Priyanshu Priya


2024

pdf
On the Way to Gentle AI Counselor: Politeness Cause Elicitation and Intensity Tagging in Code-mixed Hinglish Conversations for Social Good
Priyanshu Priya | Gopendra Singh | Mauajama Firdaus | Jyotsna Agrawal | Asif Ekbal
Findings of the Association for Computational Linguistics: NAACL 2024

Politeness is a multifaceted concept influenced by individual perceptions of what is considered polite or impolite. With this objective, we introduce a novel task - Politeness Cause Elicitation and Intensity Tagging (PCEIT). This task focuses on conversations and aims to identify the underlying reasons behind the use of politeness and gauge the degree of politeness conveyed. To address this objective, we create HING-POEM, a new conversational dataset in Hinglish (a blend of Hindi and English) for mental health and legal counseling of crime victims. The rationale for the domain selection lies in the paramount importance of politeness in mental health and legal counseling of crime victims to ensure a compassionate and cordial atmosphere for them. We enrich the HING-POEM dataset by annotating it with politeness labels, politeness causal spans, and intensity values at the level of individual utterances. In the context of the introduced PCEIT task, we present PAANTH (Politeness CAuse ElicitAion and INtensity Tagging in Hinglish), a comprehensive framework based on Contextual Enhanced Attentive Convolution Transformer. We conduct extensive quantitative and qualitative evaluations to establish the effectiveness of our proposed approach using the newly constructed dataset. Our approach is compared against state-of-the-art baselines, and these analyses help demonstrate the superiority of our method.

pdf
TRIP NEGOTIATOR: A Travel Persona-aware Reinforced Dialogue Generation Model for Personalized Integrative Negotiation in Tourism
Priyanshu Priya | Desai Vishesh Yasheshbhai | Ratnesh Kumar Joshi | Roshni Ramnani | Anutosh Maitra | Shubhashis Sengupta | Asif Ekbal
Findings of the Association for Computational Linguistics: EMNLP 2024

A sophisticated negotiation dialogue system for tourism should engage in negotiations beyond mere price considerations, encompassing various other aspects and amenities inherent in the tourism package. To ensure such tailored interaction, it is imperative to understand the intricacies of traveler preferences, constraints, and expectations. Incorporating these personality facets allows for customizing negotiation strategies, resulting in a more personalized and integrative experience. With this aim, we take a pivotal step in advancing automated dialogue systems for personalized integrative negotiation tasks. We develop DEAL, a pioneering Dialogue datasEt for personALized integrative negotiation task in the tourism domain. Further, we propose TRIP NEGOTIATOR, a novel Travel persona-aware Reinforced dIalogue generation model for Personalized iNtegrative nEGOTIATion within the tOuRism domain. TRIP NEGOTIATOR is built to discern the traveler’s persona and intent, systematically adjusts negotiation strategies, and directs the negotiation toward a pertinent phase to ensure effective negotiation. Through reinforcement learning with Proximal Policy Optimization (PPO), we guide TRIP NEGOTIATOR to generate coherent and diverse responses consistent with the traveler’s personality. Extensive qualitative and quantitative analyses demonstrate the effectiveness of TRIP NEGOTIATOR in generating personalized responses during negotiation.

pdf
Knowledge-enhanced Response Generation in Dialogue Systems: Current Advancements and Emerging Horizons
Priyanshu Priya | Deeksha Varshney | Mauajama Firdaus | Asif Ekbal
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024): Tutorial Summaries

This tutorial provides an in-depth exploration of Knowledge-enhanced Dialogue Systems (KEDS), diving into their foundational aspects, methodologies, advantages, and practical applications. Topics include the distinction between internal and external knowledge integration, diverse methodologies employed in grounding dialogues, and innovative approaches to leveraging knowledge graphs for enhanced conversation quality. Furthermore, the tutorial touches upon the rise of biomedical text mining, the advent of domain-specific language models, and the challenges and strategies specific to medical dialogue generation. The primary objective is to give attendees a comprehensive understanding of KEDS. By delineating the nuances of these systems, the tutorial aims to elucidate their significance, highlight advancements made using deep learning, and pinpoint the current challenges. Special emphasis is placed on showcasing how KEDS can be fine-tuned for domain-specific requirements, with a spotlight on the healthcare sector. The tutorial is crafted for both beginners and intermediate researchers in the dialogue systems domain, with a focus on those keen on advancing research in KEDS. It will also be valuable for practitioners in sectors like healthcare, seeking to integrate advanced dialogue systems.

