
Deep Learning Meets Egyptology:

a Hieroglyphic Transformer for Translating Ancient Egyptian

Mattia De Cao*†, Nicola De Cao‡, Angelo Colonna†, Alessandro Lenci†
†Universitá di Pisa, ‡Google DeepMind

mattia.dc96@gmail.com, ndecao@google.com
angelo.colonna@unipi.it, alessandro.lenci@unipi.it

Abstract

This work explores the potential of Trans-

former models focusing on the translation of

ancient Egyptian hieroglyphs. We present a

novel Hieroglyphic Transformer model, built

upon the powerful M2M-100 multilingual

translation framework and trained on a dataset

we customised from the Thesaurus Linguae

Aegyptiae database. Our experiments demon-

strate promising results, with the model achiev-

ing significant accuracy in translating hiero-

glyphic into both German and English. This

work holds significant implications for Egyp-

tology, potentially accelerating the transla-

tion process and unlocking new research ap-

proaches. Source code at https://github.
com/mattia-decao/hiero-transformer.

1 Introduction

Egyptology, with its rich trove of texts and inscrip-

tions, has recently begun to embrace the poten-

tial of computational linguistics. However, a no-

table scarcity of publications on the topic is evident,

with existing efforts primarily focused on optical

recognition of hieroglyphs rather than their trans-

lation (Sommerschield et al., 2023). Notably, the

development of these resources primarily originates

from computer science disciplines and highlights

the need for deeper integration with Egyptology

field.

We bridge this gap by proposing an Egyptology-

driven automatic translation approach, merging
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Egyptology with Natural Language Processing

(NLP) tools. Our Hieroglyphic Transformer trans-

lates ancient Egyptian using an adaptation of M2M-

100 multilingual model (Fan et al., 2021) to address

hieroglyphic writing’s challenges. We construct

a meticulously curated dataset derived from the

renowned database project Thesaurus Linguae Ae-

gyptiae (TLA; Richter et al., 2023)1 ensuring its

compatibility with the model through rigorous data

filtering, cleaning and structuring.

Experiments yield promising results, with the

Hieroglyphic Transformer achieving reasonable ac-

curacy in translating hieroglyphs into both German

and English. Furthermore, we evaluate the model’s

performance on texts of varying grammatical com-

plexity and literary styles, highlighting its capacity

to handle diverse linguistic structures.

This work holds significant implications for

Egyptology. NLP-powered approaches like ours

can potentially accelerate and improve translation

accuracy and depth. Furthermore, it paves the way

for applying Deep Learning models to decipher and

translate other ancient languages.

The main contributions of our work can be sum-

marised as follows:

1. presenting a new dataset extracted from the

TLA database;

2. adapting a pretrained model to translate Hiero-

glyphic;

3. showing an automatic and a human evaluation

of the model’s performance.

2 Background

2.1 Machine Translation for Ancient

Languages

The linguistic diversity of the world encompasses

over 7,000 distinct languages. Of these, En-

glish, Chinese, Spanish, Japanese, and other Eu-

1https://thesaurus-linguae-aegyptiae.de
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ropean languages represent the most extensive cor-

pora (Summer Institute of Linguistics, 2024; UN-

ESCO, 2024), while languages spoken primarily

in Asia and Africa often lack comparable data re-

sources (even thousands of times less). These “low-

resource” languages attract research from both hu-

manistic and engineering perspectives, with studies

offering novel ideas (Aharoni et al., 2019) or explor-

ing understudied niches (Ahia and Ogueji, 2020).

Ancient languages are also part of this wave, but

most of their data remains non-machine-readable

(i.e., images of objects with text on them or scans

of parchment or papyri). Thus most of the re-

cent attention from the machine learning commu-

nity was directed to Optical Character Recognition

(OCR). Major case of these studies include: (i)

Kuzushiji, a Japanese cursive script of 8th-18th

centuries (Lamb et al., 2020); (ii) Mayan hiero-

glyphs (Roman-Rangel et al., 2009); (iii) ancient

Chinese character manuscripts (Sun et al., 2022);

(iv) Sumerian cuneiform (Ahmed H. et al., 2020);

and (v) Akkadian cuneiform (Gutherz et al., 2023).

While ancient Egyptian has a decent amount of

data available, a substantial portion remains non-

machine-readable, primarily in physical books and

articles. Even though these sources are accessi-

ble online, they necessitate significant digitization

efforts for effective utilization in language process-

ing.2

Fortunately, the Egyptian language benefits from

the numerous publications digitized and translated

into German and English collected in the monu-

mental project Thesaurus Linguae Aegyptiae (TLA;

Richter et al., 2023) which we use as the source of

data in this work.

