Pooja Chitkara


2021

pdf
Noise Robust Named Entity Understanding for Voice Assistants
Deepak Muralidharan | Joel Ruben Antony Moniz | Sida Gao | Xiao Yang | Justine Kao | Stephen Pulman | Atish Kothari | Ray Shen | Yinying Pan | Vivek Kaul | Mubarak Seyed Ibrahim | Gang Xiang | Nan Dun | Yidan Zhou | Andy O | Yuan Zhang | Pooja Chitkara | Xuan Wang | Alkesh Patel | Kushal Tayal | Roger Zheng | Peter Grasch | Jason D Williams | Lin Li
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Industry Papers

Named Entity Recognition (NER) and Entity Linking (EL) play an essential role in voice assistant interaction, but are challenging due to the special difficulties associated with spoken user queries. In this paper, we propose a novel architecture that jointly solves the NER and EL tasks by combining them in a joint reranking module. We show that our proposed framework improves NER accuracy by up to 3.13% and EL accuracy by up to 3.6% in F1 score. The features used also lead to better accuracies in other natural language understanding tasks, such as domain classification and semantic parsing.

pdf
Using Pause Information for More Accurate Entity Recognition
Sahas Dendukuri | Pooja Chitkara | Joel Ruben Antony Moniz | Xiao Yang | Manos Tsagkias | Stephen Pulman
Proceedings of the 3rd Workshop on Natural Language Processing for Conversational AI

Entity tags in human-machine dialog are integral to natural language understanding (NLU) tasks in conversational assistants. However, current systems struggle to accurately parse spoken queries with the typical use of text input alone, and often fail to understand the user intent. Previous work in linguistics has identified a cross-language tendency for longer speech pauses surrounding nouns as compared to verbs. We demonstrate that the linguistic observation on pauses can be used to improve accuracy in machine-learnt language understanding tasks. Analysis of pauses in French and English utterances from a commercial voice assistant shows the statistically significant difference in pause duration around multi-token entity span boundaries compared to within entity spans. Additionally, in contrast to text-based NLU, we apply pause duration to enrich contextual embeddings to improve shallow parsing of entities. Results show that our proposed novel embeddings improve the relative error rate by up to 8% consistently across three domains for French, without any added annotation or alignment costs to the parser.

2019

pdf
Topic Spotting using Hierarchical Networks with Self Attention
Pooja Chitkara | Ashutosh Modi | Pravalika Avvaru | Sepehr Janghorbani | Mubbasir Kapadia
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Success of deep learning techniques have renewed the interest in development of dialogue systems. However, current systems struggle to have consistent long term conversations with the users and fail to build rapport. Topic spotting, the task of automatically inferring the topic of a conversation, has been shown to be helpful in making dialog system more engaging and efficient. We propose a hierarchical model with self attention for topic spotting. Experiments on the Switchboard corpus show the superior performance of our model over previously proposed techniques for topic spotting and deep models for text classification. Additionally, in contrast to offline processing of dialog, we also analyze the performance of our model in a more realistic setting i.e. in an online setting where the topic is identified in real time as the dialog progresses. Results show that our model is able to generalize even with limited information in the online setting.