This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Formulating selective information needs results in queries that implicitly specify set operations, such as intersection, union, and difference. For instance, one might search for “shorebirds that are not sandpipers” or “science-fiction films shot in England”. To study the ability of retrieval systems to meet such information needs, we construct QUEST, a dataset of 3357 natural language queries with implicit set operations, that map to a set of entities corresponding to Wikipedia documents. The dataset challenges models to match multiple constraints mentioned in queries with corresponding evidence in documents and correctly perform various set operations. The dataset is constructed semi-automatically using Wikipedia category names. Queries are automatically composed from individual categories, then paraphrased and further validated for naturalness and fluency by crowdworkers. Crowdworkers also assess the relevance of entities based on their documents and highlight attribution of query constraints to spans of document text. We analyze several modern retrieval systems, finding that they often struggle on such queries. Queries involving negation and conjunction are particularly challenging and systems are further challenged with combinations of these operations.
Pre-trained vision and language models have demonstrated state-of-the-art capabilities over existing tasks involving images and texts, including visual question answering. However, it remains unclear whether these models possess the capability to answer questions that are not only querying visual content but knowledge-intensive and information-seeking. In this study, we introduce InfoSeek, a visual question answering dataset tailored for information-seeking questions that cannot be answered with only common sense knowledge. Using InfoSeek, we analyze various pre-trained visual question answering models and gain insights into their characteristics. Our findings reveal that state-of-the-art pre-trained multi-modal models (e.g., PaLI-X, BLIP2, InstructBLIP) face challenges in answering visual information-seeking questions, but fine-tuning on the InfoSeek dataset elicits models to use fine-grained knowledge that was learned during pre-training. Furthermore, we show that accurate visual entity recognition can be used to improve performance on InfoSeek by retrieving relevant documents, showing a significant space for improvement.
Textual knowledge bases such as Wikipedia require considerable effort to keep up to date and consistent. While automated writing assistants could potentially ease this burden, the problem of suggesting edits grounded in external knowledge has been under-explored. In this paper, we introduce the novel generation task of *faithfully reflecting updated information in text* (FRUIT) where the goal is to update an existing article given new evidence. We release the FRUIT-WIKI dataset, a collection of over 170K distantly supervised data produced from pairs of Wikipedia snapshots, along with our data generation pipeline and a gold evaluation set of 914 instances whose edits are guaranteed to be supported by the evidence. We provide benchmark results for popular generation systems as well as EDIT5 – a T5-based approach tailored to editing we introduce that establishes the state of the art. Our analysis shows that developing models that can update articles faithfully requires new capabilities for neural generation models, and opens doors to many new applications.
Recent progress on open domain factoid question answering (QA) does not easily transfer to the task of long-form QA, where the goal is to answer questions that require in-depth explanations. The hurdles include a lack of high-quality data and the absence of a well-defined notion of an answer’s quality. In this work, we address these problems by releasing a novel dataset and a task that we call ASQA (Answer Summaries for Questions which are Ambiguous); and proposing a reliable metric for measuring performance on ASQA. Our task focuses on ambiguous factoid questions which have different correct answers depending on the interpretation. Answers to ambiguous questions should combine factual information from multiple sources into a coherent long-form summary that resolves the ambiguity. In contrast to existing long-form QA tasks (such as ELI5), ASQA admits a clear notion of correctness: a user faced with a good summary should be able to answer different interpretations of the original ambiguous question. Our analysis demonstrates an agreement between this metric and human judgments, and reveals a considerable gap between human performance and strong baselines.
Dynamic evaluation of language models (LMs) adapts model parameters at test time using gradient information from previous tokens and substantially improves LM performance. However, it requires over 3x more compute than standard inference. We present Fast Weight Layers (FWLs), a neural component that provides the benefits of dynamic evaluation much more efficiently by expressing gradient updates as linear attention. A key improvement over dynamic evaluation is that FWLs can also be applied at training time, so the model learns to make good use of gradient updates. FWLs can easily be added on top of existing transformer models, require relatively little extra compute or memory to run, and significantly improve language modeling perplexity.
