This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
We study LMs pretrained sequentially on two languages (“L2LMs”) for modeling nonnative sentence processing. In particular, we pretrain GPT2 on 6 different first languages (L1s), followed by English as the second language (L2). We examine the effect of the choice of pretraining L1 on the model’s ability to predict human reading times, evaluating on English readers from a range of L1 backgrounds. Experimental results show that, while all of the LMs’ word surprisals improve prediction of L2 reading times, especially for human L1s distant from English, there is no reliable effect of the choice of L2LM’s L1. We also evaluate the learning trajectory of a monolingual English LM: for predicting L2 as opposed to L1 reading, it peaks much earlier and immediately falls off, possibly mirroring the difference in proficiency between the native and nonnative populations. Lastly, we provide examples of L2LMs’ surprisals, which could potentially generate hypotheses about human L2 reading.
This paper evaluates how well English Abstract Meaning Representation parsers process an important and frequent kind of Long-Distance Dependency construction, namely, relative clauses (RCs). On two syntactically parsed datasets, we evaluate five AMR parsers at recovering the semantic reentrancies triggered by different syntactic subtypes of relative clauses. Our findings reveal a general difficulty among parsers at predicting such reentrancies, with recall below 64% on the EWT corpus. The sequence-to-sequence models (regardless of whether structural biases were included in training) outperform the compositional model. An analysis by relative clause subtype shows that passive subject RCs are the easiest, and oblique and reduced RCs the most challenging, for AMR parsers.
In addition to asking questions about facts in the world, some internet users—in particular, second language learners—ask questions about language itself. Depending on their proficiency level and audience, they may pose these questions in an L1 (first language) or an L2 (second language). We investigate how multilingual LLMs perform at crosslingual metalinguistic question answering. Focusing on binary questions about sentence grammaticality constructed from error-annotated learner corpora, we prompt three LLMs (Aya, Llama, and GPT) in multiple languages, including English, German, Korean, Russian, and Ukrainian. Our study reveals that the language of the prompt can significantly affect model performance, and despite English being the dominant training language for all three models, prompting in a different language with questions about English often yields better results.
Semantic representations capture the meaning of a text. Abstract Meaning Representation (AMR), a type of semantic representation, focuses on predicate-argument structure and abstracts away from surface form. Though AMR was developed initially for English, it has now been adapted to a multitude of languages in the form of non-English annotation schemas, cross-lingual text-to-AMR parsing, and AMR-to-(non-English) text generation. We advance prior work on cross-lingual AMR by thoroughly investigating the amount, types, and causes of differences that appear in AMRs of different languages. Further, we compare how AMR captures meaning in cross-lingual pairs versus strings, and show that AMR graphs are able to draw out fine-grained differences between parallel sentences. We explore three primary research questions: (1) What are the types and causes of differences in parallel AMRs? (2) How can we measure the amount of difference between AMR pairs in different languages? (3) Given that AMR structure is affected by language and exhibits cross-lingual differences, how do cross-lingual AMR pairs compare to string-based representations of cross-lingual sentence pairs? We find that the source language itself does have a measurable impact on AMR structure, and that translation divergences and annotator choices also lead to differences in cross-lingual AMR pairs. We explore the implications of this finding throughout our study, concluding that, although AMR is useful to capture meaning across languages, evaluations need to take into account source language influences if they are to paint an accurate picture of system output, and meaning generally.
Translated texts bear several hallmarks distinct from texts originating in the language (“translationese”). Though individual translated texts are often fluent and preserve meaning, at a large scale, translated texts have statistical tendencies which distinguish them from text originally written in the language and can affect model performance. We frame the novel task of translationese reduction and hypothesize that Abstract Meaning Representation (AMR), a graph-based semantic representation which abstracts away from the surface form, can be used as an interlingua to reduce the amount of translationese in translated texts. By parsing English translations into an AMR and then generating text from that AMR, the result more closely resembles originally English text across three quantitative macro-level measures, without severely compromising fluency or adequacy. We compare our AMR-based approach against three other techniques based on machine translation or paraphrase generation. This work represents the first approach to reducing translationese in text and highlights the promise of AMR, given that our AMR-based approach outperforms more computationally intensive methods.
Most judicial decisions involve the interpretation of legal texts. As such, judicial opinions use language as the medium to comment on or draw attention to other language (for example, through definitions and hypotheticals about the meaning of a term from a statute). Language used this way is called metalanguage. Focusing on the U.S. Supreme Court, we view metalanguage as reflective of justices’ interpretive processes, bearing on current debates and theories about textualism in law and political science. As a step towards large-scale metalinguistic analysis with NLP, we identify 9 categories prominent in metalinguistic discussions, including key terms, definitions, and different kinds of sources. We annotate these concepts in a corpus of U.S. Supreme Court opinions. Our analysis of the corpus reveals high interannotator agreement, frequent use of quotes and sources, and several notable frequency differences between majority, concurring, and dissenting opinions. We observe fewer instances than expected of several legal interpretive categories. We discuss some of the challenges in developing the annotation schema and applying it and provide recommendations for how this corpus can be used for broader analyses.
