Shutong Feng


2024

pdf
Speech-based Slot Filling using Large Language Models
Guangzhi Sun | Shutong Feng | Dongcheng Jiang | Chao Zhang | Milica Gasic | Phil Woodland
Findings of the Association for Computational Linguistics: ACL 2024

Recently, advancements in large language models (LLMs) have shown an unprecedented ability across various language tasks. This paper investigates the potential application of LLMs to slot filling with noisy ASR transcriptions, via both in-context learning and task-specific fine-tuning. Dedicated prompt designs and noise-robust LoRA fine-tuning are proposed to improve the robustness of LLMs for slot filling with noisy ASR transcriptions. Moreover, a linearised knowledge injection (LKI) scheme is also proposed to integrate dynamic external knowledge into LLMs. Experiments were performed on SLURP to quantify the performance of LLMs, including GPT-3.5-turbo, GPT-4, LLaMA-13B, LLaMA-2-13B and Vicuna-13B (v1.1 and v1.5) with different ASR error rates. The use of the noise-robust fine-tuning together with LKI for Vicuna-13B-v1.5 achieved 6.7% and 17.6% absolute SLU-F1 improvements compared to a fully fine-tuned Flan-T5-XL model on the limited data setup and the zero-shot setup respectively.

pdf
Affect Recognition in Conversations Using Large Language Models
Shutong Feng | Guangzhi Sun | Nurul Lubis | Wen Wu | Chao Zhang | Milica Gasic
Proceedings of the 25th Annual Meeting of the Special Interest Group on Discourse and Dialogue

Affect recognition, encompassing emotions, moods, and feelings, plays a pivotal role in human communication. In the realm of conversational artificial intelligence, the ability to discern and respond to human affective cues is a critical factor for creating engaging and empathetic interactions. This study investigates the capacity of large language models (LLMs) to recognise human affect in conversations, with a focus on both open-domain chit-chat dialogues and task-oriented dialogues. Leveraging three diverse datasets, namely IEMOCAP (Busso et al., 2008), EmoWOZ (Feng et al., 2022), and DAIC-WOZ (Gratch et al., 2014), covering a spectrum of dialogues from casual conversations to clinical interviews, we evaluate and compare LLMs’ performance in affect recognition. Our investigation explores the zero-shot and few-shot capabilities of LLMs through in-context learning as well as their model capacities through task-specific fine-tuning. Additionally, this study takes into account the potential impact of automatic speech recognition errors on LLM predictions. With this work, we aim to shed light on the extent to which LLMs can replicate human-like affect recognition capabilities in conversations.

pdf
Local Topology Measures of Contextual Language Model Latent Spaces with Applications to Dialogue Term Extraction
Benjamin Matthias Ruppik | Michael Heck | Carel van Niekerk | Renato Vukovic | Hsien-chin Lin | Shutong Feng | Marcus Zibrowius | Milica Gasic
Proceedings of the 25th Annual Meeting of the Special Interest Group on Discourse and Dialogue

A common approach for sequence tagging tasks based on contextual word representations is to train a machine learning classifier directly on these embedding vectors. This approach has two shortcomings. First, such methods consider single input sequences in isolation and are unable to put an individual embedding vector in relation to vectors outside the current local context of use. Second, the high performance of these models relies on fine-tuning the embedding model in conjunction with the classifier, which may not always be feasible due to the size or inaccessibility of the underlying feature-generation model. It is thus desirable, given a collection of embedding vectors of a corpus, i.e. a datastore, to find features of each vector that describe its relation to other, similar vectors in the datastore. With this in mind, we introduce complexity measures of the local topology of the latent space of a contextual language model with respect to a given datastore. The effectiveness of our features is demonstrated through their application to dialogue term extraction. Our work continues a line of research that explores the manifold hypothesis for word embeddings, demonstrating that local structure in the space carved out by word embeddings can be exploited to infer semantic properties.

