Rajalakshmi S


2019

pdf
TECHSSN at SemEval-2019 Task 6: Identifying and Categorizing Offensive Language in Tweets using Deep Neural Networks
Angel Suseelan | Rajalakshmi S | Logesh B | Harshini S | Geetika B | Dyaneswaran S | S Milton Rajendram | Mirnalinee T T
Proceedings of the 13th International Workshop on Semantic Evaluation

Task 6 of SemEval 2019 involves identifying and categorizing offensive language in social media. The systems developed by TECHSSN team uses multi-level classification techniques. We have developed two systems. In the first system, the first level of classification is done by a multi-branch 2D CNN classifier with Google’s pre-trained Word2Vec embedding and the second level of classification by string matching technique supported by offensive and bad words dictionary. The second system uses a multi-branch 1D CNN classifier with Glove pre-trained embedding layer for the first level of classification and string matching for the second level of classification. Input data with a probability of less than 0.70 in the first level are passed on to the second level. The misclassified examples are classified correctly in the second level.

pdf
SSN-SPARKS at SemEval-2019 Task 9: Mining Suggestions from Online Reviews using Deep Learning Techniques on Augmented Data
Rajalakshmi S | Angel Suseelan | S Milton Rajendram | Mirnalinee T T
Proceedings of the 13th International Workshop on Semantic Evaluation

This paper describes the work on mining the suggestions from online reviews and forums. Opinion mining detects whether the comments are positive, negative or neutral, while suggestion mining explores the review content for the possible tips or advice. The system developed by SSN-SPARKS team in SemEval-2019 for task 9 (suggestion mining) uses a rule-based approach for feature selection, SMOTE technique for data augmentation and deep learning technique (Convolutional Neural Network) for classification. We have compared the results with Random Forest classifier (RF) and MultiLayer Perceptron (MLP) model. Results show that the CNN model performs better than other models for both the subtasks.

2018

pdf
SSN MLRG1 at SemEval-2018 Task 1: Emotion and Sentiment Intensity Detection Using Rule Based Feature Selection
Angel Deborah S | Rajalakshmi S | S Milton Rajendram | Mirnalinee T T
Proceedings of the 12th International Workshop on Semantic Evaluation

The system developed by the SSN MLRG1 team for Semeval-2018 task 1 on affect in tweets uses rule based feature selection and one-hot encoding to generate the input feature vector. Multilayer Perceptron was used to build the model for emotion intensity ordinal classification, sentiment analysis ordinal classification and emotion classfication subtasks. Support Vector Machine was used to build the model for emotion intensity regression and sentiment intensity regression subtasks.

pdf
SSN MLRG1 at SemEval-2018 Task 3: Irony Detection in English Tweets Using MultiLayer Perceptron
Rajalakshmi S | Angel Deborah S | S Milton Rajendram | Mirnalinee T T
Proceedings of the 12th International Workshop on Semantic Evaluation

Sentiment analysis plays an important role in E-commerce. Identifying ironic and sarcastic content in text plays a vital role in inferring the actual intention of the user, and is necessary to increase the accuracy of sentiment analysis. This paper describes the work on identifying the irony level in twitter texts. The system developed by the SSN MLRG1 team in SemEval-2018 for task 3 (irony detection) uses rule based approach for feature selection and MultiLayer Perceptron (MLP) technique to build the model for multiclass irony classification subtask, which classifies the given text into one of the four class labels.