2023

pdf
PAL to Lend a Helping Hand: Towards Building an Emotion Adaptive Polite and Empathetic Counseling Conversational Agent
Kshitij Mishra | Priyanshu Priya | Asif Ekbal
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The World Health Organization (WHO) has significantly emphasized the need for mental health care. The social stigma associated with mental illness prevents individuals from addressing their issues and getting assistance. In such a scenario, the relevance of online counseling has increased dramatically. The feelings and attitudes that a client and a counselor express towards each other result in a higher or lower counseling experience. A counselor should be friendly and gain clients’ trust to make them share their problems comfortably. Thus, it is essential for the counselor to adequately comprehend the client’s emotions and ensure client’s welfare, i.e. s/he should adapt and deal with the clients politely and empathetically to provide a pleasant, cordial and personalized experience. Motivated by this, in this work, we attempt to build a novel Polite and empAthetic counseLing conversational agent PAL to lay down the counseling support to substance addict and crime victims. To have client’s emotion-based polite and empathetic responses, two counseling datasets laying down the counseling support to substance addicts and crime victims are annotated. These annotated datasets are used to build PAL in a reinforcement learning framework. A novel reward function is formulated to ensure correct politeness and empathy preferences as per client’s emotions with naturalness and non-repetitiveness in responses. Thorough automatic and human evaluation showcase the usefulness and strength of the designed novel reward function. Our proposed system is scalable and can be easily modified with different modules of preference models as per need.

pdf
Mixing It Up: Inducing Empathy and Politeness using Multiple Behaviour-aware Generators for Conversational Systems
Mauajama Firdaus | Priyanshu Priya | Asif Ekbal
Findings of the Association for Computational Linguistics: IJCNLP-AACL 2023 (Findings)

pdf
e-THERAPIST: I suggest you to cultivate a mindset of positivity and nurture uplifting thoughts
Kshitij Mishra | Priyanshu Priya | Manisha Burja | Asif Ekbal
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

The shortage of therapists for mental health patients emphasizes the importance of globally accessible dialogue systems alleviating their issues. To have effective interpersonal psychotherapy, these systems must exhibit politeness and empathy when needed. However, these factors may vary as per the user’s gender, age, persona, and sentiment. Hence, in order to establish trust and provide a personalized cordial experience, it is essential that generated responses should be tailored to individual profiles and attributes. Focusing on this objective, we propose e-THERAPIST, a novel polite interpersonal psychotherapy dialogue system to address issues like depression, anxiety, schizophrenia, etc. We begin by curating a unique conversational dataset for psychotherapy, called PsyCon. It is annotated at two levels: (i) dialogue-level - including user’s profile information (gender, age, persona) and therapist’s psychotherapeutic approach; and (ii) utterance-level - encompassing user’s sentiment and therapist’s politeness, and interpersonal behaviour. Then, we devise a novel reward model to adapt correct polite interpersonal behaviour and use it to train e-THERAPIST on PsyCon employing NLPO loss. Our extensive empirical analysis validates the effectiveness of each component of the proposed e-THERAPIST demonstrating its potential impact in psychotherapy settings.

2022

pdf
EmoInHindi: A Multi-label Emotion and Intensity Annotated Dataset in Hindi for Emotion Recognition in Dialogues
Gopendra Vikram Singh | Priyanshu Priya | Mauajama Firdaus | Asif Ekbal | Pushpak Bhattacharyya
Proceedings of the Thirteenth Language Resources and Evaluation Conference

The long-standing goal of Artificial Intelligence (AI) has been to create human-like conversational systems. Such systems should have the ability to develop an emotional connection with the users, consequently, emotion recognition in dialogues has gained popularity. Emotion detection in dialogues is a challenging task because humans usually convey multiple emotions with varying degrees of intensities in a single utterance. Moreover, emotion in an utterance of a dialogue may be dependent on previous utterances making the task more complex. Recently, emotion recognition in low-resource languages like Hindi has been in great demand. However, most of the existing datasets for multi-label emotion and intensity detection in conversations are in English. To this end, we propose a large conversational dataset in Hindi named EmoInHindi for multi-label emotion and intensity recognition in conversations containing 1,814 dialogues with a total of 44,247 utterances. We prepare our dataset in a Wizard-of-Oz manner for mental health and legal counselling of crime victims. Each utterance of dialogue is annotated with one or more emotion categories from 16 emotion labels including neutral and their corresponding intensity. We further propose strong contextual baselines that can detect the emotion(s) and corresponding emotional intensity of an utterance given the conversational context.