It has been shown that dual encoders trained on one domain often fail to generalize to other domains for retrieval tasks. One widespread belief is that the bottleneck layer of a dual encoder, where the final score is simply a dot-product between a query vector and a passage vector, is too limited compared to models with fine-grained interactions between the query and the passage. In this paper, we challenge this belief by scaling up the size of the dual encoder model while keeping the bottleneck layer as a single dot-product with a fixed size. With multi-stage training, scaling up the model size brings significant improvement on a variety of retrieval tasks, especially for out-of-domain generalization. We further analyze the impact of the bottleneck layer and demonstrate diminishing improvement when scaling up the embedding size. Experimental results show that our dual encoders, Generalizable T5-based dense Retrievers (GTR), outperform previous sparse and dense retrievers on the BEIR dataset significantly. Most surprisingly, our ablation study finds that GTR is very data efficient, as it only needs 10% of MS Marco supervised data to match the out-of-domain performance of using all supervised data.
Sequence-to-sequence models excel at handling natural language variation, but have been shown to struggle with out-of-distribution compositional generalization. This has motivated new specialized architectures with stronger compositional biases, but most of these approaches have only been evaluated on synthetically-generated datasets, which are not representative of natural language variation. In this work we ask: can we develop a semantic parsing approach that handles both natural language variation and compositional generalization? To better assess this capability, we propose new train and test splits of non-synthetic datasets. We demonstrate that strong existing approaches do not perform well across a broad set of evaluations. We also propose NQG-T5, a hybrid model that combines a high-precision grammar-based approach with a pre-trained sequence-to-sequence model. It outperforms existing approaches across several compositional generalization challenges on non-synthetic data, while also being competitive with the state-of-the-art on standard evaluations. While still far from solving this problem, our study highlights the importance of diverse evaluations and the open challenge of handling both compositional generalization and natural language variation in semantic parsing.
We study multi-answer retrieval, an under-explored problem that requires retrieving passages to cover multiple distinct answers for a given question. This task requires joint modeling of retrieved passages, as models should not repeatedly retrieve passages containing the same answer at the cost of missing a different valid answer. Prior work focusing on single-answer retrieval is limited as it cannot reason about the set of passages jointly. In this paper, we introduce JPR, a joint passage retrieval model focusing on reranking. To model the joint probability of the retrieved passages, JPR makes use of an autoregressive reranker that selects a sequence of passages, equipped with novel training and decoding algorithms. Compared to prior approaches, JPR achieves significantly better answer coverage on three multi-answer datasets. When combined with downstream question answering, the improved retrieval enables larger answer generation models since they need to consider fewer passages, establishing a new state-of-the-art.
We address the problem of extractive question answering using document-level distant super-vision, pairing questions and relevant documents with answer strings. We compare previously used probability space and distant supervision assumptions (assumptions on the correspondence between the weak answer string labels and possible answer mention spans). We show that these assumptions interact, and that different configurations provide complementary benefits. We demonstrate that a multi-objective model can efficiently combine the advantages of multiple assumptions and outperform the best individual formulation. Our approach outperforms previous state-of-the-art models by 4.3 points in F1 on TriviaQA-Wiki and 1.7 points in Rouge-L on NarrativeQA summaries.
We study the task of cross-database semantic parsing (XSP), where a system that maps natural language utterances to executable SQL queries is evaluated on databases unseen during training. Recently, several datasets, including Spider, were proposed to support development of XSP systems. We propose a challenging evaluation setup for cross-database semantic parsing, focusing on variation across database schemas and in-domain language use. We re-purpose eight semantic parsing datasets that have been well-studied in the setting where in-domain training data is available, and instead use them as additional evaluation data for XSP systems instead. We build a system that performs well on Spider, and find that it struggles to generalize to our re-purposed set. Our setup uncovers several generalization challenges for cross-database semantic parsing, demonstrating the need to use and develop diverse training and evaluation datasets.
The traditional image captioning task uses generic reference captions to provide textual information about images. Different user populations, however, will care about different visual aspects of images. In this paper, we propose a new task, Captioning with A Purpose (CapWAP). Our goal is to develop systems that can be tailored to be useful for the information needs of an intended population, rather than merely provide generic information about an image. In this task, we use question-answer (QA) pairs—a natural expression of information need—from users, instead of reference captions, for both training and post-inference evaluation. We show that it is possible to use reinforcement learning to directly optimize for the intended information need, by rewarding outputs that allow a question answering model to provide correct answers to sampled user questions. We convert several visual question answering datasets into CapWAP datasets, and demonstrate that under a variety of scenarios our purposeful captioning system learns to anticipate and fulfill specific information needs better than its generic counterparts, as measured by QA performance on user questions from unseen images, when using the caption alone as context.
