
Findings of the Association for Computational Linguistics: ACL 2024, pages 15804–15819
August 11-16, 2024 ©2024 Association for Computational Linguistics

STARLING: Self-supervised Training of Text-based Reinforcement
Learning Agent with Large Language Models

Shreyas Basavatia*†

Georgia Institute of Technology
sbasavatia3@gatech.edu

Keerthiram Murugesan*

IBM Research
keerthiram.murugesan@ibm.com

Shivam Ratnakar*

IBM Consulting
shivam.ratnakar@st.niituniversity.in

Abstract

Interactive fiction games have emerged as an
important application to improve the gener-
alization capabilities of language-based rein-
forcement learning (RL) agents. Existing en-
vironments for interactive fiction games are
domain-specific or time-consuming to generate
and do not train the RL agents to master a spe-
cific set of skills. In this work, we introduce
an interactive environment for self-supervised
RL, STARLING, for text-based games that boot-
straps the text-based RL agents with automat-
ically generated games (based on the seed set
of game ideas) to boost the performance and
generalization capabilities to reach a goal of the
target environment. These games let the agent
hone their skills on a predefined set of tasks.
We create and test an environment with 100
games, generated using this automated frame-
work that uses large language models (GPT3)
and an interactive fiction game engine (based
on Inform7) to provide the user with the abil-
ity to generate more games under minimal hu-
man supervision. Experimental results based
on both the human participants and baseline
text-based RL agents reveal that current state-
of-the-art text-based RL agents cannot use pre-
viously learned skills in new situations at the
level humans can. These results enforce STAR-
LING’s potential to serve as a sandbox envi-
ronment for further research in self-supervised
text-based RL.

1 Introduction

Interactive fiction games such as Zork can be uti-
lized as an important test-bed to improve the gener-
alization capabilities of text-based reinforcement
learning (TBRL) agents (Hausknecht et al., 2020;
Jansen, 2022). In these games, both the observed

*Equal Contributions
†Work done while SB was a high school student at Pelham

Memorial High School. Code and data can be found at https:
//github.com/IBM/starling-agent.

Figure 1: Architecture diagram for Self-supervised Text-based
Reinforcement Learning using LLM (STARLING).

state of the game and the actions taken are in natu-
ral language. To play these games, the agents (or
human players) need to understand the observed
text from the environment and take relevant ac-
tion toward the goal. These games encourage
agents to understand the underlying state of the
game and take actions to interact with the environ-
ment. In order to be successful, agents must use
previously learned skills in new situations to com-
plete an overarching goal. Current environments
of interactive fiction games suffer from two major
problems. First, environments such as TextWorld
Commonsense measure simple commonsense rea-
soning based on one-hop relationships between
entities (e.g., apple → refrigerator) (Murugesan
et al., 2021a) but lack game complexity (besides a
fewer number of games) to learn skills and general-
ize to novel domains. Second, environments such
as ScienceWorld (even though many variations of
task-based games are available) and Jericho are

15804

sbasavatia3@gatech.edu
keerthiram.murugesan@ibm.com
shivam.ratnakar@st.niituniversity.in
https://github.com/IBM/starling-agent
https://github.com/IBM/starling-agent

domain-specific so agents that play these environ-
ments may perform well while conducting specific
tasks like completing science experiments but lack
generalized skills to apply them to other situations
(Wang et al., 2022; Hausknecht et al., 2020). Most
importantly, in order to generate a large number
of games to train the RL agents to master skills in
these environments, we will have to employ human
annotators to manually design, generate, and de-
ploy the game. Therefore, the purpose of this work
is to develop an efficient approach that generates a
large amount of text-based games to train the RL
agents to master the desired skills and excel at the
target environments such as TWC, ScienceWorld,
etc.

As developing a set of text-based games is
a time-intensive manual process, we propose
Self-supervised Text-bAsed RL learnING, "STAR-
LING", an interactive environment that utilizes
Large Language Models (LLM) and an integrated
interactive fiction game engine (Inform7 (Nelson,
2006)) to easily produce games in any domain. We
generate a set of 100 text-based games using GPT3
(Brown et al., 2020) based on the input game ideas
(seed list) that emphasize the need for the everyday
skills such as boiling water, cooking pasta, etc. in
(pre-)training text-based RL agents. These games
require agents to use a specific sequence of actions
to achieve the goal and successfully complete the
game. For example, while cooking pasta, an agent
must first gather the ingredients, fill pot with water,
boil the water, and put the pasta in the pot. We then
deploy the pre-trained RL agent on the target envi-
ronments. This novel game-generation method can
easily be used by others to create their own games
and be adapted for future applications to build chal-
lenging RL agents in various domains. Figure 1
shows the overview of the proposed approach for
self-supervised text-based reinforcement learning
using LLM.

2 Self-supervised Text-based RL

Self-supervised RL involves bootstrapping RL
agents with auxiliary tasks in an unsupervised or
semi-supervised setting to accelerate learning and
generalize in the target tasks. With the recent inter-
est in LLMs, in this paper, we consider LLMs as an
alternative option to pre-train an RL agent with min-
imal human supervision. Unlike in the other text-
based environments such as TextWorld (Côté et al.,
2019), TextWorld Commonsense (TWC) (Muruge-

Figure 2: Workflow of the STARLING Game Generator using
large language model (GPT3).

san et al., 2021a), Jericho (Hausknecht et al., 2020),
ScienceWorld (Wang et al., 2022), we utilize the
skill generation capability of the large language
models (Huang et al., 2022) to automatically gener-
ate text-based games based on the input game ideas
with minimal human supervision.Our proposed ap-
proach for self-supervised TBRL, STARLING is an
interactive text-based environment with assistance
from LLM and enables the text-based RL agent to
hone their extra-curricular skills 1. In this paper,
we assume a seed list of game ideas is already avail-
able as input to STARLING. These game ideas are
chosen to exhibit specific skills either for creating a
generalized agent or targeting domain-specific en-
vironments. Optionally, the RL agent can generate
a new set of game ideas during training, specific to
the target domain to improve its performance.

