max value over each dimension of the summary ELMo word embeddings is a good representation that results in high correlation with human ratings. Averaging the cosine similarity of all encoders we tested yields high correlation with manual scores in reference-free setting. The distributed representations outperform ROUGE in recent corpora for abstractive news summarization but are less good on test data used in past evaluations.

pdf
How to Compare Summarizers without Target Length? Pitfalls, Solutions and Re-Examination of the Neural Summarization Literature
Simeng Sun | Ori Shapira | Ido Dagan | Ani Nenkova
Proceedings of the Workshop on Methods for Optimizing and Evaluating Neural Language Generation

We show that plain ROUGE F1 scores are not ideal for comparing current neural systems which on average produce different lengths. This is due to a non-linear pattern between ROUGE F1 and summary length. To alleviate the effect of length during evaluation, we have proposed a new method which normalizes the ROUGE F1 scores of a system by that of a random system with same average output length. A pilot human evaluation has shown that humans prefer short summaries in terms of the verbosity of a summary but overall consider longer summaries to be of higher quality. While human evaluations are more expensive in time and resources, it is clear that normalization, such as the one we proposed for automatic evaluation, will make human evaluations more meaningful.