Many languages use adpositions (prepositions or postpositions) to mark a variety of semantic relations, with different languages exhibiting both commonalities and idiosyncrasies in the relations grouped under the same lexeme. We present the first Japanese extension of the SNACS framework (Schneider et al., 2018), which has served as the basis for annotating adpositions in corpora from several languages. After establishing which of the set of particles (joshi) in Japanese qualify as case markers and adpositions as defined in SNACS, we annotate 10 chapters (≈10k tokens) of the Japanese translation of Le Petit Prince (The Little Prince), achieving high inter-annotator agreement. We find that, while a majority of the particles and their uses are captured by the existing and extended SNACS annotation guidelines from the previous work, some unique cases were observed. We also conduct experiments investigating the cross-lingual similarity of adposition and case marker supersenses, showing that the language-agnostic SNACS framework captures similarities not clearly observed in multilingual embedding space.
The Universal Dependencies (UD) project has created an invaluable collection of treebanks with contributions in over 140 languages. However, the UD annotations do not tell the full story. Grammatical constructions that convey meaning through a particular combination of several morphosyntactic elements—for example, interrogative sentences with special markers and/or word orders—are not labeled holistically. We argue for (i) augmenting UD annotations with a ‘UCxn’ annotation layer for such meaning-bearing grammatical constructions, and (ii) approaching this in a typologically informed way so that morphosyntactic strategies can be compared across languages. As a case study, we consider five construction families in ten languages, identifying instances of each construction in UD treebanks through the use of morphosyntactic patterns. In addition to findings regarding these particular constructions, our study yields important insights on methodology for describing and identifying constructions in language-general and language-particular ways, and lays the foundation for future constructional enrichment of UD treebanks.
We present ELQA, a corpus of questions and answers in and about the English language. Collected from two online forums, the >70k questions (from English learners and others) cover wide-ranging topics including grammar, meaning, fluency, and etymology. The answers include descriptions of general properties of English vocabulary and grammar as well as explanations about specific (correct and incorrect) usage examples. Unlike most NLP datasets, this corpus is metalinguistic—it consists of language about language. As such, it can facilitate investigations of the metalinguistic capabilities of NLU models, as well as educational applications in the language learning domain. To study this, we define a free-form question answering task on our dataset and conduct evaluations on multiple LLMs (Large Language Models) to analyze their capacity to generate metalinguistic answers.
A line of work on Transformer-based language models such as BERT has attempted to use syntactic inductive bias to enhance the pretraining process, on the theory that building syntactic structure into the training process should reduce the amount of data needed for training. But such methods are often tested for high-resource languages such as English. In this work, we investigate whether these methods can compensate for data sparseness in low-resource languages, hypothesizing that they ought to be more effective for low-resource languages. We experiment with five low-resource languages: Uyghur, Wolof, Maltese, Coptic, and Ancient Greek. We find that these syntactic inductive bias methods produce uneven results in low-resource settings, and provide surprisingly little benefit in most cases.
Multiword expressions (MWEs) are challenging and pervasive phenomena whose idiosyncratic properties show notably at the levels of lexicon, morphology, and syntax. Thus, they should best be annotated jointly with morphosyntax. We discuss two multilingual initiatives, Universal Dependencies and PARSEME, addressing these annotation layers in cross-lingually unified ways. We compare the annotation principles of these initiatives with respect to MWEs, and we put forward a roadmap towards their gradual unification. The expected outcomes are more consistent treebanking and higher universality in modeling idiosyncrasy.
The ACL Anthology is a prime resource for research papers within computational linguistics and natural language processing, while continuing to be an open-source and community-driven project. Since Gildea et al. (2018) reported on its state and planned directions, the Anthology has seen major technical changes. We discuss what led to these changes and how they impact long-term maintainability and community engagement, describe which open-source data and software tools the Anthology currently provides, and provide a survey of literature that has used the Anthology as a main data source.
In this paper, we present strong baselines for the task of Feedback Comment Generation for Writing Learning. Given a sentence and an error span, the task is to generate a feedback comment explaining the error. Sentences and feedback comments are both in English. We experiment with LLMs and also create multiple pseudo datasets for the task, investigating how it affects the performance of our system. We present our results for the task along with extensive analysis of the generated comments with the aim of aiding future studies in feedback comment generation for English language learners.
Recent efforts to consolidate guidelines and treebanks in the Universal Dependencies project raise the expectation that joint training and dataset comparison is increasingly possible for high-resource languages such as English, which have multiple corpora. Focusing on the two largest UD English treebanks, we examine progress in data consolidation and answer several questions: Are UD English treebanks becoming more internally consistent? Are they becoming more like each other and to what extent? Is joint training a good idea, and if so, since which UD version? Our results indicate that while consolidation has made progress, joint models may still suffer from inconsistencies, which hamper their ability to leverage a larger pool of training data.
We investigate whether the Cambridge Grammar of the English Language (2002) and its extensive descriptions work well as a corpus annotation scheme. We develop annotation guidelines and in the process outline some interesting linguistic uncertainties that we had to resolve. To test the applicability of CGEL to real-world corpora, we conduct an interannotator study on sentences from the English Web Treebank, showing that consistent annotation of even complex syntactic phenomena like gapping using the CGEL formalism is feasible. Why introduce yet another formalism for English syntax? We argue that CGEL is attractive due to its exhaustive analysis of English syntactic phenomena, its labeling of both constituents and functions, and its accessibility. We look towards expanding CGELBank and augmenting it with automatic conversions from existing treebanks in the future.