We present the zero-shot entity linking task, where mentions must be linked to unseen entities without in-domain labeled data. The goal is to enable robust transfer to highly specialized domains, and so no metadata or alias tables are assumed. In this setting, entities are only identified by text descriptions, and models must rely strictly on language understanding to resolve the new entities. First, we show that strong reading comprehension models pre-trained on large unlabeled data can be used to generalize to unseen entities. Second, we propose a simple and effective adaptive pre-training strategy, which we term domain-adaptive pre-training (DAP), to address the domain shift problem associated with linking unseen entities in a new domain. We present experiments on a new dataset that we construct for this task and show that DAP improves over strong pre-training baselines, including BERT. The data and code are available at https://github.com/lajanugen/zeshel.
Automatically constructed datasets for generating text from semi-structured data (tables), such as WikiBio, often contain reference texts that diverge from the information in the corresponding semi-structured data. We show that metrics which rely solely on the reference texts, such as BLEU and ROUGE, show poor correlation with human judgments when those references diverge. We propose a new metric, PARENT, which aligns n-grams from the reference and generated texts to the semi-structured data before computing their precision and recall. Through a large scale human evaluation study of table-to-text models for WikiBio, we show that PARENT correlates with human judgments better than existing text generation metrics. We also adapt and evaluate the information extraction based evaluation proposed by Wiseman et al (2017), and show that PARENT has comparable correlation to it, while being easier to use. We show that PARENT is also applicable when the reference texts are elicited from humans using the data from the WebNLG challenge.
Recent work on open domain question answering (QA) assumes strong supervision of the supporting evidence and/or assumes a blackbox information retrieval (IR) system to retrieve evidence candidates. We argue that both are suboptimal, since gold evidence is not always available, and QA is fundamentally different from IR. We show for the first time that it is possible to jointly learn the retriever and reader from question-answer string pairs and without any IR system. In this setting, evidence retrieval from all of Wikipedia is treated as a latent variable. Since this is impractical to learn from scratch, we pre-train the retriever with an Inverse Cloze Task. We evaluate on open versions of five QA datasets. On datasets where the questioner already knows the answer, a traditional IR system such as BM25 is sufficient. On datasets where a user is genuinely seeking an answer, we show that learned retrieval is crucial, outperforming BM25 by up to 19 points in exact match.
We present the Natural Questions corpus, a question answering data set. Questions consist of real anonymized, aggregated queries issued to the Google search engine. An annotator is presented with a question along with a Wikipedia page from the top 5 search results, and annotates a long answer (typically a paragraph) and a short answer (one or more entities) if present on the page, or marks null if no long/short answer is present. The public release consists of 307,373 training examples with single annotations; 7,830 examples with 5-way annotations for development data; and a further 7,842 examples with 5-way annotated sequestered as test data. We present experiments validating quality of the data. We also describe analysis of 25-way annotations on 302 examples, giving insights into human variability on the annotation task. We introduce robust metrics for the purposes of evaluating question answering systems; demonstrate high human upper bounds on these metrics; and establish baseline results using competitive methods drawn from related literature.
In this paper we study yes/no questions that are naturally occurring — meaning that they are generated in unprompted and unconstrained settings. We build a reading comprehension dataset, BoolQ, of such questions, and show that they are unexpectedly challenging. They often query for complex, non-factoid information, and require difficult entailment-like inference to solve. We also explore the effectiveness of a range of transfer learning baselines. We find that transferring from entailment data is more effective than transferring from paraphrase or extractive QA data, and that it, surprisingly, continues to be very beneficial even when starting from massive pre-trained language models such as BERT. Our best method trains BERT on MultiNLI and then re-trains it on our train set. It achieves 80.4% accuracy compared to 90% accuracy of human annotators (and 62% majority-baseline), leaving a significant gap for future work.
We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models (Peters et al., 2018a; Radford et al., 2018), BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT model can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications. BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE score to 80.5 (7.7 point absolute improvement), MultiNLI accuracy to 86.7% (4.6% absolute improvement), SQuAD v1.1 question answering Test F1 to 93.2 (1.5 point absolute improvement) and SQuAD v2.0 Test F1 to 83.1 (5.1 point absolute improvement).
Semantic parsing from denotations faces two key challenges in model training: (1) given only the denotations (e.g., answers), search for good candidate semantic parses, and (2) choose the best model update algorithm. We propose effective and general solutions to each of them. Using policy shaping, we bias the search procedure towards semantic parses that are more compatible to the text, which provide better supervision signals for training. In addition, we propose an update equation that generalizes three different families of learning algorithms, which enables fast model exploration. When experimented on a recently proposed sequential question answering dataset, our framework leads to a new state-of-the-art model that outperforms previous work by 5.0% absolute on exact match accuracy.
