This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Reasoning is most powerful when an LLM accurately aggregates relevant information. We examine the critical role of information aggregation in reasoning by requiring the LLM to analyze sports narratives. To succeed at this task, an LLM must infer points from actions, identify related entities, attribute points accurately to players and teams, and compile key statistics to draw conclusions. We conduct comprehensive experiments with real NBA basketball data and present SportsGen, a new method to synthesize game narratives. By synthesizing data, we can rigorously evaluate LLMs’ reasoning capabilities under complex scenarios with varying narrative lengths and density of information. Our findings show that most models, including GPT-4o, often fail to accurately aggregate basketball scores due to frequent scoring patterns. Open-source models like Llama-3 further suffer from significant score hallucinations. Finally, the effectiveness of reasoning is influenced by narrative complexity, information density, and domain-specific terms, highlighting the challenges in analytical reasoning tasks.
This paper introduces the Decomposed Requirements Following Ratio (DRFR), a new metric for evaluating Large Language Models’ (LLMs) ability to follow instructions. Addressing a gap in current methodologies, DRFR breaks down complex instructions into simpler criteria, facilitating a detailed analysis of LLMs’ compliance with various aspects of tasks. Alongside this metric, we present InFoBench, a benchmark comprising 500 diverse instructions and 2,250 decomposed questions across multiple constraint categories. Our experiments compare DRFR with traditional scoring methods and explore annotation sources, including human experts, crowd-sourced workers, and GPT-4. The findings demonstrate DRFR’s higher reliability and the effectiveness of using GPT-4 as a cost-efficient annotator. The evaluation of several advanced LLMs using this framework reveals their strengths and areas needing improvement, particularly in complex instruction-following. This study contributes a novel metric and benchmark, offering insights for future LLM development and evaluation.
With the rapid development of large language models (LLMs) and their integration into large multimodal models (LMMs), there has beenimpressive progress in zero-shot completion of user-oriented vision-language tasks. However, a gap remains in the domain of chartimage understanding due to the distinct abstract components in charts. To address this, we introduce a large-scale MultiModal ChartInstruction (MMC-Instruction) dataset comprising 600k instances supporting diverse tasks and chart types. Leveraging this data, we de-velop MultiModal Chart Assistant (MMCA), an LMM that achieves state-of-the-art performance on existing chart QA benchmarks. Recognizing the need for a comprehensive evaluation of LMM chart understanding, we also propose a MultiModal Chart Benchmark (MMC-Benchmark), a comprehensive human-annotated benchmark with nine distinct tasks evaluating reasoning capabilities over charts.Extensive experiments on MMC-Benchmark reveal the limitations of existing LMMs on correctly interpreting charts, even for the mostrecent GPT-4V model. Our work provides an instruction-tuning methodology and benchmark to advance multimodal understanding ofcharts. Code and data are available at https://github.com/FuxiaoLiu/MMC.
Opinion summarization is automatically generating summaries from a variety of subjective information, such as product reviews or political opinions. The challenge of opinions summarization lies in presenting divergent or even conflicting opinions. We conduct an analysis of previous summarization models, which reveals their inclination to amplify the polarity bias, emphasizing the majority opinions while ignoring the minority opinions. To address this issue and make the summarizer express both sides of opinions, we introduce the concept of polarity calibration, which aims to align the polarity of output summary with that of input text. Specifically, we develop a reinforcement training approach for polarity calibration. This approach feeds the polarity distance between output summary and input text as reward into the summarizer, and also balance polarity calibration with content preservation and language naturality. We evaluate our Polarity Calibration model (PoCa) on two types of opinions summarization tasks: summarizing product reviews and political opinions articles. Automatic and human evaluation demonstrate that our approach can mitigate the polarity mismatch between output summary and input text, as well as maintain the content semantic and language quality.