This work compares two ways of annotating semantic relations expressed in prepositional phrases: semantic classes in the Semantic Network of Adposition and Case Supersenses (SNACS), and tectogrammatical functors from the Prague English Dependency Treebank (PEDT). We compare the label definitions in the respective annotation guidelines to determine expected mappings, then check how well these work empirically using Wall Street Journal text. In the definitions we find substantial overlap in the distributions of the two schemata with respect to participants and circumstantials, but substantial divergence for configurational relationships between nominals. This is borne out by the empirical analysis. Examining the data more closely for participants and circumstantials reveals that there are some unexpected, yet systematic divergences between definitionally aligned groups.
Identifying semantically equivalent sentences is important for many NLP tasks. Current approaches to semantic equivalence take a loose, sentence-level approach to “equivalence,” despite evidence that fine-grained differences and implicit content have an effect on human understanding and system performance. In this work, we introduce a novel, more sensitive method of characterizing cross-lingual semantic equivalence that leverages Abstract Meaning Representation graph structures. We find that parsing sentences into AMRs and comparing the AMR graphs enables finer-grained equivalence measurement than comparing the sentences themselves. We demonstrate that when using gold or even automatically parsed AMR annotations, our solution is finer-grained than existing corpus filtering methods and more accurate at predicting strictly equivalent sentences than existing semantic similarity metrics.
The task of natural language inference (NLI) asks whether a given premise (expressed in NL) entails a given NL hypothesis. NLI benchmarks contain human ratings of entailment, but the meaning relationships driving these ratings are not formalized. Can the underlying sentence pair relationships be made more explicit in an interpretable yet robust fashion? We compare semantic structures to represent premise and hypothesis, including sets of *contextualized embeddings* and *semantic graphs* (Abstract Meaning Representations), and measure whether the hypothesis is a semantic substructure of the premise, utilizing interpretable metrics. Our evaluation on three English benchmarks finds value in both contextualized embeddings and semantic graphs; moreover, they provide complementary signals, and can be leveraged together in a hybrid model.
In this work, we use sentence similarity as a lens through which to investigate the representation of meaning in graphs vs. vectors. On semantic textual similarity data, we examine how similarity metrics based on vectors alone (SENTENCE-BERT and BERTSCORE) fare compared to metrics based on AMR graphs (SMATCH and S2MATCH). Quantitative and qualitative analyses show that the AMR-based metrics can better capture meanings dependent on sentence structures, but can also be distracted by structural differences—whereas the BERT-based metrics represent finer-grained meanings of individual words, but often fail to capture the ordering effect of words within sentences and suffer from interpretability problems. These findings contribute to our understanding of each approach to semantic representation and motivate distinct use cases for graph and vector-based representations.
Despite extensive research on parsing of English sentences into Abstract Meaning Representation (AMR) graphs, which are compared to gold graphs via the Smatch metric, full-document parsing into a unified graph representation lacks well-defined representation and evaluation. Taking advantage of a super-sentential level of coreference annotation from previous work, we introduce a simple algorithm for deriving a unified graph representation, avoiding the pitfalls of information loss from over-merging and lack of coherence from under merging. Next, we describe improvements to the Smatch metric to make it tractable for comparing document-level graphs and use it to re-evaluate the best published document-level AMR parser. We also present a pipeline approach combining the top-performing AMR parser and coreference resolution systems, providing a strong baseline for future research.
We examine the extent to which, in principle, different syntactic and semantic graph representations can complement and improve neural language modeling. Specifically, by conditioning on a subgraph encapsulating the locally relevant sentence history, can a model make better next-word predictions than a pretrained sequential language model alone? With an ensemble setup consisting of GPT-2 and ground-truth graphs from one of 7 different formalisms, we find that the graph information indeed improves perplexity and other metrics. Moreover, this architecture provides a new way to compare different frameworks of linguistic representation. In our oracle graph setup, training and evaluating on English WSJ, semantic constituency structures prove most useful to language modeling performance—outpacing syntactic constituency structures as well as syntactic and semantic dependency structures.
The current study quantitatively (and qualitatively for an illustrative purpose) analyzes BERT’s layer-wise masked word prediction on an English corpus, and finds that (1) the layerwise localization of linguistic knowledge primarily shown in probing studies is replicated in a behavior-based design and (2) that syntactic and semantic information is encoded at different layers for words of different syntactic categories. Hypothesizing that the above results are correlated with the number of likely potential candidates of the masked word prediction, we also investigate how the results differ for tokens within multiword expressions.
Abstract Meaning Representation (AMR), originally designed for English, has been adapted to a number of languages to facilitate cross-lingual semantic representation and analysis. We build on previous work and present the first sizable, general annotation project for Spanish AMR. We release a detailed set of annotation guidelines and a corpus of 486 gold-annotated sentences spanning multiple genres from an existing, cross-lingual AMR corpus. Our work constitutes the second largest non-English gold AMR corpus to date. Fine-tuning an AMR to-Spanish generation model with our annotations results in a BERTScore improvement of 8.8%, demonstrating initial utility of our work.