2.1 Constructing Pre-training Games

In this section, we briefly describe how we generate
the pre-training games from the game ideas using
LLM and Inform7. Given the set of game ideas
(seed) to LLM (Brown et al., 2020), we design
a method that procedurally generates text-based
games based on the interactive fiction game engine.

1In this work, we define the skills based on the auxil-
iary task such as "boil <object>", "fill <container>", "cook
<object>", etc. We assume that LLM such as GPT3 has the
necessary knowledge to generate text-based games based on
these basic skills.

15805

Figure 3: (A) GPT3 input prompt for cooking games with one action example. The actual prompt contains four action examples.
(B) GPT3 output for cooking pasta game idea. GPT3 reliably outputs accurate and necessary game information very similar to
the input.

In this paper, we use GPT3 as our LLM. Inform7 is
an interactive fiction programming language that al-
lows users to create interactive fiction games using
natural language instructions (Nelson, 2006). Pre-
vious text-based environments such as TextWorld,
Jericho, ScienceWorld, etc. use Inform7 (in the
backend) to generate a handful of text-based games
manually that require agents to explore the environ-
ment and take a sequence of actions to complete
a goal such as cooking a pasta. Based on our ob-
servation from these environments, we find that
the game generation can be modularized into four
parts: setup, object creation, custom action, and
reward assignment:

1. Setup - defines basic properties about the
game such as the room, entity types, any ex-
ternal libraries (Inform7), etc.

2. Object Creation - creates in-game entities
such as bread or jelly. Each entity is placed in
its proper location like the refrigerator or cab-
inet and assigned properties such as portable,
open, or closed.

3. Custom actions - defines actions not native
to Inform7. Each custom action checks for
the pre-conditions and then executes the ac-
tion by initiating the relevant state changes,
and returning the proper observations to the
agent. We utilize predefined action templates
to incorporate custom actions during the game
generation.

4. Rewards - assigns reward value for gathering
the necessary entities and completing custom

actions to achieve the goal. Once all the re-
wards are collected for each game, the game
ends.

Figure 2 shows the overview of the game genera-
tion using STARLING. When we feed a game idea
from the seed list, STARLING prepares a prompt
using natural language instruction and example
game metadata as shown in Figure 3(a), with in-
formation about the setup, objects, custom actions,
and rewards required for the game idea. We in-
put this prompt to an LLM which generates the
requested information as shown in Figure 3(b). We
initiate each prompt for a game idea with the nec-
essary objects that the agent needs and agents must
collect those objects and use them to cook, clean,
build, or complete the high-level task. In order
to be successful in these games, agents must un-
derstand the properties, location, and affordances
of objects in addition to the specific sequence of
actions needed to accomplish the task.

Next, we write the output from the GPT3 output
into a JSON file as shown in Figure 13 (supple-
mentary). The objects, actions, and tasks from the
GPT3 output correspond to the entities, custom
actions, and verbs sections of the JSON file respec-
tively. At this stage, the user may update or change
game information in the JSON file. If the user ap-
proves the game-related data in the JSON file, we
write the Inform7 code based on the JSON file. We
then convert this code into an Inform7 game for a
given game idea using the Glulx 2 interpreter for
interactive fiction games.

2https://en.wikipedia.org/wiki/Glulx

15806

https://en.wikipedia.org/wiki/Glulx

Figure 4: Training curves for pre-training step of STARLING depicting the normalized scores (left) and number of moves taken
(right) of text-based reinforcement learning agents.

2.2 Parsing LLM Response

Since the response generated by LLM may not
strictly follow the desired format, we follow ad-
ditional steps to mitigate the irrelevant content in
the response from LLM. First, we request a spe-
cific set of game-related data from LLM in a slot-
filling style text generation to reduce the amount
of long unstructured text generation (Rakotonirina
et al., 2022). Since LLM are good at instruction-
following when few-shot examples (input-output
pairs) of a similar problem are given as a part of
the prompt input, we add k-shot examples (k=3)
to guide the LLM to generate a response. Figure
3(a) shows one of the three examples given as a
part of the input prompt. Finally, during game com-
pilation, the Glulx interpreter verifies whether the
information extracted from the response adheres
to the Inform7 programming language syntax. In
addition, the pipeline for game generation provides
an option for users to review the generated JSON
file. When the generated game files still contain
irrelevant content, we repeat the text generation
multiple times to get the desired response from
LLM.

2.3 Game Insights

Using the above approach repeatedly, we built a set
of 100 games with minimal human supervision for
training and evaluating the text-based RL agents
with skills. These games have on average 2 skills
and 4 rewarded states per game. These games have
multiple sub-tasks which indicate that agents must
utilize at least 2 skills (on average) for each game
in the correct order.

Agents must take approximately 7 actions on av-
erage to complete each game, though some of these
actions do not necessarily have to be completed in
order (e.g. the agent can "turn on the stove" before

Agents Mean Normalized Score Mean Moves Taken
Random 0.050 ± 0.01 50 ± 0.0
Pre-training 0.72 ± 0.063 28.105 ± 1.876
Human 1.000 ± 0.000 9.640 ± 5.620

Table 1: Performance of random and pre-trained agents on
a set of 25 unseen pre-training games after training on 75
pre-training games over 100 episodes. Mean Norm. Score
(higher is better, normalized with maximum score achievable
per game) and Mean Moves Taken (to achieve the goal, lower
is better).

"fill the pot with water" and vice versa). Games
in TWC only require agents to gather objects and
take actions to place them in their commonsense
locations. These actions can often be completed
in any order, whereas generated games, such as
cooking pasta, require agents to gather objects and
use other related skills in a specific sequence to
achieve the final goal.

