
Findings of the Association for Computational Linguistics: ACL 2024, pages 13163–13175
August 11-16, 2024 ©2024 Association for Computational Linguistics

Extracting Polymer Nanocomposite Samples from Full-Length Documents

Ghazal Khalighinejad1,Defne Circi2,L.C. Brinson2,Bhuwan Dhingra1

1Department of Computer Science, Duke University, USA
2Department of Mechanical Engineering and Materials Science, Duke University, USA

{ghazal.khalighinejad, defne.circi, cate.brinson, bhuwan.dhingra}@duke.edu

Abstract

This paper investigates the use of large lan-
guage models (LLMs) for extracting sample
lists of polymer nanocomposites (PNCs) from
full-length materials science research papers.
The challenge lies in the complex nature of
PNC samples, which have numerous attributes
scattered throughout the text. The complexity
of annotating detailed information on PNCs
limits the availability of data, making conven-
tional document-level relation extraction tech-
niques impractical due to the challenge in cre-
ating comprehensive named entity span anno-
tations. To address this, we introduce a new
benchmark and an evaluation technique for this
task and explore different prompting strategies
in a zero-shot manner. We also incorporate self-
consistency to improve the performance. Our
findings show that even advanced LLMs strug-
gle to extract all of the samples from an article.
Finally, we analyze the errors encountered in
this process, categorizing them into three main
challenges, and discuss potential strategies for
future research to overcome them.

1 Introduction

Research publications are the main source for the
discovery of new materials in the field of materials
science, providing a vast array of essential data.
Creating structured databases from these publica-
tions enhances discovery efficiency, as evidenced
by AI tools like GNoME (Merchant et al., 2023).
Yet, the unstructured format of journal data com-
plicates its extraction and use for future discover-
ies (Horawalavithana et al., 2022). Furthermore,
the manual extraction of material details is ineffi-
cient and prone to errors, underlining the necessity
for automated systems to transform this data into
a structured format for better retrieval and analy-
sis (Yang, 2022).

Scientific papers on polymer nanocomposites
(PNCs) provide essential details on sample com-
positions, key to understanding their proper-

Section: Introduction 
The aim of this study is thus to check 
the efficiency of multi-walled carbon 
nanotubes (MWNTs)…to compare it with 
that of cellulose nanofibrils…


Section: Experiments 
A surfactant-stabilized aqueous 
suspension of poly(styrene-co-butyl 
acrylate), P(S-BuA),… Sample 
reinforced with nano fillers contents of 
up to 6vol% for cellulosic nanofibrils


Section: Results 
For higher nanotube contents (0.5 and…


“Matrix Chemical”: “poly[(butyl acrylate)-co styrene]”,

“Matrix Abbreviation”: “P(S-BuA)”,

“Filler Chemical”: “cellulose nanofibrils”,

“Filler Abbreviation”: null,

“Composition Mass”: null,

“Composition Volume”: “0.06”

“Matrix Chemical”: “poly[(butyl acrylate)-co styrene]”,

“Matrix Abbreviation”: “P(S-BuA)”,

“Filler Chemical”: “multi-walled carbon nanotubes”,

“Filler Abbreviation”: null,

“Composition Mass”: null,

“Composition Volume”: “0.005”

PNC Sample List: 

Figure 1: A snippet from a PNC research article (Dal-
mas et al., 2007) and the extracted PNC sample list from
the NanoMine database. Note how information for a
single sample is extracted from multiple parts of the
article text.

ties. PNCs, which blend polymer matrices with
nanoscale fillers, are significant in materials sci-
ence for their customizable mechanical, thermal,
and electrical characteristics. The variety in PNCs
comes from different matrix and filler combina-
tions that modify the properties. However, extract-
ing this data poses challenges due to its distribution
across texts, figures, and tables, and the complexity
of N -ary relationships defining each sample. An
example in Figure 1 illustrates how sample details
can be spread over various paper sections.