Large language models hold significant potential for integrating various data types, such as text documents and database records, for advanced analytics. However, blending text and numerical data presents substantial challenges. LLMs need to process and cross-reference entities and numbers, handle data inconsistencies and redundancies, and develop planning capabilities such as building a working memory for managing complex data queries. In this paper, we introduce four novel tasks centered around sports data analytics to evaluate the numerical reasoning and information fusion capabilities of LLMs. These tasks involve providing LLMs with detailed, play-by-play sports game descriptions, then challenging them with adversarial scenarios such as new game rules, longer durations, scrambled narratives, and analyzing key statistics in game summaries. We conduct extensive experiments on NBA and NFL games to assess the performance of LLMs on these tasks. Our benchmark, SportsMetrics, introduces a new mechanism for assessing LLMs’ numerical reasoning and fusion skills.
The potential choices for news article headlines are enormous, and finding the right balance between conveying the essential message and capturing the reader’s attention is key to effective headlining. However, presenting the same news headline to all readers is a suboptimal strategy, because it does not take into account the different preferences and interests of diverse readers, who may be confused about why a particular article has been recommended to them and do not see a clear connection between their interests and the recommended article. In this paper, we present a novel framework that addresses these challenges by incorporating user profiling to generate personalized headlines, and a combination of automated and human evaluation methods to determine user preference for personalized headlines. Our framework utilizes a learnable relevance function to assign personalized signature phrases to users based on their reading histories, which are then used to personalize headline generation. Through extensive evaluation, we demonstrate the effectiveness of our proposed framework in generating personalized headlines that meet the needs of a diverse audience. Our framework has the potential to improve the efficacy of news recommendations and facilitate creation of personalized content.
Aspect or query-based summarization has recently caught more attention, as it can generate differentiated summaries based on users’ interests. However, the current dataset for aspect or query-based summarization either focuses on specific domains, on a relatively small scale, or contains only a few aspect types. Such limitations hinder further explorations in this direction. In this work, we take advantage of crowd-sourcing knowledge on Wikipedia and automatically create a high-quality, large-scale open-domain aspect-based summarization dataset named OASum, which contains more than 3.7 million instances with around 1 million different aspects on 2 million Wikipedia pages. We provide benchmark results on OASum and demonstrate its ability for diverse aspect-based summarization generation. To overcome the data scarcity problem on specific domains, we also perform zero-shot, few-shot, and fine-tuning on seven downstream datasets. Specifically, zero/few-shot and fine-tuning results show that the model pre-trained on our corpus demonstrates a strong aspect or query-focused generation ability compared with the backbone model. Our dataset and pre-trained checkpoints are publicly available.
Human preference judgments are pivotal in guiding large language models (LLMs) to produce outputs that align with human values. Human evaluations are also used in summarization tasks to compare outputs from various systems, complementing existing automatic metrics. Despite their significance, however, there has been limited research probing these pairwise or k-wise comparisons. The collective impact and relative importance of factors such as output length, informativeness, fluency, and factual consistency are still not well understood. It is also unclear if there are other hidden factors influencing human judgments. In this paper, we conduct an in-depth examination of a collection of pairwise human judgments released by OpenAI. Utilizing the Bradley-Terry-Luce (BTL) model, we reveal the inherent preferences embedded in these human judgments. We find that the most favored factors vary across tasks and genres, whereas the least favored factors tend to be consistent, e.g., outputs are too brief, contain excessive off-focus content or hallucinated facts. Our findings have implications on the construction of balanced datasets in human preference evaluations, which is a crucial step in shaping the behaviors of future LLMs.
Text segmentation is important for signaling a document’s structure. Without segmenting a long document into topically coherent sections, it is difficult for readers to comprehend the text, let alone find important information. The problem is only exacerbated by a lack of segmentation in transcripts of audio/video recordings. In this paper, we explore the role that section segmentation plays in extractive summarization of written and spoken documents. Our approach learns robust sentence representations by performing summarization and segmentation simultaneously, which is further enhanced by an optimization-based regularizer to promote selection of diverse summary sentences. We conduct experiments on multiple datasets ranging from scientific articles to spoken transcripts to evaluate the model’s performance. Our findings suggest that the model can not only achieve state-of-the-art performance on publicly available benchmarks, but demonstrate better cross-genre transferability when equipped with text segmentation. We perform a series of analyses to quantify the impact of section segmentation on summarizing written and spoken documents of substantial length and complexity.
