This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Large language models (LLMs) are notorious for hallucinating, i.e., producing erroneous claims in their output. Such hallucinations can be dangerous, as occasional factual inaccuracies in the generated text might be obscured by the rest of the output being generally factually correct, making it extremely hard for the users to spot them. Current services that leverage LLMs usually do not provide any means for detecting unreliable generations. Here, we aim to bridge this gap. In particular, we propose a novel fact-checking and hallucination detection pipeline based on token-level uncertainty quantification. Uncertainty scores leverage information encapsulated in the output of a neural network or its layers to detect unreliable predictions, and we show that they can be used to fact-check the atomic claims in the LLM output. Moreover, we present a novel token-level uncertainty quantification method that removes the impact of uncertainty about what claim to generate on the current step and what surface form to use. Our method Claim Conditioned Probability (CCP) measures only the uncertainty of a particular claim value expressed by the model. Experiments on the task of biography generation demonstrate strong improvements for CCP compared to the baselines for seven different LLMs and four languages. Human evaluation reveals that the fact-checking pipeline based on uncertainty quantification is competitive with a fact-checking tool that leverages external knowledge.
Many text classification tasks are inherently ambiguous, which results in automatic systems having a high risk of making mistakes, in spite of using advanced machine learning models. For example, toxicity detection in user-generated content is a subjective task, and notions of toxicity can be annotated according to a variety of definitions that can be in conflict with one another. Instead of relying solely on automatic solutions, moderation of the most difficult and ambiguous cases can be delegated to human workers. Potential mistakes in automated classification can be identified by using uncertainty estimation (UE) techniques. Although UE is a rapidly growing field within natural language processing, we find that state-of-the-art UE methods estimate only epistemic uncertainty and show poor performance, or under-perform trivial methods for ambiguous tasks such as toxicity detection. We argue that in order to create robust uncertainty estimation methods for ambiguous tasks it is necessary to account also for aleatoric uncertainty. In this paper, we propose a new uncertainty estimation method that combines epistemic and aleatoric UE methods. We show that by using our hybrid method, we can outperform state-of-the-art UE methods for toxicity detection and other ambiguous text classification tasks.
Uncertainty estimation (UE) of model predictions is a crucial step for a variety of tasks such as active learning, misclassification detection, adversarial attack detection, out-of-distribution detection, etc. Most of the works on modeling the uncertainty of deep neural networks evaluate these methods on image classification tasks. Little attention has been paid to UE in natural language processing. To fill this gap, we perform a vast empirical investigation of state-of-the-art UE methods for Transformer models on misclassification detection in named entity recognition and text classification tasks and propose two computationally efficient modifications, one of which approaches or even outperforms computationally intensive methods.
We present ALToolbox – an open-source framework for active learning (AL) annotation in natural language processing. Currently, the framework supports text classification, sequence tagging, and seq2seq tasks. Besides state-of-the-art query strategies, ALToolbox provides a set of tools that help to reduce computational overhead and duration of AL iterations and increase annotated data reusability. The framework aims to support data scientists and researchers by providing an easy-to-deploy GUI annotation tool directly in the Jupyter IDE and an extensible benchmark for novel AL methods. We prepare a small demonstration of ALToolbox capabilities available online. The code of the framework is published under the MIT license.
Active learning (AL) is a prominent technique for reducing the annotation effort required for training machine learning models. Deep learning offers a solution for several essential obstacles to deploying AL in practice but introduces many others. One of such problems is the excessive computational resources required to train an acquisition model and estimate its uncertainty on instances in the unlabeled pool. We propose two techniques that tackle this issue for text classification and tagging tasks, offering a substantial reduction of AL iteration duration and the computational overhead introduced by deep acquisition models in AL. We also demonstrate that our algorithm that leverages pseudo-labeling and distilled models overcomes one of the essential obstacles revealed previously in the literature. Namely, it was shown that due to differences between an acquisition model used to select instances during AL and a successor model trained on the labeled data, the benefits of AL can diminish. We show that our algorithm, despite using a smaller and faster acquisition model, is capable of training a more expressive successor model with higher performance.
In this paper, we trained and compared different models for fake news detection in Russian. For this task, we used such language features as bag-of-n-grams and bag of Rhetorical Structure Theory features, and BERT embeddings. We also compared the score of our models with the human score on this task and showed that our models deal with fake news detection better. We investigated the nature of fake news by dividing it into two non-overlapping classes: satire and fake news. As a result, we obtained the set of models for fake news detection; the best of these models achieved 0.889 F1-score on the test set for 2 classes and 0.9076 F1-score on 3 classes task.