In this paper, we construct PNCExtract, a bench-
mark designed for extracting PNC sample lists
from scientific articles. PNCExtract focuses on
the systematic extraction of N -ary relations across
different parts of full-length PNC articles, captur-
ing the unique combination of matrix, filler, and
composition in each sample. Many works have
explored N -ary relation extraction from materials
science literature (Dunn et al., 2022; Song et al.,
2023a,b; Xie et al., 2023; Cheung et al., 2023)
and other domains (Giorgi et al., 2022). However,
these studies primarily target abstracts and short
texts, not addressing the challenge of extracting
information from the entirety of full-length articles.
PNCExtract addresses this by requiring models
to process entire articles, identifying information

13163



Task Doc-level N -ary RE End-to-End

Materials Domain

PNCExtract ✓ ✓ ✓
PolyIE ✗ ✓ ✗

Dunn et al. (2022) ✗ ✓ ✓
Xie et al. (2023) ✓ ✗ ✓

MatSci-NLP ✗ ✗ ✗

Other Domains

PubMed ✓ ✓ ✗
SciREX ✓ ✓ ✗

NLP-TDMS ✓ ✓ ✗

Table 1: Comparison of PNCExtract with other Infor-
mation Extraction (IE) approaches within the materials
science domain (Song et al., 2023a; Cheung et al., 2023;
Dunn et al., 2022; Xie et al., 2023) and across various
other scientific domains (Jain et al., 2020; Jia et al.,
2019b; Hou et al., 2019). “End-to-End” indicates that,
unlike previous methods that require task-specific su-
pervision (e.g., named entity recognition, coreference
resolution), PNCExtract relies on end-to-end supervi-
sion only.

across all sections, a challenge noted by Hira et al.
(2023).

Compared to other document-level information
extraction (IE) datasets like SciREX (Jain et al.,
2020), PubMed (Jia et al., 2019b), and NLP-
TDMS (Hou et al., 2019) which also demand the
analysis of entire documents for N -ary relation ex-
traction, our dataset marks the first initiative within
the materials science domain. This distinction is
important due to the unique challenges of IE in
materials science, particularly with polymers. The
field features a complex nomenclature with chemi-
cal compounds and materials having various iden-
tifiers such as systematic names, common names,
trade names, and abbreviations, all with significant
variability and numerous synonyms for single enti-
ties (Swain and Cole, 2016). Furthermore, there is
a scarcity of annotated datasets with detailed infor-
mation, which complicates the creation of effective
IE models in this area.

In light of these challenges, our dataset is de-
signed for a generative task to navigate the com-
plexities of fully annotating entire PNC papers,
which involve annotating named entity spans, coref-
erences, and negative examples (entity pairs with-
out a relation). The complexity of PNC papers, due
to their various entities and samples, makes man-
ual annotation both time-consuming and prone to
errors. Consequently, encoder-only models, which
require extensive annotations, fall short for our pur-
poses. In Table 1, we compare PNCExtract with
previous IE approaches in the scientific domain.

We introduce a dual-metric evaluation system
comprising a partial metric for detailed analysis
of each attribute within an N -ary extraction and a
strict metric for assessing overall accuracy. This
approach distinguishes itself from prior works in
materials science, which either focused on the eval-
uation of binary relations (Dunn et al., 2022; Xie
et al., 2023; Song et al., 2023a; Wadhwa et al.,
2023) or used strict evaluation criteria (Cheung
et al., 2023) without recognizing partial matches.