2.2 Related Work

Themajority of recent research in Egyptology using

AI focuses primarily on OCR. Examples of such

studies include those conducted by Franken and

Van Gemert (2013); Hossam et al. (2018); Barucci

et al. (2021); Moustafa et al. (2022); Barucci et al.

(2023).

Apart from OCR, to the best of our knowledge,

only a single publication addresses the task of trans-

lation. This work was undertaken by Wiesenbach

and Riezler (2019), who sought to address the

2A significant portion of Egyptological articles and books
available online have been digitized as images or in a format
that hinders machine data extraction. Thus, the first step in
making these data usable would be transcribing them into a
machine-readable format.

scarcity of resources by incorporating transliter-

ation and POS tags into the training process. This

scarcity of publications highlights the need for fur-

ther research in the application of AI to Egyptology.

2.3 Ancient Egyptian Language

The ancient Egyptian language is a member of the

so-called Afro-Asiatic language family and one of

the longest continuously attested, having been used

from approximately 3200 BCE to 1100 CE (Allen,

2014). Its historical development is usually artic-

ulated in six phases: Archaic Egyptian, Old Egyp-

tian, Middle Egyptian, Late Egyptian, Demotic, and

Coptic.

Notably, Middle Egyptian (2100-1600 BC) re-

tained its status as a “classical” language for the

production of historical and religious texts even

after its decline as a spoken language, persisting

until the end of ancient Egyptian history. For this

reason, we opted for Middle Egyptian as the refer-

ence language to train the models in our study (to

which we added Old Egyptian as later explained in

Section 3.2).

Throughout its existence, ancient Egyptian em-

ployed four primary writing systems: hieroglyphic,

hieratic, demotic, and coptic. Hieroglyphic con-

sists of pictorial signs mostly carved in stone and

used in monumental contexts. Hieratic, was a sim-

plified and cursive form of hieroglyphic, used for

writing on ostraca and papyri. Demotic, a late cur-

sive script developed from hieratic, was exclusively

employed during the language phase of the same

name. Coptic writing was derived from the Greek

alphabet, with seven additional letters from De-

motic to express sounds absent in Greek , and was

solely used to write Coptic.

In this work, we used hieroglyphic (or hieratic

transcribed to hieroglyphic) because demotic and

coptic scripts were used to write language phases

other than the ones we chose to employ, i.e., Old

andMiddle Egyptian. Therefore wewill not expand

on the other writing systems. For more information

about the ancient Egyptian language system, we

redirect the reader to Loprieno (1995).

2.4 Hieroglyphs

Ahieroglyph can be classified into three distinct cat-

egories: ideogram, phonogram, and determinative

(Allen, 2014).

Ideograms indicate the word that they depict. In

this way, for example, the hieroglyphr repre-



Sign Gardiner code Transliteration Description

a G1 Ꜣ Egyptian vulture

f I9 f Horned viper

U V24 wḏ Cord wound on stick

v S12 nbw Bead collar

Table 1: Example of hieroglyphs and their Gardiner code, Transliteration and Description.

senting a mouth writes the word “mouth”, while

the hieroglyphj representing a house’s top view

is actually the word “house”.

Phonograms represent the phonetic structure

(sounds) of the individual word depicted according

to the rebus principle. For example the signr is

used to express the phoneme r.

Determinatives are used to indicate the semantic

sphere of the preceding words, and so these signs

are not meant to be pronounced. For example, the

hieroglyphj , used as determinative, refers to

words belonging in the semantic sphere of enclosed

spaces and is not read.

2.5 Gardiner Code

The Gardiner code, also called Gardiner’s Sign

List, represents the standard system used to iden-

tify hieroglyphic signs through alphanumeric codes.

It was compiled by the English egyptologist and

pholologist Alan H. Gardiner as an integral part of

his Egyptian grammar (Gardiner, 1957), which re-

mains a standard reference in the Egyptian language

study.

The Gardiner code consists of main categories

identified by a capital letter of the English alphabet

and a descriptive label (e.g., “A. Human beings,

male”). Within these sections, each hieroglyph is

assigned a progressive number (e.g.,𓀀 = A1,𓀁
= A2). For subsequent additions of sign variants,

later than the original Gardiner’s list itself, a lower-

case letter was added after the number (e.g., in the

section “N. Sky, earth, water”, we find𓈖 = N35,

𓈗 = N35a).