The careful design of a crowdsourcing protocol is critical to eliciting highly accurate annotations from untrained workers. In this work, we explore the development of crowdsourcing protocols for a challenging word sense disambiguation task. We find that (a) selecting a similar example usage can serve as a proxy for selecting an explicit definition of the sense, and (b) priming workers with an additional, related task within the HIT improves performance on the main proxy task. Ultimately, we demonstrate the usefulness of our crowdsourcing elicitation technique as an effective alternative to previously investigated training strategies, which can be used if agreement on a challenging task is low.
We present Xposition, an online platform for documenting adpositional semantics across languages in terms of supersenses (Schneider et al., 2018). More than just a lexical database, Xposition houses annotation guidelines, structured lexicographic documentation, and annotated corpora. Guidelines and documentation are stored as wiki pages for ease of editing, and described elements (supersenses, adpositions, etc.) are hyperlinked for ease of browsing. We describe how the platform structures information; its current contents across several languages; and aspects of the design of the web application that supports it, with special attention to how it supports datasets and standards that evolve over time.
We present a completed, publicly available corpus of annotated semantic relations of adpositions and case markers in Hindi. We used the multilingual SNACS annotation scheme, which has been applied to a variety of typologically diverse languages. Building on past work examining linguistic problems in SNACS annotation, we use language models to attempt automatic labelling of SNACS supersenses in Hindi and achieve results competitive with past work on English. We look towards upstream applications in semantic role labelling and extension to related languages such as Gujarati.
The Abstract Meaning Representation (AMR) annotation schema was originally designed for English. But the formalism has since been adapted for annotation in a variety of languages. Meanwhile, cross-lingual parsers have been developed to derive English AMR representations for sentences from other languages—implicitly assuming that English AMR can approximate an interlingua. In this work, we investigate the similarity of AMR annotations in parallel data and how much the language matters in terms of the graph structure. We set out to quantify the effect of sentence language on the structure of the parsed AMR. As a case study, we take parallel AMR annotations from Mandarin Chinese and English AMRs, and replace all Chinese concepts with equivalent English tokens. We then compare the two graphs via the Smatch metric as a measure of structural similarity. We find that source language has a dramatic impact on AMR structure, with Smatch scores below 50% between English and Chinese graphs in our sample—an important reference point for interpreting Smatch scores in cross-lingual AMR parsing.
The SNACS framework provides a network of semantic labels called supersenses for annotating adpositional semantics in corpora. In this work, we consider English prepositions (and prepositional phrases) that are chiefly pragmatic, contributing extra-propositional contextual information such as speaker attitudes and discourse structure. We introduce a preliminary taxonomy of pragmatic meanings to supplement the semantic SNACS supersenses, with guidelines for the annotation of coherence connectives, commentary markers, and topic and focus markers. We also examine annotation disagreements, delve into the trickiest boundary cases, and offer a discussion of future improvements.
Cross-lingual Abstract Meaning Representation (AMR) parsers are currently evaluated in comparison to gold English AMRs, despite parsing a language other than English, due to the lack of multilingual AMR evaluation metrics. This evaluation practice is problematic because of the established effect of source language on AMR structure. In this work, we present three multilingual adaptations of monolingual AMR evaluation metrics and compare the performance of these metrics to sentence-level human judgments. We then use our most highly correlated metric to evaluate the output of state-of-the-art cross-lingual AMR parsers, finding that Smatch may still be a useful metric in comparison to gold English AMRs, while our multilingual adaptation of S2match (XS2match) is best for comparison with gold in-language AMRs.
We present algorithms for aligning components of Abstract Meaning Representation (AMR) graphs to spans in English sentences. We leverage unsupervised learning in combination with heuristics, taking the best of both worlds from previous AMR aligners. Our unsupervised models, however, are more sensitive to graph substructures, without requiring a separate syntactic parse. Our approach covers a wider variety of AMR substructures than previously considered, achieves higher coverage of nodes and edges, and does so with higher accuracy. We will release our LEAMR datasets and aligner for use in research on AMR parsing, generation, and evaluation.
Although current CCG supertaggers achieve high accuracy on the standard WSJ test set, few systems make use of the categories’ internal structure that will drive the syntactic derivation during parsing. The tagset is traditionally truncated, discarding the many rare and complex category types in the long tail. However, supertags are themselves trees. Rather than give up on rare tags, we investigate constructive models that account for their internal structure, including novel methods for tree-structured prediction. Our best tagger is capable of recovering a sizeable fraction of the long-tail supertags and even generates CCG categories that have never been seen in training, while approximating the prior state of the art in overall tag accuracy with fewer parameters. We further investigate how well different approaches generalize to out-of-domain evaluation sets.