3 Experiments

In this section, we report the experimental results of
the proposed approach: STARLING. We pre-train
the RL agent on the generated 100 games (train
split). We evaluate the pre-trained agent (STAR-
LING) on three benchmark environments for text-
based games: TextWorld Commonsense (TWC)
with easy, medium, and hard difficulty levels (Mu-
rugesan et al., 2021a) 2) ScienceWorld with 4 tasks
and variations (Wang et al., 2022). 3) Zork1 from
Jericho.

3.1 Text-based RL Agent

In this section, we briefly describe the text-based
agent used for all the experiments. Based on the re-
cent observation that using LLM to learn the under-
lying representation of text in the environment does
not necessarily improve the performance (Wang
et al., 2022), we follow previous works (He et al.,

15807

Figure 5: Training curves for TWC easy (left), medium (middle), and hard (right) games depicting the normalized scores (top)
and number of moves (bottom) of both vanilla TBRL and STARLING agents.

Agents Textworld Commonsense
Easy Medium Hard

Vanilla TBRL 0.99 ± 0.0 0.81 ± 0.06 0.57 ± 0.03
STARLING 1.0 ± 0.0 0.85 ± 0.04 0.64 ± 0.05

Table 2: Performance comparison of vanilla TBRL (without pre-training) and STARLING on the test set with the three difficulty
levels of Textworld Commonsense (TWC). All the scores and moves are averaged over 3 runs.

2016; Murugesan et al., 2021a; Ammanabrolu and
Hausknecht; Yao et al., 2020; Atzeni et al., 2022)
and use GRU-based Vanilla TBRL agent to evaluate
our proposed approach (Figure 11 supplementary).
We use individual GRUs (Cho et al., 2014) for the
information from the text-based environment such
as observed text, the content of the inventory, the
description of the room where the agent currently
is located, and a valid list of actions. We learn the
state representation by concatenating the individ-
ual representations from their GRUs (Cho et al.,
2014). We compute the action probability from
both the state and action representations. We use
Advantage Action-critic (A2C) to train the network
(Mnih et al., 2016). In order to limit the impact
of architecture and text-based RL algorithms, we
consider these standard architectures for represen-
tation learning and RL algorithms that have proven
to work well in text-based environments. We plan
to study the impacts of different RL algorithms and
diverse sets of representation learning approaches
in our future work. All the results reported in this
paper are averaged over 3 runs.

3.2 Pre-training Text-based RL Agent

We generate 100 games that demonstrate basic
skills in these environments such as cooking pasta,

painting the living room, boiling water, lighting
a candle, etc. We split these 100 games into 75
games for training and 25 for evaluation. We
trained the vanilla TBRL agent on these 75 pre-
training games over 100 episodes (50 max. steps
per episode) and evaluated it on 25 held-out games.
We compare the performance of the vanilla TBRL
agent (pre-training) against both the random agent
(picks random action at each step) and the Human
performance. We use the mean normalized score
and mean moves/steps taken by the agent for com-
parison. We collect the Human performance results
based on the 48 participants (Section B). Figure 4
shows the training performance and Table 1 shows
the evaluation results. We can see that human par-
ticipants (high-school students) solved these games
with a perfect normalized score of 1.0 indicating
that these games are easy to solve. In order to
successfully finish a game, an agent needs to take
certain actions in a particular order. The order of
actions taken decides the future states of the entities
involved in the game.

3.3 Self-supervised Training of Text-based RL
Agent

Next, we deploy the TBRL agent pre-trained on
75 games generated by LLM on different envi-

15808

Figure 6: (left) Performance of TBRL agents on Zork1. (right) Sample trajectory from STARLING showing the bonus points of
(+4 scores) for collecting the painting in the art gallery within the first few episodes.

ronments. We call the pre-trained TBRL agent
STARLING. We expect that STARLING will out-
perform the vanilla TBRL agent by utilizing the
skills learned using LLM and boosting the per-
formance and generalization capabilities to reach
the goal of the target environments: ScienceWorld,
TWC, and Zork1.

3.3.1 TextWorld Commonsense Environment

TextWorld Commonsense environment evaluates
the agent on commonsense reasoning about every-
day objects such as toothbrush, dirty towel, etc.
The environment, based on Textworld engine (Côté
et al., 2019), includes three difficulty levels: easy,
medium, and hard depending on the number of ob-
jects to find and the number of rooms to explore.
Each difficulty level includes 5 training games and
5 evaluation games similar to the distribution of the
training games3 for a total of 30 games with a batch
size of 1 for this experiment. We train the STAR-
LING agent on these 15 games for 100 episodes
with a maximum of 50 steps.

Figure 5 shows the training curves of the three
difficulty levels in the TWC environment. We can
see that the STARLING agent gets a boost in perfor-
mance both in the scores achieved and the moves
taken compared to the vanilla TBRL. This shows
that the pre-training step using LLM in STARLING
leverages the basic skills mastered using the 75 gen-
erated games. Table 2 confirms our hypothesis that
the pre-training step in STARLING improves the
overall performance across different difficulty lev-
els.

3In addition to the 5 evaluation games, TWC includes 5
test games from out-of-distribution. Since these games require
external knowledge such as ConceptNet (Speer et al., 2017),
ATOMIC (Hwang et al., 2021) etc., we exclude them from our
experiments.

3.3.2 ZORK1 Environment

Zork1 is a human-made interactive fictional game
environment and one of the earliest known text-
based games created based on the underworld char-
acters with dark themes and characters such as dun-
geon, grue, elvish sword, etc. Zork1 is one of the
33 interactive games released as a part of the Jeri-
cho game suite. Unlike TWC and ScienceWorld,
Zork1 includes a diverse set of locations (over 200
locations), larger action space, sparser rewards, and
longer trajectories, making it a challenging envi-
ronment.