2.6 Transliteration

In Egyptology, transliteration is the process of con-

verting hieroglyphs into alphabetical symbols to

represent the consonants of ancient Egyptian. It

is a convention that makes it possible to organize

hieroglyphic signs into dictionaries. The transliter-

ation can also be pronounced, but it should always

be remembered that only consonants were written

(not vowels), and in many cases, the phonetic value

of the signs is unknown. We can only infer the pro-

nunciation based on the Coptic forms as well as on

the spelling of Egyptian words in other ancient lan-

guages, and vice versa (Allen, 2014). Phonograms

and most ideograms can be transliterated into one,

two, or three consonants, depending on the number

of sounds they represent. For instance, the sign𓅓
represents one consonant m, the sign𓄟 represents

ms, and the sign𓋞 represents nbw. See Table 1

for examples of hieroglyphs with their Gardiner

code, transliteration, and description.

3 Dataset Construction

This work is based on a snapshot (Richter et al.,

2018)3 collected from the database that also feeds

the Thesaurus Linguae Aegyptiae (TLA; Richter

et al., 2023)4 and last updated in 2018.

3.1 Thesaurus Linguae Aegyptiae

The TLA project aims “to document and annotate

the Ancient Egyptian language through its entire

lifespan” (Richter et al., 2023). This objective man-

ifests in two primary digital outcomes: the text

corpus (corpus dataset) and the lemma list (vocab-

ulary dataset).

The corpus encompasses a vast collection of

hieroglyphic texts, transliterations, and transla-

tions. All entries come enriched with metadata

such as production dates, script types and connec-

tions among data points. Notably, each corpusword

is “lemmatized”, i.e. linked to a specific entry in

the lemma list. This allows researchers to access

broader information spectrum per data point, includ-

ing part-of-speech (POS) tags, for each element.

Whilemost texts haveGerman translations, some

include English or both, promoting cross-language

accessibility and the project’s global reach.

3https://nbn-resolving.org/urn:nbn:de:kobv:
b4-opus4-29190 (CC BY-SA 4.0 Int.).

4https://thesaurus-linguae-aegyptiae.de
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3.2 Data Extraction

One of the major contributions of this study consists

in the construction of a new dataset from the data

collected by the TLA project. We chose Middle

Egyptian as the reference language, as explained in

section 2.3. However, limited data availability led

us to include Old Egyptian (2700-2100 BC) due to

its close linguistic relationship with Middle Egyp-

tian, enriching the language representation. Our

dataset includes specific elements for each data

point. Unfortunately, not all elements were consis-

tently present, preventing a complete construction.

In Figure 1 we outline the structure of a data point

in our dataset. Taking into account all the diverse

elements, these include:

• Gardiner code: A unique identifier for each

hieroglyph.

• Transliteration: The alphabetical represen-

tation of hieroglyphs.

• Translation: Either German or English.

• Lemma IDs: Numerical identifiers for lem-

mas (basic forms of words).

• Token inflection codes: Information about

the inflectional forms of the lemmas morpho-

logically marked in the script, such as gender

and number of nouns.

• Datapoint ID: A unique identifier for the dat-

apoint (each one is a text5 containing several

sentences).

• Sentence ID: A unique identifier for a single

sentence in a text.

• Part-of-speech tags: Labels used to classify

the lexical category of lemmas (e.g., noun,

verb, adjective).

• Metadata: Unique IDs for data such as lan-

guage phase, and historical period.

During the mining process, preliminary cleans-

ing was performed to eliminate inconsistencies

and irregularities, including: (i) tabs, (ii) carriage

returns, (iii) line separators, (iv) excessive white

space, and (v) multiple hyphens within hieroglyphs.

The total number of data points extracted was

103,906. We then focused on selecting Old and

Middle Egyptian data points delving into language

phase metadata. In cases where this information

was absent but reliably inferable, we examined his-

5From Richter et al. (2023): “A ‘text’ [...] in the TLA
is an entity marked as an independent textual unit by clearly
marked text delimiters (beginning and end). An individual text
may either consist of writing only, or it may be a multimodal
composition of writing and illustrations.”

{
"source": <Source as Gardiner code>,
"transliteration": <Transliteration >,
"target": <Translation >,
"lKey": <Lemma IDs>,
"wordClass": <Part-of-speech tags>,
"flexCode": <Inflection codes >,
"metadata": {

"target_lang": <Target language >,
"id_datapoint": <Datapoint ID>,
"id_sentence": <Sentence ID>,
"language": <Language phase >,
"date": <Historical period >,
"script": <Script type>,
"id_tree": <Assigned ID"

}
}

Figure 1: Structure of a datapoint.

torical metadata to reconstruct it.6 The total number

of datapoints after filtering was 61,605.