Neural networks have achieved state-of-the-art performance on several structured-output prediction tasks, trained in a fully supervised fashion. However, annotated examples in structured domains are often costly to obtain, which thus limits the applications of neural networks. In this work, we propose Maximum Margin Reward Networks, a neural network-based framework that aims to learn from both explicit (full structures) and implicit supervision signals (delayed feedback on the correctness of the predicted structure). On named entity recognition and semantic parsing, our model outperforms previous systems on the benchmark datasets, CoNLL-2003 and WebQuestionsSP.
We propose a new evaluation for automatic solvers for algebra word problems, which can identify mistakes that existing evaluations overlook. Our proposal is to evaluate such solvers using derivations, which reflect how an equation system was constructed from the word problem. To accomplish this, we develop an algorithm for checking the equivalence between two derivations, and show how derivation annotations can be semi-automatically added to existing datasets. To make our experiments more comprehensive, we include the derivation annotation for DRAW-1K, a new dataset containing 1000 general algebra word problems. In our experiments, we found that the annotated derivations enable a more accurate evaluation of automatic solvers than previously used metrics. We release derivation annotations for over 2300 algebra word problems for future evaluations.
Recent studies on knowledge base completion, the task of recovering missing relationships based on recorded relations, demonstrate the importance of learning embeddings from multi-step relations. However, due to the size of knowledge bases, learning multi-step relations directly on top of observed triplets could be costly. Hence, a manually designed procedure is often used when training the models. In this paper, we propose Implicit ReasoNets (IRNs), which is designed to perform multi-step inference implicitly through a controller and shared memory. Without a human-designed inference procedure, IRNs use training data to learn to perform multi-step inference in an embedding neural space through the shared memory and controller. While the inference procedure does not explicitly operate on top of observed triplets, our proposed model outperforms all previous approaches on the popular FB15k benchmark by more than 5.7%.
Recent work in semantic parsing for question answering has focused on long and complicated questions, many of which would seem unnatural if asked in a normal conversation between two humans. In an effort to explore a conversational QA setting, we present a more realistic task: answering sequences of simple but inter-related questions. We collect a dataset of 6,066 question sequences that inquire about semi-structured tables from Wikipedia, with 17,553 question-answer pairs in total. To solve this sequential question answering task, we propose a novel dynamic neural semantic parsing framework trained using a weakly supervised reward-guided search. Our model effectively leverages the sequential context to outperform state-of-the-art QA systems that are designed to answer highly complex questions.
Entity linking and semantic parsing have been shown to be crucial to important applications such as question answering and document understanding. These tasks often require structured learning models, which make predictions on multiple interdependent variables. In this talk, I argue that carefully designed structured learning algorithms play a central role in entity linking and semantic parsing tasks. In particular, I will present several new structured learning models for entity linking, which jointly detect mentions and disambiguate entities as well as capture non-textual information. I will then show how to use a staged search procedure to building a state-of-the-art knowledge base question answering system. Finally, if time permits, I will discuss different supervision protocols for training semantic parsers and the value of labeling semantic parses.
Microblogs present an excellent opportunity for monitoring and analyzing world happenings. Given that words are often ambiguous, entity linking becomes a crucial step towards understanding microblogs. In this paper, we re-examine the problem of entity linking on microblogs. We first observe that spatiotemporal (i.e., spatial and temporal) signals play a key role, but they are not utilized in existing approaches. Thus, we propose a novel entity linking framework that incorporates spatiotemporal signals through a weakly supervised process. Using entity annotations on real-world data, our experiments show that the spatiotemporal model improves F1 by more than 10 points over existing systems. Finally, we present a qualitative study to visualize the effectiveness of our approach.
Due to the nature of complex NLP problems, structured prediction algorithms have been important modeling tools for a wide range of tasks. While there exists evidence showing that linear Structural Support Vector Machine (SSVM) algorithm performs better than structured Perceptron, the SSVM algorithm is still less frequently chosen in the NLP community because of its relatively slow training speed. In this paper, we propose a fast and easy-to-implement dual coordinate descent algorithm for SSVMs. Unlike algorithms such as Perceptron and stochastic gradient descent, our method keeps track of dual variables and updates the weight vector more aggressively. As a result, this training process is as efficient as existing online learning methods, and yet derives consistently better models, as evaluated on four benchmark NLP datasets for part-of-speech tagging, named-entity recognition and dependency parsing.