This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Chinese Grammatical Error Detection(CGED) aims at detecting grammatical errors in Chinese texts. One of the main challenges for CGED is the lack of annotated data. To alleviate this problem, previous studies proposed various methods to automatically generate more training samples, which can be roughly categorized into rule-based methods and model-based methods. The rule-based methods construct erroneous sentences by directly introducing noises into original sentences. However, the introduced noises are usually context-independent, which are quite different from those made by humans. The model-based methods utilize generative models to imitate human errors. The generative model may bring too many changes to the original sentences and generate semantically ambiguous sentences, so it is difficult to detect grammatical errors in these generated sentences. In addition, generated sentences may be error-free and thus become noisy data. To handle these problems, we propose CNEG, a novel Conditional Non-Autoregressive Error Generation model for generating Chinese grammatical errors. Specifically, in order to generate a context-dependent error, we first mask a span in a correct text, then predict an erroneous span conditioned on both the masked text and the correct span. Furthermore, we filter out error-free spans by measuring their perplexities in the original sentences. Experimental results show that our proposed method achieves better performance than all compared data augmentation methods on the CGED-2018 and CGED-2020 benchmarks.
Recently, Bert-based models have dominated the research of Chinese spelling correction (CSC). These methods have two limitations: (1) they have poor performance on multi-typo texts. In such texts, the context of each typo contains at least one misspelled character, which brings noise information. Such noisy context leads to the declining performance on multi-typo texts. (2) they tend to overcorrect valid expressions to more frequent expressions due to the masked token recovering task of Bert. We attempt to address these limitations in this paper. To make our model robust to contextual noise brought by typos, our approach first constructs a noisy context for each training sample. Then the correction model is forced to yield similar outputs based on the noisy and original contexts. Moreover, to address the overcorrection problem, copy mechanism is incorporated to encourage our model to prefer to choose the input character when the miscorrected and input character are both valid according to the given context. Experiments are conducted on widely used benchmarks. Our model achieves superior performance against state-of-the-art methods by a remarkable gain.
Chinese spelling correction (CSC) is a task to detect and correct spelling errors in texts. CSC is essentially a linguistic problem, thus the ability of language understanding is crucial to this task. In this paper, we propose a Pre-trained masked Language model with Misspelled knowledgE (PLOME) for CSC, which jointly learns how to understand language and correct spelling errors. To this end, PLOME masks the chosen tokens with similar characters according to a confusion set rather than the fixed token “[MASK]” as in BERT. Besides character prediction, PLOME also introduces pronunciation prediction to learn the misspelled knowledge on phonic level. Moreover, phonological and visual similarity knowledge is important to this task. PLOME utilizes GRU networks to model such knowledge based on characters’ phonics and strokes. Experiments are conducted on widely used benchmarks. Our method achieves superior performance against state-of-the-art approaches by a remarkable margin. We release the source code and pre-trained model for further use by the community (https://github.com/liushulinle/PLOME).
The goal of event detection (ED) is to detect the occurrences of events and categorize them. Previous work solved this task by recognizing and classifying event triggers, which is defined as the word or phrase that most clearly expresses an event occurrence. As a consequence, existing approaches required both annotated triggers and event types in training data. However, triggers are nonessential to event detection, and it is time-consuming for annotators to pick out the “most clearly” word from a given sentence, especially from a long sentence. The expensive annotation of training corpus limits the application of existing approaches. To reduce manual effort, we explore detecting events without triggers. In this work, we propose a novel framework dubbed as Type-aware Bias Neural Network with Attention Mechanisms (TBNNAM), which encodes the representation of a sentence based on target event types. Experimental results demonstrate the effectiveness. Remarkably, the proposed approach even achieves competitive performances compared with state-of-the-arts that used annotated triggers.
Modern models of event extraction for tasks like ACE are based on supervised learning of events from small hand-labeled data. However, hand-labeled training data is expensive to produce, in low coverage of event types, and limited in size, which makes supervised methods hard to extract large scale of events for knowledge base population. To solve the data labeling problem, we propose to automatically label training data for event extraction via world knowledge and linguistic knowledge, which can detect key arguments and trigger words for each event type and employ them to label events in texts automatically. The experimental results show that the quality of our large scale automatically labeled data is competitive with elaborately human-labeled data. And our automatically labeled data can incorporate with human-labeled data, then improve the performance of models learned from these data.
This paper tackles the task of event detection (ED), which involves identifying and categorizing events. We argue that arguments provide significant clues to this task, but they are either completely ignored or exploited in an indirect manner in existing detection approaches. In this work, we propose to exploit argument information explicitly for ED via supervised attention mechanisms. In specific, we systematically investigate the proposed model under the supervision of different attention strategies. Experimental results show that our approach advances state-of-the-arts and achieves the best F1 score on ACE 2005 dataset.