In order to evaluate the effect of pre-training in
the Zork1 environment, we simplified the game
with "killing troll" as a final goal (Zahavy et al.,
2018). The agent needs to find the lantern and
sword from the house, locate the hidden passage-
way to the underworld, light the lantern, and kill
the troll. Without the lantern and sword, the agent
entering the troll room reaches the failure state with
negative rewards. In addition to these intermedi-
ate rewards, the game includes additional rewards
when the agent collects a jewel-encrusted golden
egg from the tall tree in the forest (+5 score) and
a painting from the art gallery in the house (+4
score). We train the agents on 100 episodes with a
maximum step of 100 steps per episode.

Figure 6 (left) shows the performance of both
the STARLING and vanilla TBRL on the Zork1
environment. As in TWC, we can see that the pre-
training step boosts the performance of STARLING
in the first few episodes compared to the vanilla
TBRL agent. As in ScienceWorld, STARLING
successfully avoids the failure state compared to
the vanilla TBRL agent.

15809

Figure 7: Training curves for ScienceWorld - Boil Substance (Matter), Find a living thing (Classification), Find a non-living
thing (Classification), and Grow a fruit (Biology) games depicting the scores (left) and number of moves (right) of text-based
reinforcement learning agents.

3.3.3 ScienceWorld Environment
ScienceWorld environment evaluates the science
reasoning abilities of the TBRL agents. It con-
sists of several tasks from topics such as change
of state, biology, classification, etc. We choose
all the 30 science-domain tasks from the themes.
Each of these tasks contains 10− 1400 variations
of the game and are split into 50% training, 25%
for evaluation set, and 25% for test set. We train

the STARLING agent with 100k maximum steps
on a single environment (with a maximum of 100
steps per game play)4.

Figure 7 shows the training curves for both the

4Unlike in the "number of moves taken" metric in the
pre-training results, the number of moves taken in the Science-
World measures how long the agent survived without reaching
the failure state. An agent may reach a failure state if it takes
an action that results in abruptly ending the game such as
pouring water on the floor for the boiling task, etc

15810

Theme Task Random-Valid* DRRN* KG-A2C CALM BC* TDT* STARLING*

Model Types – GRU GRU GPT2 T5 (base) T5 (base) GRU
Param. Count ×106 1.5 5.5 131 11,000 11,000 0.2

Matter Changes of State (Boiling) 0.00 0.03 0.00 0.00 0.00 0.00 0.04
Matter Changes of State (Melting) 0.00 0.04 0.00 0.00 0.00 0.01 0.05
Matter Changes of State (Freezing) 0.00 0.01 0.04 0.00 0.01 0.00 0.10
Matter Changes of State (Any) 0.00 0.03 0.00 0.00 0.00 0.00 0.00
Measurement Use Thermometer 0.00 0.10 0.06 0.01 0.04 0.04 0.19
Measurement Measuring Boiling Point (known) 0.00 0.08 0.11 0.01 0.01 0.02 0.11
Measurement Measuring Boiling Point (unknown) 0.00 0.06 0.04 0.01 0.01 0.02 0.10
Electricity Create a circuit 0.01 0.13 0.07 0.05 0.03 0.07 0.13
Electricity Renewable vs Non-renewable Energy 0.01 0.10 0.04 0.07 0.02 0.05 0.11
Electricity Test Conductivity (known) 0.01 0.07 0.04 0.02 0.05 0.05 0.09
Electricity Test Conductivity (unknown) 0.00 0.20 0.04 0.02 0.04 0.05 0.14
Classification Find a living thing 0.03 0.26 0.18 0.10 0.29 0.16 0.25
Classification Find a non-living thing 0.63 0.56 0.44 0.54 0.19 0.17 0.94
Classification Find a plant 0.01 0.19 0.16 0.10 0.17 0.19 0.25
Classification Find an animal 0.01 0.19 0.15 0.08 0.21 0.19 0.25
Biology Grow a plant 0.07 0.09 0.06 0.02 0.08 0.03 0.12
Biology Grow a fruit 0.02 0.16 0.11 0.04 0.03 0.05 0.09
Chemistry Mixing (generic) 0.01 0.20 0.17 0.03 0.06 0.10 0.22
Chemistry Mixing paints (secondary colours) 0.01 0.29 0.19 0.06 0.16 0.20 0.30
Chemistry Mixing paints (tertiary colours) 0.00 0.11 0.04 0.03 0.05 0.07 0.14
Biology Identify longest-lived animal 0.02 0.48 0.43 0.06 0.26 0.20 0.48
Biology Identify shortest-lived animal 0.03 0.47 0.32 0.10 0.14 0.16 0.35
Biology Identify longest-then-shortest-lived animal 0.01 0.31 0.23 0.04 0.02 0.20 0.31
Biology Identify life stages (plant) 0.00 0.09 0.05 0.04 0.04 0.02 0.21
Biology Identify life stages (animal) 0.00 0.10 0.10 0.00 0.02 0.07 0.18
Forces Inclined Planes (determine angle) 0.01 0.13 0.04 0.00 0.05 0.04 0.12
Forces Friction (known surfaces) 0.00 0.13 0.04 0.03 0.05 0.04 0.09
Forces Friction (unknown surfaces) 0.01 0.13 0.04 0.02 0.04 0.04 0.27
Biology Mendelian Genetics (known plants) 0.01 0.19 0.11 0.02 0.06 0.06 0.18
Biology Mendelian Genetics (unknown plants) 0.01 0.17 0.11 0.02 0.13 0.05 0.16

Table 3: Performance comparison of STARLING against other GRU-based and LLM-based agents on test variations from
ScienceWorld. ∗ indicates the reliance on a valid action list during evaluation.

scores received and moves taken on the 4 tasks.
We can see that STARLING outperforms vanilla
TBRL on all the tasks. We notice that the pre-
training steps improved the performance of STAR-
LING in the first few episodes of the classification
task (find a living thing). On the other hand, pre-
training games such as boiling water, cooking pasta,
planting a tree, etc. may have influenced the per-
formance of STARLING in the later episodes of
tasks: change of state - boiling and grow a fruit, by
adapting the learned skills during pre-training to
the target environment.