Abstractive summarization models typically learn to capture the salient information from scratch implicitly.Recent literature adds extractive summaries as guidance for abstractive summarization models to provide hints of salient content and achieves better performance.However, extractive summaries as guidance could be over strict, leading to information loss or noisy signals.Furthermore, it cannot easily adapt to documents with various abstractiveness.As the number and allocation of salience content pieces varies, it is hard to find a fixed threshold deciding which content should be included in the guidance.In this paper, we propose a novel summarization approach with a flexible and reliable salience guidance, namely SEASON (SaliencE Allocation as Guidance for Abstractive SummarizatiON).SEASON utilizes the allocation of salience expectation to guide abstractive summarization and adapts well to articles in different abstractiveness.Automatic and human evaluations on two benchmark datasets show that the proposed method is effective and reliable.Empirical results on more than one million news articles demonstrate a natural fifteen-fifty salience split for news article sentences, providing a useful insight for composing news articles.
With the explosive growth of livestream broadcasting, there is an urgent need for new summarization technology that enables us to create a preview of streamed content and tap into this wealth of knowledge. However, the problem is nontrivial due to the informal nature of spoken language. Further, there has been a shortage of annotated datasets that are necessary for transcript summarization. In this paper, we present StreamHover, a framework for annotating and summarizing livestream transcripts. With a total of over 500 hours of videos annotated with both extractive and abstractive summaries, our benchmark dataset is significantly larger than currently existing annotated corpora. We explore a neural extractive summarization model that leverages vector-quantized variational autoencoder to learn latent vector representations of spoken utterances and identify salient utterances from the transcripts to form summaries. We show that our model generalizes better and improves performance over strong baselines. The results of this study provide an avenue for future research to improve summarization solutions for efficient browsing of livestreams.
Amongst the best means to summarize is highlighting. In this paper, we aim to generate summary highlights to be overlaid on the original documents to make it easier for readers to sift through a large amount of text. The method allows summaries to be understood in context to prevent a summarizer from distorting the original meaning, of which abstractive summarizers usually fall short. In particular, we present a new method to produce self-contained highlights that are understandable on their own to avoid confusion. Our method combines determinantal point processes and deep contextualized representations to identify an optimal set of sub-sentence segments that are both important and non-redundant to form summary highlights. To demonstrate the flexibility and modeling power of our method, we conduct extensive experiments on summarization datasets. Our analysis provides evidence that highlighting is a promising avenue of research towards future summarization.
The most important obstacles facing multi-document summarization include excessive redundancy in source descriptions and the looming shortage of training data. These obstacles prevent encoder-decoder models from being used directly, but optimization-based methods such as determinantal point processes (DPPs) are known to handle them well. In this paper we seek to strengthen a DPP-based method for extractive multi-document summarization by presenting a novel similarity measure inspired by capsule networks. The approach measures redundancy between a pair of sentences based on surface form and semantic information. We show that our DPP system with improved similarity measure performs competitively, outperforming strong summarization baselines on benchmark datasets. Our findings are particularly meaningful for summarizing documents created by multiple authors containing redundant yet lexically diverse expressions.
Emerged as one of the best performing techniques for extractive summarization, determinantal point processes select a most probable set of summary sentences according to a probabilistic measure defined by respectively modeling sentence prominence and pairwise repulsion. Traditionally, both aspects are modelled using shallow and linguistically informed features, but the rise of deep contextualized representations raises an interesting question. Whether, and to what extent, could contextualized sentence representations be used to improve the DPP framework? Our findings suggest that, despite the success of deep semantic representations, it remains necessary to combine them with surface indicators for effective identification of summary-worthy sentences.