3.3 Data Cleaning

A crucial aspect of our work was the development

of comprehensive cleansing operations. Initially,

we meticulously hand-cleaned several texts, en-

abling the identification of recurring patterns and

the formulation of generalizable cleansing proce-

dures. This iterative process resulted in the cre-

ation of over 280 distinct cleaning operations (e.g.,

elimination of brackets ‘(’, ‘)’ and their contents

in German translation, elimination of brackets ‘[’

and ‘]’ while maintaining the content in the translit-

eration, elimination of ‘!’ from the hieroglyphs).

In particular, lacunae were treated differently if

they were reconstructed or not. If reconstruction

was present, we used it; if not, we discarded the

datapoint element (e.g. transliteration) as the train-

ing process could be altered. Reconstructions were

always used.

An example of a datapoint cleansing process

is presented in Table 2. A comprehensive com-

pendium of the cleansing operations, including de-

tailed descriptions, treatment methods, and under-

lying motivations, is provided in the GitHub repos-

itory for our project. 7

3.4 Validation and Test sets

We randomly selected a validation and a test

set comprising 100 distinct sources each. Some

6In Appendix A we reported datapoint counts relating to
both language and historical phases.

7https://github.com/mattia-decao/
hiero-transformer
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Gardiner code Translation Transliteration

Raw

Aa1-:D21 M17-S29 [?-*"⸮"-

*I10-*"?"-*?]-:[?-*"⸮"-*D46-

*"?"-*?] N25-:X1-*Z1 V30

and then every foreign land [says]: ḫr js ⸮⸢ḏd⸣? ḫꜢs,t nb(.t)

Cleaned

Aa1 D21 M17 S29 I10 D46 N25

X1 Z1 V30

and then every foreign land says: ḫr js ḏd ḫꜢs,t nb.t

Table 2: Example of raw and cleaned datapoint (ID tree: aaew_corpus_sawlit_687_107).

sources had multiple translations (i.e., both in En-

glish and German) thus we included both versions

in the set to (i) increase its size, and (ii) avoid con-

tamination in the training set. Eventually, the vali-

dation set had 125 parallel data points, 25 of which

possessed English translation, 75 German trans-

lation, and 25 containing only transliteration and

hieroglyphic. Similarly, the test set had 150 data

points, comprising 50 that possessed English trans-

lation, 50 German translation, and 50 containing

only transliteration and hieroglyphic.

4 Experimental Design

4.1 Data Pairing

Prior to feeding the data into the model, it was

essential to organize the data points into source-

target pairs. These represent the input-output pair-

ings employed during training (e.g. Hieroglyphs to

German). We used two sources as inputs: egy, i.e.

Gardiner code of ancient Egyptian hieroglyphs; and

τ , i.e., transliteration. Both of them were paired

with five targets as outputs: (i) de, i.e. German; (ii)

en, i.e. English; (iii) τ ; (iv) lKey, i.e. lemma IDs;
and (v) wordClass, i.e. part-of-speech tags. We

reported in Table 3 the list of all different data pairs

employed, together with the count of data points in

which each pair is present.

4.2 Training

We did not aim to develop novel machine learn-

ing techniques or models but rather to harness the

capabilities of an existing one and apply it to the

Ancient Egyptian language. We then chose to use

the finetune M2M-100 model (Fan et al., 2021) for

its versatility and effectiveness in multilingual ma-

chine translation. M2M-100, originally designed

for translating between 100 modern languages, in-

cluding English and German, was a compelling

choice due to its open-source availability and rela-

tive novelty. By utilizing this pre-trainedmodel, we

Source Target Datapoints

egy de 16,075

egy en 2,105

egy τ 20,155

egy lKey 21,036

egy wordClass 20,045

τ de 45,760

τ en 2,174

τ lKey 56,240

τ wordClass 54,039

Table 3: Data pairs and their distribution among the dat-

apoints.

effectively employed transfer learning, a powerful

technique that leverages knowledge acquired from

a related task to improve performance on a new

task. For each experiment, we trained for between

6 and 20 epochs.8

We checked validation loss for model selection

every 10% per epoch and employed early stopping

if no improvement happened for the past 15-20 eval-

uations.9 We used the Adam optimizer (Kingma

and Ba, 2015) with batch size 16 and a fixed learn-

ing rate 3e-5.

We experimented with different mixtures of

source and target (e.g., some included/ excluded

the use of transliteration or POS tags). Overall, 11

models were trained,10 and we reported a selection

in Table 4. The comprehensive table of all experi-

8Initial experiments used 20 epochs, subsequently reduced
due to: (i) no improvements after the third epoch, (ii) in-
creased data pairs significantly extended execution time, and
(iii) the 12-hour execution limit of the experimentation plat-
form (Google Colab) rendered maintaining the same epochs
impractical.