Table 3 shows the performance comparison of
GRU-based and LLM-based models against STAR-
LING on the test variations of the ScienceWorld.
We compare the STARLING against the state-
of-the-art LLM-based models Behavior cloning
(BC), Text Decision Transformers (TDT), CALM-
GPT2, etc (Wang et al., 2023a; Ammanabrolu and
Hausknecht; Yao et al., 2020). We notice that our
pretraining strategy has generally improved the per-
formance of STARLING in the majority of the
tasks. We outperform both GRU-based and LLM-
based models. It is worth noting that both BC and
TDT use T5-base (11 billion parameters) initialized
with Macaw, CALM uses GPT2 with 131 million

parameters, whereas, GRU-based STARLING uses
approx 200K parameters.

3.4 Discussion

Our experiments on three text-based game envi-
ronments show that pre-training these agents using
LLM-generated games as auxiliary tasks generally
boosts the performance of the agent. We notice that
most of the performance gain achieved in the first
few episodes of the gameplay on some game in-
stances (e.g., training curves in ScienceWorld tasks
find a living thing, TWC Easy, and Hard, Zork1),
whereas, STARLING adapts the basic skills learned
during the pre-training to the target environment
to improve the final scores (e.g., training curves in
ScienceWorld tasks: change of state - boiling and
grow a fruit). We notice that STARLING avoids
the failure states better than vanilla TBRL as can
be seen in Zork1 and ScienceWorld. Similarly,
STARLING tends to choose valid actions from the
action space more effectively than vanilla TBRL
(for example, see Figure 12 supplementary for the
sample trajectories from ScienceWorld taken by
vanilla TBRL and STARLING within the first few
episodes for the task: changes of state - boiling).

Since these pre-training games lack navigational

15811

complexity that elicits skills such as planning, we
observe that STARLING tends to suffer in games
that require navigational skills (e.g., example, in
ScienceWorld task find a non-living thing, TWC
hard difficulty and Zork1). Since the pre-training
games involve fewer sequences of actions (short
trajectories) to collect the reward and reach the final
goal, STARLING struggles when the target envi-
ronment has longer trajectories to reach the goal.
On the other hand, STARLING tends to collect
bonus scores in Zork1 that are reachable within
fewer steps instead of just chasing the larger re-
warded states (e.g., see Figure 6 right).

4 Related Work

4.1 Text-based Games

Text-based games provide a challenging bench-
mark for RL agents interacting with the environ-
ment in natural language. The common chal-
lenges for text-based RL are partial observability,
combinatorial action space, sparse rewards, long-
horizon planning, etc. To circumvent some of
these challenges, it is typical that the games are
often manually curated to evaluate a specific set of
skills such as commonsense reasoning (Murugesan
et al., 2021a), knowledge graphs (Ammanabrolu
and Hausknecht; Murugesan et al., 2021b), explo-
ration strategies (Côté et al., 2019), etc. Environ-
ments such as TextWorld Commonsense (Muruge-
san et al., 2021a) measure simple commonsense
reasoning based on the one-hop relationship be-
tween a pair of everyday objects such (apple and
refrigerator, dirty towel and laundry basket), but
lacks diversity and complexity to learn a general
set of skills.

Environments such as ScienceWorld (Wang
et al., 2022) are often domain-specific environ-
ments that require domain knowledge to perform
well in these environments. Jericho (Hausknecht
et al., 2020), on the other hand, includes human-
generated games that require a complex set of skills
to show any progress in the gameplay. These en-
vironments are manually created by humans with
very limited automation in the variations of game
generation by replacing similar or related objects,
changing the layout/orientation of the environment,
etc. Unlike these environments, STARLING pro-
vides an approach to leverage the skill generation
capability of LLMs (Huang et al., 2022) to auto-
matically generate text-based games based on the
input game ideas with minimal human supervision.

These games are generated automatically by re-
questing a specific set of game-related facts from
LLM in a slot-filling style text generation (Rako-
tonirina et al., 2022).

4.2 Self-supervised RL
Self-supervised RL has been a popular topic in
vision-based RL and robotic environments (Sekar
et al., 2020; Li et al., 2022). To the best of our
knowledge, we are the first to utilize LLM to gen-
erate the games to train text-based RL agents5. Pre-
vious works have utilized LLM for action gener-
ation (Yao et al., 2020), play interactive fictional
game (Tsai et al., 2023), build a world model (Am-
manabrolu et al., 2020; Wang et al., 2023b), etc.
These works showed that using LLM to learn the
underlying representation of text in the environ-
ment does not necessarily improve the performance
(Wang et al., 2022). It is shown that novel explo-
ration strategies and efficient RL algorithms along
with the learning model similar to the one in Fig-
ure 11 outperform all the other LLM-based agents
(Tuyls et al., 2021). On the other hand, generalist
agents have been recently explored to generalize
across multiple environments (Reed et al., 2022),
but the performance of these agents on a diverse set
of environments is less convincing (Cobbe et al.,
2019).

5 Conclusion

In this paper, we proposed a novel self-supervised
training for a text-based reinforcement learning
agent, STARLING, with the help of the general-
ized skill generation capability of large language
models like GPT3. We generated a set of text-based
games that require agents to learn basic skills such
as cooking pasta, boiling water, etc., and utilize
sequential decision-making over the modality of
text. The proposed STARLING uses the GPT3 pre-
trained language model to automatically generate
these games. This approach can be used to create
additional games or adapted to build games for new
domains with minimal human intervention. We
showed that the STARLING agent pre-trained on
the games generated by LLM outperforms vanilla
TBRL. We evaluated STARLING on three envi-
ronments: ScienceWorld, TWC, and Zork1. In all
these environments, STARLING showed enhanced
skills in the target environment.

5Several LLM-based interactive fictional environments for
entertainment purposes exist (AID, 2019).