Reference-based automatic evaluation metrics are notoriously limited for NLG due to their inability to fully capture the range of possible outputs. We examine a referenceless alternative: evaluating the adequacy of English sentences generated from Abstract Meaning Representation (AMR) graphs by parsing into AMR and comparing the parse directly to the input. We find that the errors introduced by automatic AMR parsing substantially limit the effectiveness of this approach, but a manual editing study indicates that as parsing improves, parsing-based evaluation has the potential to outperform most reference-based metrics.
An important question concerning contextualized word embedding (CWE) models like BERT is how well they can represent different word senses, especially those in the long tail of uncommon senses. Rather than build a WSD system as in previous work, we investigate contextualized embedding neighborhoods directly, formulating a query-by-example nearest neighbor retrieval task and examining ranking performance for words and senses in different frequency bands. In an evaluation on two English sense-annotated corpora, we find that several popular CWE models all outperform a random baseline even for proportionally rare senses, without explicit sense supervision. However, performance varies considerably even among models with similar architectures and pretraining regimes, with especially large differences for rare word senses, revealing that CWE models are not all created equal when it comes to approximating word senses in their native representations.
This paper describes the primarily-graduate computational linguistics and NLP curriculum at Georgetown University, a U.S. university that has seen significant growth in these areas in recent years. We reflect on the principles behind our curriculum choices, including recognizing the various academic backgrounds and goals of our students; teaching a variety of skills with an emphasis on working directly with data; encouraging collaboration and interdisciplinary work; and including languages beyond English. We reflect on challenges we have encountered, such as the difficulty of teaching programming skills alongside NLP fundamentals, and discuss areas for future growth.
Translation divergences are varied and widespread, challenging approaches that rely on parallel text. To annotate translation divergences, we propose a schema grounded in the Abstract Meaning Representation (AMR), a sentence-level semantic framework instantiated for a number of languages. By comparing parallel AMR graphs, we can identify specific points of divergence. Each divergence is labeled with both a type and a cause. We release a small corpus of annotated English-Spanish data, and analyze the annotations in our corpus.
Universal Conceptual Cognitive Annotation (UCCA) is a semantic annotation scheme that organizes texts into coarse predicate-argument structure, offering broad coverage of semantic phenomena. At the same time, there is still need for a finer-grained treatment of many of the categories. The Adverbial category is of special interest, as it covers a wide range of fundamentally different meanings such as negation, causation, aspect, and event quantification. In this paper we introduce a refinement annotation scheme for UCCA’s Adverbial category, showing that UCCA Adverbials can indeed be subcategorized into at least 7 semantic types, and doing so can help clarify and disambiguate the otherwise coarse-grained labels. We provide a preliminary set of annotation guidelines, as well as pilot annotation experiments with high inter-annotator agreement, confirming the validity of the scheme.
For interpreting the behavior of a probabilistic model, it is useful to measure a model’s calibration—the extent to which it produces reliable confidence scores. We address the open problem of calibration for tagging models with sparse tagsets, and recommend strategies to measure and reduce calibration error (CE) in such models. We show that several post-hoc recalibration techniques all reduce calibration error across the marginal distribution for two existing sequence taggers. Moreover, we propose tag frequency grouping (TFG) as a way to measure calibration error in different frequency bands. Further, recalibrating each group separately promotes a more equitable reduction of calibration error across the tag frequency spectrum.
We present a method for exploring regions around individual points in a contextualized vector space (particularly, BERT space), as a way to investigate how these regions correspond to word senses. By inducing a contextualized “pseudoword” vector as a stand-in for a static embedding in the input layer, and then performing masked prediction of a word in the sentence, we are able to investigate the geometry of the BERT-space in a controlled manner around individual instances. Using our method on a set of carefully constructed sentences targeting highly ambiguous English words, we find substantial regularity in the contextualized space, with regions that correspond to distinct word senses; but between these regions there are occasionally “sense voids”—regions that do not correspond to any intelligible sense.
In lexical semantics, full-sentence segmentation and segment labeling of various phenomena are generally treated separately, despite their interdependence. We hypothesize that a unified lexical semantic recognition task is an effective way to encapsulate previously disparate styles of annotation, including multiword expression identification / classification and supersense tagging. Using the STREUSLE corpus, we train a neural CRF sequence tagger and evaluate its performance along various axes of annotation. As the label set generalizes that of previous tasks (PARSEME, DiMSUM), we additionally evaluate how well the model generalizes to those test sets, finding that it approaches or surpasses existing models despite training only on STREUSLE. Our work also establishes baseline models and evaluation metrics for integrated and accurate modeling of lexical semantics, facilitating future work in this area.
Building robust natural language understanding systems will require a clear characterization of whether and how various linguistic meaning representations complement each other. To perform a systematic comparative analysis, we evaluate the mapping between meaning representations from different frameworks using two complementary methods: (i) a rule-based converter, and (ii) a supervised delexicalized parser that parses to one framework using only information from the other as features. We apply these methods to convert the STREUSLE corpus (with syntactic and lexical semantic annotations) to UCCA (a graph-structured full-sentence meaning representation). Both methods yield surprisingly accurate target representations, close to fully supervised UCCA parser quality—indicating that UCCA annotations are partially redundant with STREUSLE annotations. Despite this substantial convergence between frameworks, we find several important areas of divergence.