9This value was dynamically adjusted for each experiment
due to variations in the amount of data-pairs.

10Due to cost constraints, we conducted most of our ex-
periments with one NVIDIA T4 Tensor Core (16 GB), and
the last model (ALL) that mixes all the data available, with
one NVIDIA A100-SXM4 Tensor Core (40 GB). For ALL we
increased the batch size to 180.



SacreBLEU RougeL

Source egy τ egy τ

Target de en τ de en de en τ de en

DE (raw) 4.0 - - - - 18.4 - - - -

DE 54.4 - - - - 62.8 - - - -

DE+EN 52.6 28.4 - - - 63.1 33.5 - - -

DE+ENB 61.5 36.4 - - - 67.7 38.1 - - -

DE+τ 43.2 - 57.7 54.0 - 55.4 - 78.9 61.8 -

DE+τ+ENB 47.6 20.1 58.4 47.1 30.3 58.8 27.9 80.2 63.1 37.5

ALL 54.4 31.6 59.9 56.2 35.3 64.5 35.5 82.1 62.7 38.1

Table 4: Results of automatic evaluation (SacreBLEU, RougeL). Bold results are best and underlined are second

best.

ment metrics results can be found in Tables 8 and 9

in Appendix E.

In the training phase, we gave single data (e.g.,

transliteration or German translation) to the model

by assigning them a special language id token (used

as prefix in both the source and target text) already

present within the model itself. These were en for

English, de for German, ar (Arab) for ancient Egyp-

tian, th (Thai) for POS tags, lo (Lao) for translitera-

tion and my (Burmese) for lemma IDs. Except for

German, English, and ancient Egyptian11, the codes

were arbitrarily selected from Fan et al. (2021) in

order to avoid their duplication in the list where

data quantities derived from other languages and

language groups are presented (Figure 3 of the same

article).

Backtranslation Due to the scarcity of data

points containing English translations, we em-

ployed the M2M-100 model to translate our entire

dataset from German to English and incorporated

these translations into training.

4.3 Metrics

To assess the performance of the conducted ex-

periments, we employed two automated evaluation

metrics: SacreBLEU (Post, 2018) and RougeL (Lin,

2004).

Automatic metrics do not always correlate with

human judgment, so we also employed a human

evaluation. For that, we applied the model to a se-

ries of examples, 16 in total,12 exhibiting a variety

of grammatical constructions (listed in Appendix

11We hypothesized that using Arab for ancient Egyptian
could potentially enhancemodel performance due to its similar-
ities in sentence construction, i.e. verb-subject-object. Further
research is required to corroborate this hypothesis.

12Of these, 15 were composed of one to three sentences, 1
of eleven.

B), subsequently comparing the model’s output

against our own translations or those derived from

established publications (Bresciani, 1969; Allen,

2015; Grapow, 1952; Gardiner, 1969; Vogelsang,

1913). During the comparison, we rigorously ex-

amined all the distinct data pairs generated by the

model, evaluating both the quantity and quality of

its correct and erroneous outputs.

5 Results

5.1 Data Cleaning

To assess the effectiveness of our cleaning oper-

ations, we conducted and compared two experi-

ments: (i) DE (raw), with raw data; (ii) DE, after the

cleaning. Cleaning the data increased the resulting

SacreBLEU from 4.0 to 54.4 and RougeL from 18.4

to 62.8. As evident, results have demonstrated that

our cleaning procedure significantly improves the

model’s training performance.

5.2 Main Results

As evident in Table 4, for translation and translit-

eration the ALL model (i.e., trained with all data)

exhibits the best or second-best performance. This

suggests that the model successfully incorporates

signals from different forms (e.g., POS tags and

transliteration).

Unsurprisingly, mixing back-translation data

(DE+EN v.s. DE+ENB) significantly increases per-

formance in English (SacreBLEU 52 → 61 and

RougeL 33 → 38). However, it surprisingly in-

creases performance in German as well.

Notably, the DE+ENB model shows the highest

accuracy from hieroglyphic to German and English

translation. Moreover, both DE+τ and DE+τ+ENB

do not perform better than DE and DE+ENB in Ger-

man and English. These results suggest that adding



transliteration during training may have some detri-

mental effects on accuracy. We reported a compre-

hensive list of results in Tables 8 and 9 in Appendix

E.

5.3 N-fold cross validation analysis

We did a 10-fold cross-validation to DE and ALL ex-

periments.13 The M2M-100 model was subjected

to the same conditions as the previous DE and ALL

experiments, allowing for a direct comparison of

their performance under different evaluation meth-

ods.