pdf
Infusing Emotions into Task-oriented Dialogue Systems: Understanding, Management, and Generation
Shutong Feng | Hsien-chin Lin | Christian Geishauser | Nurul Lubis | Carel van Niekerk | Michael Heck | Benjamin Matthias Ruppik | Renato Vukovic | Milica Gasic
Proceedings of the 25th Annual Meeting of the Special Interest Group on Discourse and Dialogue

Emotions are indispensable in human communication, but are often overlooked in task-oriented dialogue (ToD) modelling, where the task success is the primary focus. While existing works have explored user emotions or similar concepts in some ToD tasks, none has so far included emotion modelling into a fully-fledged ToD system nor conducted interaction with human or simulated users. In this work, we incorporate emotion into the complete ToD processing loop, involving understanding, management, and generation. To this end, we extend the EmoWOZ dataset (Feng et al., 2022) with system affective behaviour labels. Through interactive experimentation involving both simulated and human users, we demonstrate that our proposed framework significantly enhances the user’s emotional experience as well as the task success.

pdf
Towards Emotion-aware Task-oriented Dialogue Systems in the Era of Large Language Models
Shutong Feng
Proceedings of the 20th Workshop of Young Researchers' Roundtable on Spoken Dialogue Systems

My research interests lie in the area of modelling affective behaviours of interlocutors in conversations. In particular, I look at emotion perception, expression, and management in information-retrieval task-oriented dialogue (ToD) systems. Traditionally, ToD systems focus primarily on fulfilling the user’s goal by requesting and providing appropriate information. Yet, in real life, the user’s emotional experience also contributes to the overall satisfaction. This requires the system’s ability to recognise, manage, and express emotions. To this end, I incorporated emotion in the entire ToD system pipeline (Feng et al., 2024, to appear in SIGDIAL 2024). In addition, in the era of large language models (LLMs), emotion recognition and generation have been made easy even under a zero-shot set-up (Feng et al., 2023; Stricker and Paroubek, 2024). Therefore, I am also interested in building ToD systems with LLMs and examining various types of affect in other ToD set-ups such as depression detection in clinical consultations.

2023

pdf
ChatGPT for Zero-shot Dialogue State Tracking: A Solution or an Opportunity?
Michael Heck | Nurul Lubis | Benjamin Ruppik | Renato Vukovic | Shutong Feng | Christian Geishauser | Hsien-chin Lin | Carel van Niekerk | Milica Gasic
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Recent research on dialog state tracking (DST) focuses on methods that allow few- and zero-shot transfer to new domains or schemas. However, performance gains heavily depend on aggressive data augmentation and fine-tuning of ever larger language model based architectures. In contrast, general purpose language models, trained on large amounts of diverse data, hold the promise of solving any kind of task without task-specific training. We present preliminary experimental results on the ChatGPT research preview, showing that ChatGPT achieves state-of-the-art performance in zero-shot DST. Despite our findings, we argue that properties inherent to general purpose models limit their ability to replace specialized systems. We further theorize that the in-context learning capabilities of such models will likely become powerful tools to support the development of dedicated dialog state trackers and enable dynamic methods.

pdf
From Chatter to Matter: Addressing Critical Steps of Emotion Recognition Learning in Task-oriented Dialogue
Shutong Feng | Nurul Lubis | Benjamin Ruppik | Christian Geishauser | Michael Heck | Hsien-chin Lin | Carel van Niekerk | Renato Vukovic | Milica Gasic
Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue

