David Huggins-Daines

Also published as: David Huggins Daines


2024

pdf
Creating Digital Learning and Reference Resources for Southern Michif
Heather Souter | Olivia Sammons | David Huggins Daines
Proceedings of the Seventh Workshop on the Use of Computational Methods in the Study of Endangered Languages

Minority and Indigenous languages are often under-documented and under-resourced. Where such resources do exist, particularly in the form of legacy materials, they are often inaccessible to learners and educators involved in revitalization efforts, whether due to the limitations of their original formats or the structure of their contents. Digitizing such resources and making them available on a variety of platforms is one step in overcoming these barriers. This is a major undertaking which requires significant expertise at the intersection of documentary linguistics, computational linguistics, and software development, and must be done while walking alongside speakers and language specialists in the community. We discuss the particular strategies and challenges involved in the development of one such resource, and make recommendations for future projects with a similar goal of mobilizing legacy language resources.

2023

pdf
ReadAlong Studio Web Interface for Digital Interactive Storytelling
Aidan Pine | David Huggins-Daines | Eric Joanis | Patrick Littell | Marc Tessier | Delasie Torkornoo | Rebecca Knowles | Roland Kuhn | Delaney Lothian
Proceedings of the 18th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2023)

We develop an interactive web-based user interface for performing textspeech alignment and creating digital interactive “read-along audio books that highlight words as they are spoken and allow users to replay individual words when clicked. We build on an existing Python library for zero-shot multilingual textspeech alignment (Littell et al., 2022), extend it by exposing its functionality through a RESTful API, and rewrite the underlying speech recognition engine to run in the browser. The ReadAlong Studio Web App is open-source, user-friendly, prioritizes privacy and data sovereignty, allows for a variety of standard export formats, and is designed to work for the majority of the world’s languages.

2022

pdf
ReadAlong Studio: Practical Zero-Shot Text-Speech Alignment for Indigenous Language Audiobooks
Patrick Littell | Eric Joanis | Aidan Pine | Marc Tessier | David Huggins Daines | Delasie Torkornoo
Proceedings of the 1st Annual Meeting of the ELRA/ISCA Special Interest Group on Under-Resourced Languages

While the alignment of audio recordings and text (often termed “forced alignment”) is often treated as a solved problem, in practice the process of adapting an alignment system to a new, under-resourced language comes with significant challenges, requiring experience and expertise that many outside of the speech community lack. This puts otherwise “solvable” problems, like the alignment of Indigenous language audiobooks, out of reach for many real-world Indigenous language organizations. In this paper, we detail ReadAlong Studio, a suite of tools for creating and visualizing aligned audiobooks, including educational features like time-aligned highlighting, playing single words in isolation, and variable-speed playback. It is intended to be accessible to creators without an extensive background in speech or NLP, by automating or making optional many of the specialist steps in an alignment pipeline. It is well documented at a beginner-technologist level, has already been adapted to 30 languages, and can work out-of-the-box on many more languages without adaptation.

pdf
Gi2Pi Rule-based, index-preserving grapheme-to-phoneme transformations
Aidan Pine | Patrick William Littell | Eric Joanis | David Huggins-Daines | Christopher Cox | Fineen Davis | Eddie Antonio Santos | Shankhalika Srikanth | Delasie Torkornoo | Sabrina Yu
Proceedings of the Fifth Workshop on the Use of Computational Methods in the Study of Endangered Languages

This paper describes the motivation and implementation details for a rule-based, index-preserving grapheme-to-phoneme engine ‘Gi2Pi' implemented in pure Python and released under the open source MIT license. The engine and interface have been designed to prioritize the developer experience of potential contributors without requiring a high level of programming knowledge. ‘Gi2Pi' already provides mappings for 30 (mostly Indigenous) languages, and the package is accompanied by a web-based interactive development environment, a RESTful API, and extensive documentation to encourage the addition of more mappings in the future. We also present three downstream applications of ‘Gi2Pi' and show results of a preliminary evaluation.

2020

pdf
The Indigenous Languages Technology project at NRC Canada: An empowerment-oriented approach to developing language software
Roland Kuhn | Fineen Davis | Alain Désilets | Eric Joanis | Anna Kazantseva | Rebecca Knowles | Patrick Littell | Delaney Lothian | Aidan Pine | Caroline Running Wolf | Eddie Santos | Darlene Stewart | Gilles Boulianne | Vishwa Gupta | Brian Maracle Owennatékha | Akwiratékha’ Martin | Christopher Cox | Marie-Odile Junker | Olivia Sammons | Delasie Torkornoo | Nathan Thanyehténhas Brinklow | Sara Child | Benoît Farley | David Huggins-Daines | Daisy Rosenblum | Heather Souter
Proceedings of the 28th International Conference on Computational Linguistics

This paper surveys the first, three-year phase of a project at the National Research Council of Canada that is developing software to assist Indigenous communities in Canada in preserving their languages and extending their use. The project aimed to work within the empowerment paradigm, where collaboration with communities and fulfillment of their goals is central. Since many of the technologies we developed were in response to community needs, the project ended up as a collection of diverse subprojects, including the creation of a sophisticated framework for building verb conjugators for highly inflectional polysynthetic languages (such as Kanyen’kéha, in the Iroquoian language family), release of what is probably the largest available corpus of sentences in a polysynthetic language (Inuktut) aligned with English sentences and experiments with machine translation (MT) systems trained on this corpus, free online services based on automatic speech recognition (ASR) for easing the transcription bottleneck for recordings of speech in Indigenous languages (and other languages), software for implementing text prediction and read-along audiobooks for Indigenous languages, and several other subprojects.

2008

pdf
Mixture Pruning and Roughening for Scalable Acoustic Models
David Huggins-Daines | Alexander I. Rudnicky
Proceedings of the ACL-08: HLT Workshop on Mobile Language Processing

pdf
Interactive ASR Error Correction for Touchscreen Devices
David Huggins-Daines | Alexander I. Rudnicky
Proceedings of the ACL-08: HLT Demo Session

2007

pdf
Conquest—An Open-Source Dialog System for Conferences
Dan Bohus | Sergio Grau Puerto | David Huggins-Daines | Venkatesh Keri | Gopala Krishna | Rohit Kumar | Antoine Raux | Stefanie Tomko
Human Language Technologies 2007: The Conference of the North American Chapter of the Association for Computational Linguistics; Companion Volume, Short Papers

pdf
Implicitly Supervised Language Model Adaptation for Meeting Transcription
David Huggins-Daines | Alexander I. Rudnicky
Human Language Technologies 2007: The Conference of the North American Chapter of the Association for Computational Linguistics; Companion Volume, Short Papers