Bingbing Wang


2024

pdf
Adversarial Learning for Multi-Lingual Entity Linking
Bingbing Wang | Bin Liang | Zhixin Bai | Yongzhuo Ma
Proceedings of the 10th SIGHAN Workshop on Chinese Language Processing (SIGHAN-10)

Entity linking aims to identify mentions from the text and link them to a knowledge base. Further, Multi-lingual Entity Linking (MEL) is a more challenging task, where the language-specific mentions need to be linked to a multi-lingual knowledge base. To tackle the MEL task, we propose a novel model that employs the merit of adversarial learning and few-shot learning to generalize the learning ability across languages. Specifically, we first randomly select a fraction of language-agnostic unlabeled data as the language signal to construct the language discriminator. Based on it, we devise a simple and effective adversarial learning framework with two characteristic branches, including an entity classifier and a language discriminator with adversarial training. Experimental results on two benchmark datasets indicate the excellent performance in few-shot learning and the effectiveness of the proposed adversarial learning framework.

pdf
Auto-ACE: An Automatic Answer Correctness Evaluation Method for Conversational Question Answering
Zhixin Bai | Bingbing Wang | Bin Liang | Ruifeng Xu
Proceedings of the 10th SIGHAN Workshop on Chinese Language Processing (SIGHAN-10)

Conversational question answering aims to respond to questions based on relevant contexts and previous question-answer history. Existing studies typically use ground-truth answers in history, leading to the inconsistency between the training and inference phases. However, in real-world scenarios, progress in question answering can only be made using predicted answers. Since not all predicted answers are correct, indiscriminately using all predicted answers for training introduces noise into the model. To tackle these challenges, we propose an automatic answer correctness evaluation method named **Auto-ACE**. Specifically, we first construct an Att-BERT model which employs attention weight to the BERT model, so as to bridge the relation between the current question and the question-answer pair in history. Furthermore, to reduce the interference of the irrelevant information in the predicted answer, A-Scorer, an answer scorer is designed to evaluate the confidence of the predicted answer. We conduct a series of experiments on QuAC and CoQA datasets, and the results demonstrate the effectiveness and practicality of our proposed Auto-ACE framework.

2022

pdf
SEMGraph: Incorporating Sentiment Knowledge and Eye Movement into Graph Model for Sentiment Analysis
Bingbing Wang | Bin Liang | Jiachen Du | Min Yang | Ruifeng Xu
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

This paper investigates the sentiment analysis task from a novel perspective by incorporating sentiment knowledge and eye movement into a graph architecture, aiming to draw the eye movement-based sentiment relationships for learning the sentiment expression of the context. To be specific, we first explore a linguistic probing eye movement paradigm to extract eye movement features based on the close relationship between linguistic features and the early and late processes of human reading behavior. Furthermore, to derive eye movement features with sentiment concepts, we devise a novel weighting strategy to integrate sentiment scores extracted from affective commonsense knowledge into eye movement features, called sentiment-eye movement weights. Then, the sentiment-eye movement weights are exploited to build the sentiment-eye movement guided graph (SEMGraph) model, so as to model the intricate sentiment relationships in the context. Experimental results on two sentiment analysis datasets with eye movement signals and three sentiment analysis datasets without eye movement signals show that the proposed SEMGraph achieves state-of-the-art performance, and can also be directly generalized to those sentiment analysis datasets without eye movement signals.