Emotion recognition in conversations (ERC) is a crucial task for building human-like conversational agents. While substantial efforts have been devoted to ERC for chit-chat dialogues, the task-oriented counterpart is largely left unattended. Directly applying chit-chat ERC models to task-oriented dialogues (ToDs) results in suboptimal performance as these models overlook key features such as the correlation between emotions and task completion in ToDs. In this paper, we propose a framework that turns a chit-chat ERC model into a task-oriented one, addressing three critical aspects: data, features and objective. First, we devise two ways of augmenting rare emotions to improve ERC performance. Second, we use dialogue states as auxiliary features to incorporate key information from the goal of the user. Lastly, we leverage a multi-aspect emotion definition in ToDs to devise a multi-task learning objective and a novel emotion-distance weighted loss function. Our framework yields significant improvements for a range of chit-chat ERC models on EmoWOZ, a large-scale dataset for user emotions in ToDs. We further investigate the generalisability of the best resulting model to predict user satisfaction in different ToD datasets. A comparison with supervised baselines shows a strong zero-shot capability, highlighting the potential usage of our framework in wider scenarios.

pdf
ConvLab-3: A Flexible Dialogue System Toolkit Based on a Unified Data Format
Qi Zhu | Christian Geishauser | Hsien-chin Lin | Carel van Niekerk | Baolin Peng | Zheng Zhang | Shutong Feng | Michael Heck | Nurul Lubis | Dazhen Wan | Xiaochen Zhu | Jianfeng Gao | Milica Gasic | Minlie Huang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

Task-oriented dialogue (TOD) systems function as digital assistants, guiding users through various tasks such as booking flights or finding restaurants. Existing toolkits for building TOD systems often fall short in delivering comprehensive arrays of data, model, and experimental environments with a user-friendly experience. We introduce ConvLab-3: a multifaceted dialogue system toolkit crafted to bridge this gap. Our unified data format simplifies the integration of diverse datasets and models, significantly reducing complexity and cost for studying generalization and transfer. Enhanced with robust reinforcement learning (RL) tools, featuring a streamlined training process, in-depth evaluation tools, and a selection of user simulators, ConvLab-3 supports the rapid development and evaluation of robust dialogue policies. Through an extensive study, we demonstrate the efficacy of transfer learning and RL and showcase that ConvLab-3 is not only a powerful tool for seasoned researchers but also an accessible platform for newcomers.

pdf
Modelling Emotions in Task-Oriented Dialogue
Shutong Feng
Proceedings of the 19th Annual Meeting of the Young Reseachers' Roundtable on Spoken Dialogue Systems

My research interests lie in the area of modelling natural and human-like conversations, with a special focus on emotions in task-oriented dialogue (ToD) systems. ToD systems need to produce semantically and grammatically correct responses to fulfil the user’s goal. Being able to perceive and express emotions pushes them one more step towards achieving human-likeness. To begin with, I constructed a dataset with meaningful emotion labels as well as a wide coverage of emotions and linguistic features in ToDs. Then, I improved emotion recognition in conversations (ERC) in the task-oriented domain by exploiting key characteristics of ToDs. Currently, I am working towards enhancing ToD systems with emotions.

2022

pdf
GenTUS: Simulating User Behaviour and Language in Task-oriented Dialogues with Generative Transformers
Hsien-chin Lin | Christian Geishauser | Shutong Feng | Nurul Lubis | Carel van Niekerk | Michael Heck | Milica Gasic
Proceedings of the 23rd Annual Meeting of the Special Interest Group on Discourse and Dialogue

User simulators (USs) are commonly used to train task-oriented dialogue systems via reinforcement learning. The interactions often take place on semantic level for efficiency, but there is still a gap from semantic actions to natural language, which causes a mismatch between training and deployment environment. Incorporating a natural language generation (NLG) module with USs during training can partly deal with this problem. However, since the policy and NLG of USs are optimised separately, these simulated user utterances may not be natural enough in a given context. In this work, we propose a generative transformer-based user simulator (GenTUS). GenTUS consists of an encoder-decoder structure, which means it can optimise both the user policy and natural language generation jointly. GenTUS generates both semantic actions and natural language utterances, preserving interpretability and enhancing language variation. In addition, by representing the inputs and outputs as word sequences and by using a large pre-trained language model we can achieve generalisability in feature representation. We evaluate GenTUS with automatic metrics and human evaluation. Our results show that GenTUS generates more natural language and is able to transfer to an unseen ontology in a zero-shot fashion. In addition, its behaviour can be further shaped with reinforcement learning opening the door to training specialised user simulators.