We further explore different prompting strate-
gies, including one that aligns with the principles of
Named Entity Recognition (NER) and Relation Ex-
traction (RE) which involves a two-stage pipeline,
as well as an end-to-end method to directly gen-
erate the N -ary object. We find that the E2E ap-
proach works better in terms of both accuracy and
efficiency. Moreover, we present a simple exten-
sion to the self-consistency technique (Wang et al.,
2023b) for list-based predictions. Our findings
demonstrate that this approach improves the ac-
curacy of sample extraction. Since the extended
length of articles often exceeds the context limits
of some LLMs, we also explore condensing them
through a dense retriever (Ni et al., 2022) to extract
segments most relevant to specific queries. Our
findings indicate that condensing documents gener-
ally enhances accuracy. Since existing document-
level IE models (Jain et al., 2020; Zhong and Chen,
2021) are not suited for our task, we employ GPT-4
with our E2E prompting on the SciREX dataset and
benchmark it against the baseline model. Our anal-
ysis shows that GPT-4, even in a zero-shot setting,
outperforms the baseline models that were trained
with extensive supervision.

Lastly, we discuss three primary challenges
encountered when using LLMs for PNC sam-
ple extraction. Code for reproducing all ex-
periments is available at https://github.com/
ghazalkhalighinejad/PNCExtract.

2 PNCExtract Benchmark

In this section, we first describe our dataset, includ-
ing the problem definition, and the dataset prepara-
tion. Then we describe our evaluation method for
the described task.

2.1 Problem Definition

We define our dataset as D = {D1, D2, . . . , D193},
where each Di is a peer-reviewed paper included
in our study. Corresponding to each paper Di,
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there is an associated list of samples Si, comprising
various PNC samples. Formally, Si is defined as
Si = {si1, si2, . . . , sini}, where sij represents the
j-th PNC sample in the sample list of the i-th paper,
and ni denotes the total number of PNC samples
in Si. Each sample sij is a JSON object with six
entries: Matrix Chemical Name, Matrix Chemical
Abbreviation, Filler Chemical Name, Filler Chem-
ical Abbreviation, Filler Composition Mass, and
Filler Composition Volume. Table 2 presents the
count of samples with each attribute marked as non-
null. The primary task involves extracting a set of
samples Ŝi from a given paper Di.

Attribute Number of Samples

Matrix Chemical Name 1052
Matrix Chemical Abbreviation 864
Filler Chemical Name 1052
Filler Chemical Abbreviation 819
Filler Mass 624
Filler Volume 407

Table 2: Number of total samples for which each of the
attributes is non-null.

Statistics Paper Length #Samples/Doc

Avg. 6965 6
Med. 6734 4
Min. 238 1
Max. 16355 50

Table 3: Statistical summary of paper lengths and num-
ber of samples per document. Paper length is measured
in tokens.

2.2 Dataset Preparation
NanoMine Data Repository We curate our
dataset using the NanoMine data repository (Zhao
et al., 2018). NanoMine is a PNC data repository
structured around an XML-based schema designed
for the representation and distribution of nanocom-
posite materials data. The NanoMine database is
manually curated using Excel templates provided
to materials researchers. NanoMine database cur-
rently contains a list of 240 full-length scholarly
articles and their corresponding PNC sample lists.
While NanoMine includes various subfields, our
study focuses on the “Materials Composition” sec-
tion. This section comprehensively details the char-
acteristics of constituent materials in nanocompos-
ites, including the polymer matrix, filler particles,
and their compositions (expressed in volume or
weight fractions). The reason for this focus is that

determining which sample compositions are stud-
ied in a given paper is the essential first step toward
identifying and understanding more complex prop-
erties of PNCs. Out of the 240 articles, we focus on
193 and disregard the rest due to having inconsis-
tent format (see Appendix A). These 193 articles
contain a total of 1052 samples. For each sample,
we retain 6 out of the 43 total attributes in the Ma-
terials Composition of NanoMine (see Appendix B
for details).