Most current state-of-the art systems for generating English text from Abstract Meaning Representation (AMR) have been evaluated only using automated metrics, such as BLEU, which are known to be problematic for natural language generation. In this work, we present the results of a new human evaluation which collects fluency and adequacy scores, as well as categorization of error types, for several recent AMR generation systems. We discuss the relative quality of these systems and how our results compare to those of automatic metrics, finding that while the metrics are mostly successful in ranking systems overall, collecting human judgments allows for more nuanced comparisons. We also analyze common errors made by these systems.
This is an introductory tutorial to UCCA (Universal Conceptual Cognitive Annotation), a cross-linguistically applicable framework for semantic representation, with corpora annotated in English, German and French, and ongoing annotation in Russian and Hebrew. UCCA builds on extensive typological work and supports rapid annotation. The tutorial will provide a detailed introduction to the UCCA annotation guidelines, design philosophy and the available resources; and a comparison to other meaning representations. It will also survey the existing parsing work, including the findings of three recent shared tasks, in SemEval and CoNLL, that addressed UCCA parsing. Finally, the tutorial will present recent applications and extensions to the scheme, demonstrating its value for natural language processing in a range of languages and domains.
Adpositions are frequent markers of semantic relations, but they are highly ambiguous and vary significantly from language to language. Moreover, there is a dearth of annotated corpora for investigating the cross-linguistic variation of adposition semantics, or for building multilingual disambiguation systems. This paper presents a corpus in which all adpositions have been semantically annotated in Mandarin Chinese; to the best of our knowledge, this is the first Chinese corpus to be broadly annotated with adposition semantics. Our approach adapts a framework that defined a general set of supersenses according to ostensibly language-independent semantic criteria, though its development focused primarily on English prepositions (Schneider et al., 2018). We find that the supersense categories are well-suited to Chinese adpositions despite syntactic differences from English. On a Mandarin translation of The Little Prince, we achieve high inter-annotator agreement and analyze semantic correspondences of adposition tokens in bitext.
While many languages use adpositions to encode semantic relationships between content words in a sentence (e.g., agentivity or temporality), the details of how adpositions work vary widely across languages with respect to both form and meaning. In this paper, we empirically adapt the SNACS framework (Schneider et al., 2018) to Korean, a language that is typologically distant from English—the language SNACS was based on. We apply the SNACS framework to annotate the highly popular novellaThe Little Prince with semantic supersense labels over allKorean postpositions. Thus, we introduce the first broad-coverage corpus annotated with Korean postposition semantics and provide a detailed analysis of the corpus with an apples-to-apples comparison between Korean and English annotations
Human speakers have an extensive toolkit of ways to express themselves. In this paper, we engage with an idea largely absent from discussions of meaning in natural language understanding—namely, that the way something is expressed reflects different ways of conceptualizing or construing the information being conveyed. We first define this phenomenon more precisely, drawing on considerable prior work in theoretical cognitive semantics and psycholinguistics. We then survey some dimensions of construed meaning and show how insights from construal could inform theoretical and practical work in NLP.
Hindi grapheme-to-phoneme (G2P) conversion is mostly trivial, with one exception: whether a schwa represented in the orthography is pronounced or unpronounced (deleted). Previous work has attempted to predict schwa deletion in a rule-based fashion using prosodic or phonetic analysis. We present the first statistical schwa deletion classifier for Hindi, which relies solely on the orthography as the input and outperforms previous approaches. We trained our model on a newly-compiled pronunciation lexicon extracted from various online dictionaries. Our best Hindi model achieves state of the art performance, and also achieves good performance on a closely related language, Punjabi, without modification.
We present the Prepositions Annotated with Supsersense Tags in Reddit International English (“PASTRIE”) corpus, a new dataset containing manually annotated preposition supersenses of English data from presumed speakers of four L1s: English, French, German, and Spanish. The annotations are comprehensive, covering all preposition types and tokens in the sample. Along with the corpus, we provide analysis of distributional patterns across the included L1s and a discussion of the influence of L1s on L2 preposition choice.
Prepositional supersense annotation is time-consuming and requires expert training. Here, we present two sensible methods for obtaining prepositional supersense annotations indirectly by eliciting surface substitution and similarity judgments. Four pilot studies suggest that both methods have potential for producing prepositional supersense annotations that are comparable in quality to expert annotations.
We reevaluate an existing adpositional annotation scheme with respect to two thorny semantic domains: accompaniment and purpose. ‘Accompaniment’ broadly speaking includes two entities situated together or participating in the same event, while ‘purpose’ broadly speaking covers the desired outcome of an action, the intended use or evaluated use of an entity, and more. We argue the policy in the SNACS scheme for English should be recalibrated with respect to these clusters of interrelated meanings without adding complexity to the overall scheme. Our analysis highlights tradeoffs in lumping vs. splitting decisions as well as the flexibility afforded by the construal analysis.
Universal Conceptual Cognitive Annotation (UCCA; Abend and Rappoport, 2013) is a typologically-informed, broad-coverage semantic annotation scheme that describes coarse-grained predicate-argument structure but currently lacks semantic roles. We argue that lexicon-free annotation of the semantic roles marked by prepositions, as formulated by Schneider et al. (2018), is complementary and suitable for integration within UCCA. We show empirically for English that the schemes, though annotated independently, are compatible and can be combined in a single semantic graph. A comparison of several approaches to parsing the integrated representation lays the groundwork for future research on this task.