pdf
Dialogue Evaluation with Offline Reinforcement Learning
Nurul Lubis | Christian Geishauser | Hsien-chin Lin | Carel van Niekerk | Michael Heck | Shutong Feng | Milica Gasic
Proceedings of the 23rd Annual Meeting of the Special Interest Group on Discourse and Dialogue

Task-oriented dialogue systems aim to fulfill user goals through natural language interactions. They are ideally evaluated with human users, which however is unattainable to do at every iteration of the development phase. Simulated users could be an alternative, however their development is nontrivial. Therefore, researchers resort to offline metrics on existing human-human corpora, which are more practical and easily reproducible. They are unfortunately limited in reflecting real performance of dialogue systems. BLEU for instance is poorly correlated with human judgment, and existing corpus-based metrics such as success rate overlook dialogue context mismatches. There is still a need for a reliable metric for task-oriented systems with good generalization and strong correlation with human judgements. In this paper, we propose the use of offline reinforcement learning for dialogue evaluation based on static data. Such an evaluator is typically called a critic and utilized for policy optimization. We go one step further and show that offline RL critics can be trained for any dialogue system as external evaluators, allowing dialogue performance comparisons across various types of systems. This approach has the benefit of being corpus- and model-independent, while attaining strong correlation with human judgements, which we confirm via an interactive user trial.

pdf
EmoWOZ: A Large-Scale Corpus and Labelling Scheme for Emotion Recognition in Task-Oriented Dialogue Systems
Shutong Feng | Nurul Lubis | Christian Geishauser | Hsien-chin Lin | Michael Heck | Carel van Niekerk | Milica Gasic
Proceedings of the Thirteenth Language Resources and Evaluation Conference

The ability to recognise emotions lends a conversational artificial intelligence a human touch. While emotions in chit-chat dialogues have received substantial attention, emotions in task-oriented dialogues remain largely unaddressed. This is despite emotions and dialogue success having equally important roles in a natural system. Existing emotion-annotated task-oriented corpora are limited in size, label richness, and public availability, creating a bottleneck for downstream tasks. To lay a foundation for studies on emotions in task-oriented dialogues, we introduce EmoWOZ, a large-scale manually emotion-annotated corpus of task-oriented dialogues. EmoWOZ is based on MultiWOZ, a multi-domain task-oriented dialogue dataset. It contains more than 11K dialogues with more than 83K emotion annotations of user utterances. In addition to Wizard-of-Oz dialogues from MultiWOZ, we collect human-machine dialogues within the same set of domains to sufficiently cover the space of various emotions that can happen during the lifetime of a data-driven dialogue system. To the best of our knowledge, this is the first large-scale open-source corpus of its kind. We propose a novel emotion labelling scheme, which is tailored to task-oriented dialogues. We report a set of experimental results to show the usability of this corpus for emotion recognition and state tracking in task-oriented dialogues.

pdf
Robust Dialogue State Tracking with Weak Supervision and Sparse Data
Michael Heck | Nurul Lubis | Carel van Niekerk | Shutong Feng | Christian Geishauser | Hsien-Chin Lin | Milica Gašić
Transactions of the Association for Computational Linguistics, Volume 10

Generalizing dialogue state tracking (DST) to new data is especially challenging due to the strong reliance on abundant and fine-grained supervision during training. Sample sparsity, distributional shift, and the occurrence of new concepts and topics frequently lead to severe performance degradation during inference. In this paper we propose a training strategy to build extractive DST models without the need for fine-grained manual span labels. Two novel input-level dropout methods mitigate the negative impact of sample sparsity. We propose a new model architecture with a unified encoder that supports value as well as slot independence by leveraging the attention mechanism. We combine the strengths of triple copy strategy DST and value matching to benefit from complementary predictions without violating the principle of ontology independence. Our experiments demonstrate that an extractive DST model can be trained without manual span labels. Our architecture and training strategies improve robustness towards sample sparsity, new concepts, and topics, leading to state-of-the-art performance on a range of benchmarks. We further highlight our model’s ability to effectively learn from non-dialogue data.