The results for the DE experiment exhibited a sig-

nificant discrepancy, while the performance met-

rics for ALL were more consistent with the previous

findings. This suggests that the validation and test

datasets employed previously may have introduced

a selection bias, which was mitigated by the larger

and more diverse data submitted to training ALL.

We reported the full results of n-fold cross valida-

tion analysis in Table 10 of Appendix E.

This finding highlights the importance of em-

ploying rigorous evaluation strategies to ensure

reliable machine learning models, particularly in

the context of low-resource languages like ancient

Egyptian.

5.4 Human Evaluation

Following the training phase, the model ALL was

identified as the most promising candidate due to

its superior performance across all data pairs. In

this phase, its effectiveness was assessed through a

comprehensive trial procedure.

We divided the evaluation process into three dis-

tinct steps: (i) Grammatical Complexity, (ii) Liter-

ary Passages, and (iii) Stress Test. For every step

our evaluation proceeded to analyze all the data

pairs (detailed in Section 4.1).

For each Human Evaluation step, the model was

submitted to two separate testing waves. In the

first wave, the input was presented to the model as

Gardiner code, while in the second wave, it was

presented as transliteration.

We assessed the sentences based on specific cri-

teria, including: (i) Morphological accuracy; (ii)

Grammatical correctness; (iii) Verb-subject agree-

ment in number and gender; (iv) Adequacy of ter-

minology; (v) Semantic coherence.

This two-pronged approach aimed to assess the

model’s performance under both input representa-

13This technique was not applied to every experiments due
to resource limitations.

tions, i.e. hieroglyphic and transliteration. Through

this trial procedure, the effectiveness of the ALL

model was thoroughly evaluated, demonstrating

its potential for a quite accurate and versatile writ-

ing of hieroglyphic into transliteration, and both

inputs into German, English, Lemma IDs and POS

tags. We reported the list of grammatical forms

submitted as input in Appendix B.

5.4.1 Grammatical Complexity

We presented exercises of increasing grammatical

complexity to the model to assess its ability to han-

dle diverse grammatical structures. All the exer-

cises were extracted fromGardiner’s grammar (Gar-

diner, 1957). An excerpt is reported in Table 5. The

model exhibits no significant difficulties, but rather,

it is more sensitive to variations in sentence con-

struction due to low-resource training.

5.4.2 Literary Passages

Passages taken from literary works, encompassing

a wide range of grammatical elements and one to

three clauses in length, were fed into the model to

examine its performance in natural language con-

texts. The works selected were the “Story of Sin-

uhe”, the “Tale of the Shipwrecked Sailor”, the

“Admonitions of Ipuwer”, and ”The Eloquent Peas-

ant”. We observed that the model performs slightly

better than the previous phase. Additionally, we

noticed higher translation accuracy with translitera-

tion input compared to the Gardiner code.

5.4.3 Stress Test

We submitted a lengthy passage extracted from

the “Story of Sinuhe” to thoroughly evaluate the

model’s robustness, testing its ability to handle ex-

tended and complex linguistic structures. After that,

we submitted the same passage divided into single

units. Due to the length of the passage, it has been

reported in the GitHub repository for our project. 14

We observed that the model fails with lengthy sen-

tences that exceed three clauses but, when provided

with a sentence of one or two clauses, it produces

quite accurate results.

5.4.4 Human Evaluation Conclusion

The ALL model performed better with short and

medium-length input texts comprising one to two

sentences. The generated outputs were effective,

but there are occasional inconsistencies in com-

pleting the fields of transliteration, POS tags and

14https://github.com/mattia-decao/
hiero-transformer

https://github.com/mattia-decao/hiero-transformer
https://github.com/mattia-decao/hiero-transformer


Source

𓂋𓐍𓏛𓎡𓅱𓀀𓍿𓅱𓂋𓐍𓏛𓎡𓅱𓀀𓂋𓈖𓎡
D21 Aa1 Y1 V31 G43 A1 V13 G43 D21 Aa1 Y1 V31 G43 A1 D21 N35 V31

Target Prediction

(from hieroglyphic)

Prediction

(from transliteration)

Reference

DE Ich kenne dich, ich kenne

deinen Namen

Ich kenne dich und ich kenne

deinen Namen

Ich kenne dich, ich kenne

deinen Namen

EN You know me, I know your

name

I know you, I know your

name

I know you, I know your

name

τ r.kwj ṯw r.kwj rn =k – rḫ.kw ṯw rḫ.kw rn =k

lkey 95620 44000 174900 95620

44000 94700 10110

95620 174900 95620 94700

10110

95620 174900 95620 94700

10110

pos verb_2-lit personal_pro-

noun personal_pronoun

verb_2-lit personal_pronoun

personal_pronoun substanti

verb_2-lit personal_pronoun

verb_2-lit substantive_masc

personal_pronoun

verb_2-lit personal_pronoun

verb_2-lit substantive_masc

personal_pronoun

Table 5: Example of a grammar complexity exercise manually evaluated.

occasionally lemma IDs. For input texts exceeding

three sentences, the model struggles to produce ex-

act predictions, particularly in terms of precision

and completeness of writing.