15812

6 Limitations

Human participants were volunteers from a local
High School that agreed to participate in this study.
This may have introduced a bias into the human par-
ticipant data since all participants were high school
educated, from one geographic region, between the
ages of 15 and 18, and volunteers. Many of these
participants complete homework assignments and
assessments often which may make their reasoning
skills better than potential participants outside of
school. In the future, testing human participants
from various geographic locations, age groups, and
levels of education may reduce bias. The STAR-
LING currently requires human intervention and/or
the Game Validator (from the glulx compiler) to
build functioning games. We will continue to work
on building an end-to-end version of the STAR-
LING, that can take a game idea and turn it into an
interactive fiction game without any human inter-
vention. This would speed up development time so
a larger set of games can be created.

Large language models such as ChatGPT have
been developed recently with the ability to interact
with users in a manner conversationally similar to
the interactions found in interactive fiction games.
From our experimentation, ChatGPT struggles to
keep track of the states of all in-game objects and
the pre-conditions necessary to use those actions
(e.g. ChatGPT does not always require the player
to turn on the stove before using it) as well as
Inform7-based games. In addition, it suffers from
small factual errors, and is hard to reproduce the
same result, through this could also be seen as a
benefit. Despite these challenges exploring the use
of models such as ChatGPT to interact with agents
shows promise in the future.

7 Ethical Impact

We asked the human participants to play the games
generated by STARLING to evaluate the game’s
complexity and clarity. After receiving IRB ap-
proval from a local High School and informed con-
sent from each of the 48 human participants, we
asked the participants to play five randomly as-
signed games via iplayif.com, an online interac-
tive fiction game player. Players received the goal
of the game and the list of admissible actions. We
collected the number of steps that each player took
and the score received for each game via Google
form. We did not collect any personal information
or personally identifiable information as a part of

this study.
Since we use large language models such as

GPT3 to generate a set of text-based games, the
bias and other fairness/ethical concerns that come
with the LLM may unintentionally transfer to the
pre-trained agent. Additional mitigation steps may
be required to filter harmful contents from the gen-
erated response.

8 Reproducibility

As an effort to encourage further research in self-
supervised text-based RL, we plan to release the
100 games generated as a part of this paper, the
source code for STARLING, script to generate
game-related files based on a set of game ideas
and LLM (including game templates and metadata)
as an open-source project.

References
2019. Ai dungeon (https://play.aidungeon.io).

Prithviraj Ammanabrolu and Matthew Hausknecht.
Graph constrained reinforcement learning for natural
language action spaces. In International Conference
on Learning Representations.

Prithviraj Ammanabrolu, Ethan Tien, Matthew
Hausknecht, and Mark O Riedl. 2020. How to
avoid being eaten by a grue: Structured explo-
ration strategies for textual worlds. arXiv preprint
arXiv:2006.07409.

Mattia Atzeni, Shehzaad Dhuliawala, Keerthiram Mu-
rugesan, and Mrinmaya Sachan. 2022. Case-based
reasoning for better generalization in text-adventure
games. In ICLR 2022.

Greg Brockman, Vicki Cheung, Ludwig Pettersson,
Jonas Schneider, John Schulman, Jie Tang, and Woj-
ciech Zaremba. 2016. Openai gym.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, ..., Christopher Berner,
Sam McCandlish, Alec Radford, Ilya Sutskever, and
Dario Amodei. 2020. Language models are few-
shot learners. In Advances in Neural Information
Processing Systems, volume 33, pages 1877–1901.
Curran Associates, Inc.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder–decoder for
statistical machine translation. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1724–1734.

15813

iplayif.com
http://arxiv.org/abs/arXiv:1606.01540
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

Karl Cobbe, Oleg Klimov, Chris Hesse, Taehoon Kim,
and John Schulman. 2019. Quantifying general-
ization in reinforcement learning. In International
Conference on Machine Learning, pages 1282–1289.
PMLR.

Marc-Alexandre Côté, Akos Kádár, Xingdi Yuan, Ben
Kybartas, Tavian Barnes, Emery Fine, James Moore,
Matthew Hausknecht, Layla El Asri, Mahmoud
Adada, et al. 2019. Textworld: A learning environ-
ment for text-based games. In Computer Games:
7th Workshop, CGW 2018, Held in Conjunction with
the 27th International Conference on Artificial In-
telligence, IJCAI 2018, Stockholm, Sweden, July
13, 2018, Revised Selected Papers 7, pages 41–75.
Springer.

Matthew Hausknecht, Prithviraj Ammanabrolu, Marc-
Alexandre Côté, and Xingdi Yuan. 2020. Interactive
fiction games: A colossal adventure. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 34, pages 7903–7910.

Ji He, Jianshu Chen, Xiaodong He, Jianfeng Gao, Li-
hong Li, Li Deng, and Mari Ostendorf. 2016. Deep
reinforcement learning with a natural language action
space. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1621–1630.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and
Igor Mordatch. 2022. Language models as zero-shot
planners: Extracting actionable knowledge for em-
bodied agents. In International Conference on Ma-
chine Learning, pages 9118–9147. PMLR.

Jena D Hwang, Chandra Bhagavatula, Ronan Le Bras,
Jeff Da, Keisuke Sakaguchi, Antoine Bosselut, and
Yejin Choi. 2021. (comet-) atomic 2020: on sym-
bolic and neural commonsense knowledge graphs.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 6384–6392.

Peter Jansen. 2022. A systematic survey of text worlds
as embodied natural language environments. In Pro-
ceedings of the 3rd Wordplay: When Language Meets
Games Workshop (Wordplay 2022), pages 1–15, Seat-
tle, United States. Association for Computational
Linguistics.

Xiang Li, Jinghuan Shang, Srijan Das, and Michael
Ryoo. 2022. Does self-supervised learning really
improve reinforcement learning from pixels? Ad-
vances in Neural Information Processing Systems,
35:30865–30881.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi
Mirza, Alex Graves, Timothy Lillicrap, Tim Harley,
David Silver, and Koray Kavukcuoglu. 2016. Asyn-
chronous methods for deep reinforcement learning.
In International conference on machine learning,
pages 1928–1937. PMLR.