This paper builds on previous work using Combinatory Categorial Grammar (CCG) to derive a transparent syntax-semantics interface for Abstract Meaning Representation (AMR) parsing. We define new semantics for the CCG combinators that is better suited to deriving AMR graphs. In particular, we define relation-wise alternatives for the application and composition combinators: these require that the two constituents being combined overlap in one AMR relation. We also provide a new semantics for type raising, which is necessary for certain constructions. Using these mechanisms, we suggest an analysis of eventive nouns, which present a challenge for deriving AMR graphs. Our theoretical analysis will facilitate future work on robust and transparent AMR parsing using CCG.
Research on adpositions and possessives in multiple languages has led to a small inventory of general-purpose meaning classes that disambiguate tokens. Importantly, that work has argued for a principled separation of the semantic role in a scene from the function coded by morphosyntax. Here, we ask whether this approach can be generalized beyond adpositions and possessives to cover all scene participants—including subjects and objects—directly, without reference to a frame lexicon. We present new guidelines for English and the results of an interannotator agreement study.
We propose a coreference annotation scheme as a layer on top of the Universal Conceptual Cognitive Annotation foundational layer, treating units in predicate-argument structure as a basis for entity and event mentions. We argue that this allows coreference annotators to sidestep some of the challenges faced in other schemes, which do not enforce consistency with predicate-argument structure and vary widely in what kinds of mentions they annotate and how. The proposed approach is examined with a pilot annotation study and compared with annotations from other schemes.
We study the problem of analyzing tweets with universal dependencies (UD). We extend the UD guidelines to cover special constructions in tweets that affect tokenization, part-of-speech tagging, and labeled dependencies. Using the extended guidelines, we create a new tweet treebank for English (Tweebank v2) that is four times larger than the (unlabeled) Tweebank v1 introduced by Kong et al. (2014). We characterize the disagreements between our annotators and show that it is challenging to deliver consistent annotation due to ambiguity in understanding and explaining tweets. Nonetheless, using the new treebank, we build a pipeline system to parse raw tweets into UD. To overcome the annotation noise without sacrificing computational efficiency, we propose a new method to distill an ensemble of 20 transition-based parsers into a single one. Our parser achieves an improvement of 2.2 in LAS over the un-ensembled baseline and outperforms parsers that are state-of-the-art on other treebanks in both accuracy and speed.
Abstract Meaning Representation (AMR) annotations are often assumed to closely mirror dependency syntax, but AMR explicitly does not require this, and the assumption has never been tested. To test it, we devise an expressive framework to align AMR graphs to dependency graphs, which we use to annotate 200 AMRs. Our annotation explains how 97% of AMR edges are evoked by words or syntax. Previously existing AMR alignment frameworks did not allow for mapping AMR onto syntax, and as a consequence they explained at most 23%. While we find that there are indeed many cases where AMR annotations closely mirror syntax, there are also pervasive differences. We use our annotations to test a baseline AMR-to-syntax aligner, finding that this task is more difficult than AMR-to-string alignment; and to pinpoint errors in an AMR parser. We make our data and code freely available for further research on AMR parsing and generation, and the relationship of AMR to syntax.
Semantic relations are often signaled with prepositional or possessive marking—but extreme polysemy bedevils their analysis and automatic interpretation. We introduce a new annotation scheme, corpus, and task for the disambiguation of prepositions and possessives in English. Unlike previous approaches, our annotations are comprehensive with respect to types and tokens of these markers; use broadly applicable supersense classes rather than fine-grained dictionary definitions; unite prepositions and possessives under the same class inventory; and distinguish between a marker’s lexical contribution and the role it marks in the context of a predicate or scene. Strong interannotator agreement rates, as well as encouraging disambiguation results with established supervised methods, speak to the viability of the scheme and task.
Theories of discourse coherence posit relations between discourse segments as a key feature of coherent text. Our prior work suggests that multiple discourse relations can be simultaneously operative between two segments for reasons not predicted by the literature. Here we test how this joint presence can lead participants to endorse seemingly divergent conjunctions (e.g., BUT and SO) to express the link they see between two segments. These apparent divergences are not symptomatic of participant naivety or bias, but arise reliably from the concurrent availability of multiple relations between segments – some available through explicit signals and some via inference. We believe that these new results can both inform future progress in theoretical work on discourse coherence and lead to higher levels of performance in discourse parsing.