Document-level information extraction requires
understanding the entire document to accurately an-
notate entities, their relations, and saliency. These
make the annotation of scientific articles time-
consuming and prone to errors. We found that
NanoMine also contains errors. Given the chal-
lenge of reviewing all 1052 samples and reading
through 193 articles, we adopted a semi-automatic
approach to correct samples. Specifically, for an
article, we consider both the predicted and ground
truth sample list of a document. Using our partial
metric (detailed in Section 2.3), we match predicted
samples with their ground-truth counterparts and
assign a similarity score to each pair. Matches are
classified as exact, partial, or unmatched—either
true samples or predictions. We then focus on
re-annotating samples with the most significant
differences between prediction and ground truth,
especially those partial matches with lower simi-
larity scores and unmatched samples. This method
accelerates re-annotation by directing annotators
towards specific attributes and samples based on
GPT-4 predictions. Following this strategy, we
made three types of adjustments to the dataset:
deleting 20 samples, adding 15, and editing 19
entities.1(See Appendix G for details).

2.3 Evaluation Metrics
Our task involves evaluating the performance of our
model in predicting PNC sample lists. One natural
approach, also utilized by Cheung et al. (2023), is
to verify if there is an exact match between the pre-
dicted and the ground-truth samples. This method,
however, has a notable limitation, particularly due
to the numerous attributes that define a PNC sam-
ple. Under such strict evaluation criteria, a pre-
dicted sample is considered entirely incorrect if
even one attribute is predicted inaccurately, which
can be too strict considering the complexity and
attribute-rich nature of PNC samples.

1This work includes contributions from polymer experts,
under whose mentorship all authors received their training.
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Hence, we also propose a partial metric which
rewards predicted samples for partial matches to a
ground truth sample. However, computing such a
metric first requires identifying the optimal match-
ing between the predicted and ground truth sample
lists, for which we employ a maximum weight
bipartite matching algorithm. This approach ac-
knowledges the accuracy of a prediction even if not
all attributes are perfectly matched.

Additionally, we also apply a strict metric, simi-
lar to the approach of Cheung et al. (2023), where a
prediction is considered correct only if it perfectly
matches with the ground truth across all attributes
of a PNC sample.

Standardization of Prediction To accurately cal-
culate the partial and strict metrics, standardizing
predictions is essential. The variability in polymer
name expressions in scientific literature makes uni-
form evaluation challenging. For example, “silica”
and “silicon dioxide” are different terms for the
same filler. Our dataset uses a standardized format
for chemical names. To align the predicted names
with this standard, we use resources by Hu et al.
(2021), which list 89 matrix names with their stan-
dard names, abbreviations, synonyms, and trade
names, as well as 159 filler names with their stan-
dard names. We standardize predicted chemical
names by matching them to the closest names in
these lists and converting them to their standard
forms. Furthermore, our dataset exclusively uses
numerical values to represent compositions (e.g.,
a composition of “0.5vol.%” should be listed as
“0.005”). Predictions in percentage format (like
“0.5vol.%”) are thus converted to the numerical for-
mat to align with the dataset’s representation.

Attribute Aggregation Our evaluation incorpo-
rates an attribute aggregation method. For both
the “Matrix” and “Filler” categories, a prediction is
considered accurate if the model successfully iden-
tifies either the chemical name or the abbreviation.
For the “Composition”, a correct prediction may be
based on either the “Filler Composition Mass” or
the “Filler Composition Volume”. This approach
allows for a broader assessment, capturing any cor-
rect form of attribute identification without focus-
ing on the finer details of each attribute.

Partial-F1 This metric employs the F1 score in
its calculation, which proceeds in two steps. Ini-
tially, an accuracy score is computed for each pair
of predicted and ground truth samples where we

compute the fraction of matches in the <Matrix,
Filler, Composition> trio across the two samples.
This process results in k̂ × k score combinations,
where k̂ and k represent the counts of predicted
and ground truth samples. The next step involves
translating these comparisons into an assignment
problem within a bipartite graph. Here, one set of
vertices symbolizes the ground truth samples, and
the other represents the predicted samples, with
edges denoting the F1 scores between pairs. The
objective is to identify a matching that optimizes
the total F1 score, which can be computed using
the Kuhn-Munkres algorithm (Kuhn, 1955). in
O(n3) time (where n = max(k̂, k)). Note that
if k̂ ̸= k , a one-to-one match for each prediction
may not be necessary. Once matching is done,
we count all the correct, false positive, and false
negative predicted attributes (the attributes of all
the unmatched predicted samples and ground-truth
samples are considered false positives and false
negatives, respectively). Subsequently, we calcu-
late the micro-average Precision, Recall, and F1.