Keerthiram Murugesan, Mattia Atzeni, Pavan Kapani-
pathi, Pushkar Shukla, Sadhana Kumaravel, Gerald
Tesauro, Kartik Talamadupula, Mrinmaya Sachan,

and Murray Campbell. 2021a. Text-based rl agents
with commonsense knowledge: New challenges, en-
vironments and baselines. In AAAI, pages 9018–
9027.

Keerthiram Murugesan, Mattia Atzeni, Pavan Kapani-
pathi, Kartik Talamadupula, Mrinmaya Sachan, and
Murray Campbell. 2021b. Efficient text-based rein-
forcement learning by jointly leveraging state and
commonsense graph representations. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing,
volume 2, pages 719–725. Association for Computa-
tional Linguistics.

Graham Nelson. 2006. Inform7.

Nathanaël Carraz Rakotonirina, Roberto Dessi, Fabio
Petroni, Sebastian Riedel, and Marco Baroni. 2022.
Can discrete information extraction prompts general-
ize across language models? In The Eleventh Inter-
national Conference on Learning Representations.

Scott Reed, Konrad Zolna, Emilio Parisotto, Ser-
gio Gómez Colmenarejo, Alexander Novikov,
Gabriel Barth-maron, Mai Giménez, Yury Sulsky,
Jackie Kay, Jost Tobias Springenberg, et al. 2022. A
generalist agent. Transactions on Machine Learning
Research.

Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter
Abbeel, Danijar Hafner, and Deepak Pathak. 2020.
Planning to explore via self-supervised world models.
In International Conference on Machine Learning,
pages 8583–8592. PMLR.

Robyn Speer, Joshua Chin, and Catherine Havasi. 2017.
Conceptnet 5.5: An open multilingual graph of gen-
eral knowledge. In Proceedings of the AAAI confer-
ence on artificial intelligence, volume 31.

Chen Feng Tsai, Xiaochen Zhou, Sierra S Liu, Jing
Li, Mo Yu, and Hongyuan Mei. 2023. Can large
language models play text games well? current
state-of-the-art and open questions. arXiv preprint
arXiv:2304.02868.

Jens Tuyls, Shunyu Yao, Sham M Kakade, and
Karthik R Narasimhan. 2021. Multi-stage episodic
control for strategic exploration in text games. In In-
ternational Conference on Learning Representations.

Ruoyao Wang, Peter Jansen, Marc-Alexandre Côté, and
Prithviraj Ammanabrolu. 2022. Scienceworld: Is
your agent smarter than a 5th grader? arXiv preprint
arXiv:2203.07540.

Ruoyao Wang, Peter Jansen, Marc-Alexandre Côté, and
Prithviraj Ammanabrolu. 2023a. Behavior cloned
transformers are neurosymbolic reasoners. In Pro-
ceedings of the 17th Conference of the European
Chapter of the Association for Computational Lin-
guistics, pages 2769–2780.

15814

https://doi.org/10.18653/v1/2022.wordplay-1.1
https://doi.org/10.18653/v1/2022.wordplay-1.1
http://www.inform7.com

Ruoyao Wang, Graham Todd, Eric Yuan, Ziang Xiao,
Marc-Alexandre Côté, and Peter Jansen. 2023b.
Bytesized32: A corpus and challenge task for gen-
erating task-specific world models expressed as text
games. arXiv e-prints, pages arXiv–2305.

Shunyu Yao, Rohan Rao, Matthew Hausknecht, and
Karthik Narasimhan. 2020. Keep calm and explore:
Language models for action generation in text-based
games. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 8736–8754.

Tom Zahavy, Matan Haroush, Nadav Merlis, Daniel J
Mankowitz, and Shie Mannor. 2018. Learn what not
to learn: Action elimination with deep reinforcement
learning. Advances in neural information processing
systems, 31.

A Additional Details

In order to generate games that require composing
previously learned skills, we take inspiration from
household chores, cooking, and maintenance tasks.
We generate 100 game ideas and use the STAR-
LING to generate a set of 100 games. We choose
the game ideas carefully for the learning agent to
utilize similar skills (ex. baking, mixing, spreading,
using a hammer, etc) in new situations therefore
forcing the agent to generalize skills and compose
them with other skills. For example, while cooking
pasta, an agent must learn how to boil water which
is a skill that can be applied for a related game idea
"brewing tea".

LLMs such as GPT-3 are prone to making fac-
tual and grammatical errors, in addition to violating
the specified format. We check for any errors in
the generated game(s) using a Game Validator as a
part of glulx compiler which uses depth first search
(DFS) to explore all the possible trajectories in the
game. To correct for minor errors and inconsisten-
cies in each game, information from GPT-3 can
also be optionally verified by the human authors
in the JSON file. We found that, in cases when
the created game has errors, restarting the game
generation a few times usually results in a playable
game.

A.1 From GPT3 output to game JSON

We extract the information from GPT-3 using
Python simple regular expression rules by first split-
ting the output into three sections: task sequence
(ex. Open cabinet, take pot), objects (ex. Pot), and
actions (ex. Fill pot with water). We add the task
sequence to the list of admissible actions the player

could execute within the game. We store the ob-
jects internally with a type, a location, a name, and
a set of properties. We further split the actions sec-
tion into default actions and custom actions which
are actions native and non-native to inform7 respec-
tively. Similar to the objects, we store each custom
action internally with a name, a declaration, a def-
inition, a set of constraints, a set of prerequisites,
and a set of post-requisites.

A.2 Inform7 Code Generator
We wrote a simple script based on the JSON struc-
ture and the action templates to generate the In-
form7 Code for a given game idea. This script
along with the other code & data will be shared to
the public in the near future.