I will describe an unorthodox approach to lexical semantic annotation that prioritizes corpus coverage, democratizing analysis of a wide range of expression types. I argue that a lexicon-free lexical semantics—defined in terms of units and supersense tags—is an appetizing direction for NLP, as it is robust, cost-effective, easily understood, not too language-specific, and can serve as a foundation for richer semantic structure. Linguistic delicacies from the STREUSLE and DiMSUM corpora, which have been multiword- and supersense-annotated, attest to the veritable smörgåsbord of noncanonical constructions in English, including various flavors of prepositions, MWEs, and other curiosities. Bio: Nathan Schneider is an annotation schemer and computational modeler for natural language. As Assistant Professor of Linguistics and Computer Science at Georgetown University, he looks for synergies between practical language technologies and the scientific study of language. He specializes in broad-coverage semantic analysis: designing linguistic meaning representations, annotating them in corpora, and automating them with statistical natural language processing techniques. A central focus in this research is the nexus between grammar and lexicon as manifested in multiword expressions and adpositions/case markers. He has inhabited UC Berkeley (BA in Computer Science and Linguistics), Carnegie Mellon University (Ph.D. in Language Technologies), and the University of Edinburgh (postdoc). Now a Hoya and leader of NERT, he continues to play with data and algorithms for linguistic meaning.
Although English grammar encodes a number of semantic contrasts with tense and aspect marking, these semantics are currently ignored by Abstract Meaning Representation (AMR) annotations. This paper extends sentence-level AMR to include a coarse-grained treatment of tense and aspect semantics. The proposed framework augments the representation of finite predications to include a four-way temporal distinction (event time before, up to, at, or after speech time) and several aspectual distinctions (including static vs. dynamic, habitual vs. episodic, and telic vs. atelic). This will enable AMR to be used for NLP tasks and applications that require sophisticated reasoning about time and event structure.
This paper describes the construction and annotation of a corpus of verbal MWEs for English, as part of the PARSEME Shared Task 1.1 on automatic identification of verbal MWEs. The criteria for corpus selection, the categories of MWEs used, and the training process are discussed, along with the particular issues that led to revisions in edition 1.1 of the annotation guidelines. Finally, an overview of the characteristics of the final annotated corpus is presented, as well as some discussion on inter-annotator agreement.
This paper describes the PARSEME Shared Task 1.1 on automatic identification of verbal multiword expressions. We present the annotation methodology, focusing on changes from last year’s shared task. Novel aspects include enhanced annotation guidelines, additional annotated data for most languages, corpora for some new languages, and new evaluation settings. Corpora were created for 20 languages, which are also briefly discussed. We report organizational principles behind the shared task and the evaluation metrics employed for ranking. The 17 participating systems, their methods and obtained results are also presented and analysed.
We consider the semantics of prepositions, revisiting a broad-coverage annotation scheme used for annotating all 4,250 preposition tokens in a 55,000 word corpus of English. Attempts to apply the scheme to adpositions and case markers in other languages, as well as some problematic cases in English, have led us to reconsider the assumption that an adposition’s lexical contribution is equivalent to the role/relation that it mediates. Our proposal is to embrace the potential for construal in adposition use, expressing such phenomena directly at the token level to manage complexity and avoid sense proliferation. We suggest a framework to represent both the scene role and the adposition’s lexical function so they can be annotated at scale—supporting automatic, statistical processing of domain-general language—and discuss how this representation would allow for a simpler inventory of labels.
A new Python API, integrated within the NLTK suite, offers access to the FrameNet 1.7 lexical database. The lexicon (structured in terms of frames) as well as annotated sentences can be processed programatically, or browsed with human-readable displays via the interactive Python prompt.
Inconsistencies are part of any manually annotated corpus. Automatically finding these inconsistencies and correcting them (even manually) can increase the quality of the data. Past research has focused mainly on detecting inconsistency in syntactic annotation. This work explores new approaches to detecting inconsistency in semantic annotation. Two ranking methods are presented in this paper: a discrepancy ranking and an entropy ranking. Those methods are then tested and evaluated on multiple corpora annotated with multiword expressions and supersense labels. The results show considerable improvements in detecting inconsistency candidates over a random baseline. Possible applications of methods for inconsistency detection are improving the annotation procedure as well as the guidelines and correcting errors in completed annotations.
We develop a supersense taxonomy for adjectives, based on that of GermaNet, and apply it to English adjectives in WordNet using human annotation and supervised classification. Results show that accuracy for automatic adjective type classification is high, but synsets are considerably more difficult to classify, even for trained human annotators. We release the manually annotated data, the classifier, and the induced supersense labeling of 12,304 WordNet adjective synsets.
Multiword expressions (MWEs) are quite frequent in languages such as English, but their diversity, the scarcity of individual MWE types, and contextual ambiguity have presented obstacles to corpus-based studies and NLP systems addressing them as a class. Here we advocate for a comprehensive annotation approach: proceeding sentence by sentence, our annotators manually group tokens into MWEs according to guidelines that cover a broad range of multiword phenomena. Under this scheme, we have fully annotated an English web corpus for multiword expressions, including those containing gaps.
We present a novel representation, evaluation measure, and supervised models for the task of identifying the multiword expressions (MWEs) in a sentence, resulting in a lexical semantic segmentation. Our approach generalizes a standard chunking representation to encode MWEs containing gaps, thereby enabling efficient sequence tagging algorithms for feature-rich discriminative models. Experiments on a new dataset of English web text offer the first linguistically-driven evaluation of MWE identification with truly heterogeneous expression types. Our statistical sequence model greatly outperforms a lookup-based segmentation procedure, achieving nearly 60% F1 for MWE identification.