Sihang Li


2024

pdf
MolTC: Towards Molecular Relational Modeling In Language Models
Junfeng Fang | Shuai Zhang | Chang Wu | Zhengyi Yang | Zhiyuan Liu | Sihang Li | Kun Wang | Wenjie Du | Xiang Wang
Findings of the Association for Computational Linguistics: ACL 2024

Molecular Relational Learning (MRL), aiming to understand interactions between molecular pairs, plays a pivotal role in advancing biochemical research. Recently, the adoption of large language models (LLMs), known for their vast knowledge repositories and advanced logical inference capabilities, has emerged as a promising way for efficient and effective MRL. Despite their potential, these methods predominantly rely on textual data, thus not fully harnessing the wealth of structural information inherent in molecular graphs. Moreover, the absence of a unified framework exacerbates the issue of insufficient data exploitation, as it hinders the sharing of interaction mechanism learned across various datasets. To address these challenges, this work proposes a novel LLM-based multi-modal framework for molecular interaction modeling following Chain-of-Thought (CoT) theory, termed MolTC, which effectively integrate graphical information of two molecules in pair. To train this integrated framework efficiently, we introduce a *multi-hierarchical CoT theory* to refine its training paradigm, and conduct a comprehensive *Molecular Interactive Instructions* dataset for the development of biochemical LLMs involving MRL.Our experiments,conducted across various datasets involving over 4,000,000 molecular pairs, exhibit the superiority of our method over current GNN and LLM-based baselines. Code is available at https://github.com/MangoKiller/MolTC.

pdf
ReactXT: Understanding Molecular “Reaction-ship” via Reaction-Contextualized Molecule-Text Pretraining
Zhiyuan Liu | Yaorui Shi | An Zhang | Sihang Li | Enzhi Zhang | Xiang Wang | Kenji Kawaguchi | Tat-Seng Chua
Findings of the Association for Computational Linguistics: ACL 2024

Molecule-text modeling, which aims to facilitate molecule-relevant tasks with a textual interface and textual knowledge, is an emerging research direction. Beyond single molecules, studying reaction-text modeling holds promise for helping the synthesis of new materials and drugs. However, previous works mostly neglect reaction-text modeling: they primarily focus on modeling individual molecule-text pairs or learning chemical reactions without texts in context. Additionally, one key task of reaction-text modeling – experimental procedure prediction – is less explored due to the absence of an open-source dataset. The task is to predict step-by-step actions of conducting chemical experiments and is crucial to automating chemical synthesis. To resolve the challenges above, we propose a new pretraining method, ReactXT, for reaction-text modeling, and a new dataset, OpenExp, for experimental procedure prediction. Specifically, ReactXT features three types of input contexts to incrementally pretrain LMs. Each of the three input contexts corresponds to a pretraining task to improve the text-based understanding of either reactions or single molecules. ReactXT demonstrates consistent improvements in experimental procedure prediction and molecule captioning and offers competitive results in retrosynthesis. Our code is available at https://github.com/syr-cn/ReactXT.

2023

pdf
MolCA: Molecular Graph-Language Modeling with Cross-Modal Projector and Uni-Modal Adapter
Zhiyuan Liu | Sihang Li | Yanchen Luo | Hao Fei | Yixin Cao | Kenji Kawaguchi | Xiang Wang | Tat-Seng Chua
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Language Models (LMs) have demonstrated impressive molecule understanding ability on various 1D text-related tasks. However, they inherently lack 2D graph perception — a critical ability of human professionals in comprehending molecules’ topological structures. To bridge this gap, we propose MolCA: Molecular Graph-Language Modeling with Cross-Modal Projector and Uni-Modal Adapter. MolCA enables an LM (i.e., Galactica) to understand both text- and graph-based molecular contents via the cross-modal projector. Specifically, the cross-modal projector is implemented as a Q-Former to connect a graph encoder’s representation space and an LM’s text space. Further, MolCA employs a uni-modal adapter (i.e., LoRA) for the LM’s efficient adaptation to downstream tasks. Unlike previous studies that couple an LM with a graph encoder via cross-modal contrastive learning, MolCA retains the LM’s ability of open-ended text generation and augments it with 2D graph information. To showcase its effectiveness, we extensively benchmark MolCA on tasks of molecule captioning, IUPAC name prediction, and molecule-text retrieval, on which MolCA significantly outperforms the baselines.