A.3 Modifying TextWorld Gym for
STARLING

OpenAI Gym is a general reinforcement learning
framework that acts as an interface between RL
agents and Inform7-based STARLING game en-
gine (Brockman et al., 2016). Gym connects envi-
ronments with agents by using a monitor to keep
track of every step, state of the game, the final score
of agents, and the sample complexity or the amount
of time an agent takes to learn. Most default envi-
ronments in Gym support a continuous or discrete
action space although interactive fiction games re-
quire combinatorial action spaces in natural lan-
guage (Hausknecht et al., 2020). The TextWorld
Gym customized the OpenAI Gym for interactive
fiction games. In this work, we repurpose the cus-
tom Gym environment created for TextWorld envi-
ronment with Inform7 object and action types.

TextWorld’s Gym environment only supports
TextWorld-generated games which includes a Glulx
compiled game file and a TextWorld-generated
JSON file with game metadata defined in propri-
etary TextWorld classes. This restricted our abil-
ity to create games with objects and actions previ-
ously undefined in TextWorld environment. These
objects and actions must be defined according to
TextWorld’s grammar and logic rules. This is a
time consuming process and is prone to many er-
rors. The goal of the STARLING Game Generator
is to allow users to automate the game creation
using LLM, and most importantly, create games
without learning a new programming language or
familiarizing themselves with any grammar rules.

To get rid of these restrictions, an entirely new
wrapper was created which acted as an interface

15815

Figure 8: (Left) shows the overview of the proposed self-supervised text-based reinforcement learning with large language
model. (Right) shows the sample text-only agent play through of cooking pasta game. Players must use the boil skill at the
correct time to be successful.

between the game engine and TextWorld Gym en-
vironment. This wrapper ensures that the user to
freely define any object or action type and the envi-
ronment works with any Glulx compiled game file
without dependence on the TextWorld-generated
metadata to track the state of objects throughout
the game. The wrapper does this by parsing the
observation state returned by game engine after ev-
ery step to generate certain data-points like admis-
sible commands, current score, last action, num-
ber of steps taken and inventory required by the
TextWorld Gym environment.

B Human Participants

Humans are considered to have exemplary com-
positional skill learning so comparing their perfor-
mance to pre-trained agent’s performance is valu-
able to validate generated games’s difficulty and
effectiveness as a pre-training task. After receiv-
ing IRB approval from a local High School and
informed consent from each of the 48 human par-
ticipants, we asked the participants to play five ran-
domly assigned games via iplayif.com, an online
interactive fiction game player. Players received
the goal of the game and the list of admissible ac-
tions. We collected the number of steps that each
player took and the score received for each game

via Google form. 6

C Pretraining Game Statistics

Game-specific Statistics
Min. # Actions 7.36 ± 2.53
Avg. Rewards across games 4.08 ± 1.57
Num. Skills per game 2 ± 1

6No personal information was collected as a part of this
study.

15816

iplayif.com

Figure 9: Architecture diagram for Self-supervised Text-based Reinforcement Learning using LLM (STARLING).

Cooking Pasta

Open cabinet

Open fridgeTurn on sink Turn on stove

Take pasta

Take pot

Boil water in pot

Drop pot

Turn off stove

Turn off sink

Cook pasta with stove Drop pasta

Figure 10: Composition of skills needed to complete the game "Cooking Pasta" as Flow diagram. A line between two skills
represent that one skill needs to be executed before executing the other one (E.g., Open cabinet −→ Take pot). A box with
multiple skills represent that skills within the box can be executed in any order (E.g., Boil water in pot ∥ Take pasta).

Figure 11: Vanilla Text-based RL agent used in this paper.

15817

Figure 12: Sample Trajectories taken by STARLING and Vanilla TBRL for the task: change of state (boiling) task in
ScienceWorld.

15818

{"libraries" : [
 {"name": "measured liquid",
 "author": "Emily Short"},
 { "name": "modern conveniences",
 "author": "Emily Short"}],
"modules" : ["scoring"],
"room" : { "name": "home kitchen",
 "description": ""},
"custom entities" : ["Food is a kind of thing. Food is usually edible. Food can be raw or cooked. Food is usually raw."],
"entities" : [{"name": "pot",
 "type": "container",
 "properties": ["portable", "open"],
 "location": "in the cabinet"},
 { "name": "pasta",
 "type": "food",
 "properties": "",
 "location": "in the refrigerator"},
 {"name": "sauce",
 "type": "food",
 "properties": "",
 "location": "in the refrigerator"}],
"scoring" : [
 {"condition": "taking the pot for the first time",
 "increment": "1"},
 {"condition": "taking the pasta for the first time",
 "increment": "1"},
 {"condition": "taking the sauce for the first time",
 "increment": "1"}],
"actions" : [{"name": "",
 "declaration": { "command": "cook [something] with [something]",
 "alias": "cooking it with",
 "applicable_to": "one carried thing and one thing"},
 "prerequisites": [],
 "constraints": [{"condition": "the noun is not a food",
 "prompt": "You can't cook that."},
 { "condition": "the second noun is not a stove",
 "prompt": "You can't cook that."}],
 "definition": { "tasks": ["increase score by 1"],
 "prompt": "You cooked the [noun] with the [second noun]." },
 "postrequisties": [] }],
"end_game" : {
 "condition": "4",
 "task": "end the story finally",
 "tasks": ["look", "inventory", "open cabinet", "take pot", “drop pot”, “open fridge”, “take pasta”, “drop pasta”, “turn on
sink”, “turn off sink”, “fill pot with water”, “turn on stove”, “turn off stove”, “boil water in pot”, “cook pasta with stove”]}}

Figure 13: Example JSON file produced for cooking pasta game idea. The libraries, modules, and room sections were part of
the setup, the custom entities and entities sections correspond to object creation, the actions correspond to the custom actions,
and the scoring and end game correspond to the rewards sections of each game. The entities section describes names, types,
and properties of entities present in the game. The actions section defines custom actions including their declaration, alias, and
constraints not part of Inform7 by default. The end-game section defines the maximum score and the list of admissible actions
that the user can take.

15819