pdf
Dynamic Dialogue Policy for Continual Reinforcement Learning
Christian Geishauser | Carel van Niekerk | Hsien-chin Lin | Nurul Lubis | Michael Heck | Shutong Feng | Milica Gašić
Proceedings of the 29th International Conference on Computational Linguistics

Continual learning is one of the key components of human learning and a necessary requirement of artificial intelligence. As dialogue can potentially span infinitely many topics and tasks, a task-oriented dialogue system must have the capability to continually learn, dynamically adapting to new challenges while preserving the knowledge it already acquired. Despite the importance, continual reinforcement learning of the dialogue policy has remained largely unaddressed. The lack of a framework with training protocols, baseline models and suitable metrics, has so far hindered research in this direction. In this work we fill precisely this gap, enabling research in dialogue policy optimisation to go from static to dynamic learning. We provide a continual learning algorithm, baseline architectures and metrics for assessing continual learning models. Moreover, we propose the dynamic dialogue policy transformer (DDPT), a novel dynamic architecture that can integrate new knowledge seamlessly, is capable of handling large state spaces and obtains significant zero-shot performance when being exposed to unseen domains, without any growth in network parameter size. We validate the strengths of DDPT in simulation with two user simulators as well as with humans.

2021

pdf
Domain-independent User Simulation with Transformers for Task-oriented Dialogue Systems
Hsien-chin Lin | Nurul Lubis | Songbo Hu | Carel van Niekerk | Christian Geishauser | Michael Heck | Shutong Feng | Milica Gasic
Proceedings of the 22nd Annual Meeting of the Special Interest Group on Discourse and Dialogue

Dialogue policy optimisation via reinforcement learning requires a large number of training interactions, which makes learning with real users time consuming and expensive. Many set-ups therefore rely on a user simulator instead of humans. These user simulators have their own problems. While hand-coded, rule-based user simulators have been shown to be sufficient in small, simple domains, for complex domains the number of rules quickly becomes intractable. State-of-the-art data-driven user simulators, on the other hand, are still domain-dependent. This means that adaptation to each new domain requires redesigning and retraining. In this work, we propose a domain-independent transformer-based user simulator (TUS). The structure of TUS is not tied to a specific domain, enabling domain generalization and the learning of cross-domain user behaviour from data. We compare TUS with the state-of-the-art using automatic as well as human evaluations. TUS can compete with rule-based user simulators on pre-defined domains and is able to generalize to unseen domains in a zero-shot fashion.

pdf
Uncertainty Measures in Neural Belief Tracking and the Effects on Dialogue Policy Performance
Carel van Niekerk | Andrey Malinin | Christian Geishauser | Michael Heck | Hsien-chin Lin | Nurul Lubis | Shutong Feng | Milica Gasic
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

The ability to identify and resolve uncertainty is crucial for the robustness of a dialogue system. Indeed, this has been confirmed empirically on systems that utilise Bayesian approaches to dialogue belief tracking. However, such systems consider only confidence estimates and have difficulty scaling to more complex settings. Neural dialogue systems, on the other hand, rarely take uncertainties into account. They are therefore overconfident in their decisions and less robust. Moreover, the performance of the tracking task is often evaluated in isolation, without consideration of its effect on the downstream policy optimisation. We propose the use of different uncertainty measures in neural belief tracking. The effects of these measures on the downstream task of policy optimisation are evaluated by adding selected measures of uncertainty to the feature space of the policy and training policies through interaction with a user simulator. Both human and simulated user results show that incorporating these measures leads to improvements both of the performance and of the robustness of the downstream dialogue policy. This highlights the importance of developing neural dialogue belief trackers that take uncertainty into account.