Regarding the choice of input, despite transliter-

ation is more accurate than Gardiner code, we rec-

ommend comparing both results to obtain a more

comprehensive understanding.

We observed great accuracy in generating lemma

IDs, indicating that they could be actively used

to extract additional information from the TLA

database.

Finally, the model exhibits no significant difficul-

ties when submitted to an increasing grammatical

complexity. Conversely, it struggles as the input

length grows and the rare terms increase.

6 Conclusions

We publicly released our dataset and source code

and designed them for easy utilization and assess-

ment. The AI model produces suitable results for

research applications and is user-friendly.

This work opens up avenues for future research,

including expanding the dataset by incorporating

other language phases (Late Egyptian, Demotic and

Coptic), integrating additional modern languages ,

and conducting more comprehensive and diversi-

fied experiments.

These efforts could pave the way for enhanced

model precision and contribute significantly to the

advancement of research in Egyptology and the

application of NLP to the translation and study of

ancient languages.
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A Taxonomy Analysis of Data Mining

Language Datapoints

Absent 70,559

Egyptian 28

Middle Egyptian 23,997

Late Egyptian 8,615

Demotic 707

Table 6: Amount of datapoints for each language phase.

Counts done on the datapoints mined from TLA (before

filtering) and corresponding to 103.906.

Date Datapoints

Absent 1,165

Old Kingdom 35,849

First Intermediate Period 571

XI Dynasty 466

Middle Kingdom 7,633

Second Intermediate Period 3,634

New Kingdom 38,078

Third Intermediate Period 3,590

Late Period 2,191

600 to 200 BC 2,977

Hellenistic Period 7,133

Roman Period 619

Table 7: Amount of datapoints for each historical pe-

riod. Counts done on the datapoints mined from TLA

(before filtering) and corresponding to 103.906.

B Grammatical Inputs of Human

Evaluation

The examples submitted to the model during the

human Evaluation comprised various type of sen-

tences. The Grammatical Complexity included: ad-

verbial, nominal (A B), verbal (sḏm =f), negative

verbal (sḏm =f), pseudo-verbal and stative. The Lit-

erary passage included: verbal (sḏm =f and sḏm.n

=f), verbal negative (sḏm.n =f), adverbial, nominal

(A + pw), infinitive, participle, and two longer sen-

tences. The Stress Test included: infinitive, verbal

(causative (sḏm =f), stative, subject-stative, adver-

bial and containing dates or epithets.

C Data Entry Methods

The approach described below ensures that the

model receives a clean and standardized representa-

tion of hieroglyphic and transliteration, minimizing

potential misinterpretations that could arise from

extraneous elements and enhancing its ability to

produce accurate translations.

C.1 Hieroglyphic Input

To input hieroglyphs, it is essential to employ Gar-

diner code. Each hieroglyph must be meticulously

cleansed of any brackets, letters, or graphic sym-

bols that extraneously adhere to it, altering its visual

representation (it can be checked using Jsesh15).

To divide hieroglyphs, a single space should be in-

serted between them, while any other extraneous

character should be eliminated.

The model has been trained on Ancient and Mid-

dle Egyptian hieroglyphs and may encounter chal-

lenges with inputs from later linguistic phases and

grammatical structures postdating the Second In-

termediate Period.

We recommend utilizing signs list of Gardiner’s

grammar (Gardiner, 1957), or preferably Allen’s

(Allen, 2014), for a more accurate use of Gardiner

code.

C.2 Transliteration Input

For transliteration input, it is necessary to adhere

to conventions similar to the one employed by the

TLA.

• Proper nouns should have the first letter capi-

talized.

• It may be beneficial, but not compulsory, to in-

corporate hyphens between individual lemmas

of proper nouns or concepts (e.g., sḥtp-jb-rꜥ or

wꜢḏ-wr)

• The equal sign (=) to indicate a suffixed pro-

noun must always be preceded by a space and

followed directly by the pronoun, without any

additional characters (e.g., zꜢ =f m pr)

• The j is utilized for the strong yod while i̯ for

the weak yod.

