Kedhar Nath Narahari


2019

pdf
SemEval-2019 Task 3: EmoContext Contextual Emotion Detection in Text
Ankush Chatterjee | Kedhar Nath Narahari | Meghana Joshi | Puneet Agrawal
Proceedings of the 13th International Workshop on Semantic Evaluation

In this paper, we present the SemEval-2019 Task 3 - EmoContext: Contextual Emotion Detection in Text. Lack of facial expressions and voice modulations make detecting emotions in text a challenging problem. For instance, as humans, on reading “Why don’t you ever text me!” we can either interpret it as a sad or angry emotion and the same ambiguity exists for machines. However, the context of dialogue can prove helpful in detection of the emotion. In this task, given a textual dialogue i.e. an utterance along with two previous turns of context, the goal was to infer the underlying emotion of the utterance by choosing from four emotion classes - Happy, Sad, Angry and Others. To facilitate the participation in this task, textual dialogues from user interaction with a conversational agent were taken and annotated for emotion classes after several data processing steps. A training data set of 30160 dialogues, and two evaluation data sets, Test1 and Test2, containing 2755 and 5509 dialogues respectively were released to the participants. A total of 311 teams made submissions to this task. The final leader-board was evaluated on Test2 data set, and the highest ranked submission achieved 79.59 micro-averaged F1 score. Our analysis of systems submitted to the task indicate that Bi-directional LSTM was the most common choice of neural architecture used, and most of the systems had the best performance for the Sad emotion class, and the worst for the Happy emotion class.

pdf
Insights from Building an Open-Ended Conversational Agent
Khyatti Gupta | Meghana Joshi | Ankush Chatterjee | Sonam Damani | Kedhar Nath Narahari | Puneet Agrawal
Proceedings of the First Workshop on NLP for Conversational AI

Dialogue systems and conversational agents are becoming increasingly popular in modern society. We conceptualized one such conversational agent, Microsoft’s “Ruuh” with the promise to be able to talk to its users on any subject they choose. Building an open-ended conversational agent like Ruuh at onset seems like a daunting task, since the agent needs to think beyond the utilitarian notion of merely generating “relevant” responses and meet a wider range of user social needs, like expressing happiness when user’s favourite sports team wins, sharing a cute comment on showing the pictures of the user’s pet and so on. The agent also needs to detect and respond to abusive language, sensitive topics and trolling behaviour of the users. Many of these problems pose significant research challenges as well as product design limitations as one needs to circumnavigate the technical limitations to create an acceptable user experience. However, as the product reaches the real users the true test begins, and one realizes the challenges and opportunities that lie in the vast domain of conversations. With over 2.5 million real-world users till date who have generated over 300 million user conversations with Ruuh, there is a plethora of learning, insights and opportunities that we will talk about in this paper.