Shreyanshu Bhushan


2024

pdf
Unveiling the Power of Integration: Block Diagram Summarization through Local-Global Fusion
Shreyanshu Bhushan | Eun-Soo Jung | Minho Lee
Findings of the Association for Computational Linguistics: ACL 2024

Block Diagrams play an essential role in visualizing the relationships between components or systems. Generating summaries of block diagrams is important for document understanding or question answering (QA) tasks by providing concise overviews of complex systems. However, it’s a challenging task as it requires compressing complex relationships into informative descriptions. In this paper, we present “BlockNet”, a fusion framework that summarizes block diagrams by integrating local and global information, catering to both English and Korean languages. Additionally, we introduce a new multilingual method to produce block diagram data, resulting in a high-quality dataset called “BD-EnKo”. In BlockNet, we develop “BlockSplit”, an Optical Character Recognition (OCR) based algorithm employing the divide-and-conquer principle for local information extraction. We train an OCR-free transformer architecture for global information extraction using BD-EnKo and public data. To assess the effectiveness of our model, we conduct thorough experiments on different datasets. The assessment shows that BlockNet surpasses all previous methods and models, including GPT-4V, for block diagram summarization.

2022

pdf
Block Diagram-to-Text: Understanding Block Diagram Images by Generating Natural Language Descriptors
Shreyanshu Bhushan | Minho Lee
Findings of the Association for Computational Linguistics: AACL-IJCNLP 2022

Block diagrams are very popular for representing a workflow or process of a model. Understanding block diagrams by generating summaries can be extremely useful in document summarization. It can also assist people in inferring key insights from block diagrams without requiring a lot of perceptual and cognitive effort. In this paper, we propose a novel task of converting block diagram images into text by presenting a framework called “BloSum”. This framework extracts the contextual meaning from the images in the form of triplets that help the language model in summary generation. We also introduce a new dataset for complex computerized block diagrams, explain the dataset preparation process, and later analyze it. Additionally, to showcase the generalization of the model, we test our method with publicly available handwritten block diagram datasets. Our evaluation with different metrics demonstrates the effectiveness of our approach that outperforms other methods and techniques.