• A dot should be employed to distinguish the

root of verbs from a suffix other than a pro-

noun (e.g., n in sḏm.n =f form) and occasion-

ally for the plural/dual.

• A comma should be employed for the feminine

ending and occasionally also for the plural/d-

ual.

15https://jsesh.qenherkhopeshef.org

https://jsesh.qenherkhopeshef.org


Transliterated characters can be submitted to the

model both as a proper character (e.g., Ꜣ) or accord-

ing to the computer-encoding system (e.g., A for

the Ꜣ; Grallert et al., 2023).

To enable the insertion of both upper and low-

ercase letters, while preserving the computer-

encoding , we have implemented a simple mecha-

nism that allows you to capitalize a letter by preced-

ing it with an asterisk. In practice, a straightforward

substitution operation has been created in the sec-

tion where inputs are entered. For instance, since

to obtain ḏ you must insert D, then to get Ḏ you

have to type *D; similarly, to attain D, you must

enter *d. To input the weak radical i̯ simply enter

an i.



D Experiments Graphs
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(a) Model DE (raw). Best loss: step 1,800.
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(b) Model DE. Best loss: step 4,500.
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(c) Model EN. Best loss: step 700.
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(d) Model DE (lem). Best loss: step 3,600.
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(e) Model DE+EN. Best loss: step 4,000.
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(f) Model DE+ENB. Best loss: step 8,500.
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(g) Model DE+τ . Best loss: step 12,000.
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(h) Model DE+τ+ENB. Best loss: step 7,200.
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(i) Model DE+τ+POS. Best loss: step 39,600.
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(j) Model DE+τ+LKEY. Best loss: step 29,600.
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(k) Model ALL. Best loss: step 10,000.

Figure 2: Validation losses of different models and at which step the loss is at its minimum.



E Taxonomy Analysis of Generated Models: SacreBLEU, RougeL and 10-fold Cross

Validation

SacreBLEU

Source egy τ

Target de en τ lkey POS de en lkey POS

DE (raw) 4.0 - - - - - - - -

DE 54.4 - - - - - - - -

EN - 22.6 - - - - - - -

DE (lem) 25.9 - - - - - - - -

DE+EN 52.6 28.4 - - - - - - -

DE+ENB 61.5 36.4 - - - - - - -

DE+τ 43.2 - 57.7 - - 54.0 - - -

DE+τ+ENB 47.6 20.1 58.4 - - 47.1 30.3 - -

DE+τ+POS 53.2 - 60.0 - 82.1 49.6 - - 87.1

DE+τ+LKEY 55.1 - 59.4 64.4 - 58.9 - 70.9 -

ALL 54.4 31.6 59.9 63.9 79.0 56.2 35.3 74.0 86.4

Table 8: Results of automatic evaluation, in particular SacreBLEU, of all models along with POS tags and lKey.

Bold results are best and underlined are second best.

RougeL

Source egy τ

Target de en τ lkey POS de en lkey POS

DE (raw) 18.4 - - - - - - - -

DE 62.8 - - - - - - - -

EN - 25.1 - - - - - - -

DE (lem) 42.0 - - - - - - - -

DE+EN 63.1 33.5 - - - - - - -

DE+ENB 67.7 38.1 - - - - - - -

DE+τ 55.4 - 78.9 - - 61.8 - - -

DE+τ+ENB 58.8 27.9 80.2 - - 63.1 37.5 - -

DE+τ+POS 62.9 - 83.1 - 83.8 67.3 - - 87.6

DE+τ+LKEY 59.6 - 82.6 71.5 - 63.8 - 75.4 -

ALL 64.5 35.5 82.1 71.7 82.6 62.7 38.1 77.7 88.4

Table 9: Results of automatic evaluation, in particular RougeL, of all models along with POS tags and lKey. Bold

results are best and underlined are second best.



SacreBLEU

Source egy τ

Target de en τ lkey POS de en lkey POS

DE 32.0±2.0 10.2±1.2 - - - 5.4±2.0 0.2±0.3 - -

ALL 45.5±1.4 35.9±3.7 52.7±1.3 57.9±5.1 71.9±1.3 59.6±1.4 42.6±2.9 74.3±2.4 79.2±0.7

RougeL

Source egy τ

Target de en τ lkey POS de en lkey POS

DE 41.1±0.9 14.7±1.1 - - - 3.9±1.3 0.3±0.4 - -

ALL 53.4±1.1 40.9±2.4 78.9±0.6 65.2±4.3 81.6±0.6 68.0±1.0 47.9±1.5 79.1±2.1 88.0±0.8

Table 10: Results of 10-fold cross validation.
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