Strict-F1 For a stricter assessment, a sample is
labeled correct only if it precisely matches one in
the ground truth. Predictions not in the ground truth
are false positives, and missing ground truth sam-
ples are false negatives. This metric emphasizes
exact match accuracy.

3 Modeling Sample List Extractions from
Articles with LLMs

As mentioned in Section 1, our dataset is designed
for a generative task, making encoder-only models
unsuitable for two main reasons. First, these mod-
els demand extensive annotations, such as named
entity spans, coreferences, and negative examples,
a process that is both time-consuming and error-
prone. Second, encoder-only models struggle with
processing long documents efficiently. While some
studies have successfully used these models for
long documents (Jain et al., 2020), they had ac-
cess to significantly larger datasets. Our dataset,
however, contains detailed domain-specific infor-
mation, making it challenging to obtain a similarly
extensive dataset.

Consequently, within a zero-shot context2, we
explore two prompting methods: Named Entity
Recognition plus Relation Extraction (NER+RE)
and an End-to-End (E2E) approach.

2The context length is prohibitive for attempting few-shot
approaches.
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Response:  
Matrix: [Epoxy resin, Poly(vinylidene fluoride), 
Bisphenol-A epoxy resin],


Filler Volume: [1.01 vol.%, 1.2 vol.%, 30 vol.%, 60 
vol.%]

. 

. 

.

NER Step:

RE Step:

End-to-End Prompt:

Instruction: Identify the matrix, filler, 
and composition.

LLM

Instruction: Identify the matrix, filler, and 
composition.

JSON Template:

Article: 

LLM

Matrix: Poly(vinylidene 
fluoride) 
Filler: Calcium copper titanate 
Filler Mass: null 
Filler Volume: 1.01 vol.%

Matrix: Poly(vinylidene 
fluoride) 
Filler: Calcium copper titanate 
Filler Mass: null 
Filler Volume: 1.2 vol.%

PNC Sample #1:
Response: 

PNC Sample #N:

. . .

Matrix: 
Filler: 
Filler Mass: 
Filler Volume:

. . .

Response: No.

Article: 

Instruction: Is the following PNC sample 
valid. Yes or No?

LLM
Matrix: Epoxy resin 
Filler: Calcium copper titanate 
Filler Mass: null 
Filler Volume: 1.01 vol.%

Response: Yes.LLM

Instruction: Is the following PNC sample 
valid. Yes or No?

Matrix: Poly(vinylidene 
fluoride) 
Filler: Calcium copper titanate 
Filler Mass: null 
Filler Volume: 1.01 vol.%

Article: 

Article: 

Figure 2: Two prompting strategies for PNC sample extraction with LLM are presented. On the left, the end-to-end
(E2E) approach uses a single prompt to directly extract PNC samples. On the right, the NER+RE approach first
identifies relevant entities and then classifies their relations through yes/no prompts to validate PNC samples.

3.1 NER+RE Prompt

Building on previous research (Peng et al., 2017;
Jia et al., 2019a; Viswanathan et al., 2021), which
treated N -ary relation extraction as a binary clas-
sification task, our NER+RE method treats RE as
a question-answering process, following the ap-
proach in Zhang et al. (2023). This process is exe-
cuted in two stages. Initially, the model identifies
named entities within the text. Subsequently, it
classifies N -ary relations by transforming the task
into a series of yes/no questions about these entities
and their relations. For evaluation, we apply only
the strict metric, as the partial metric is not suitable
in this binary classification context.3

The NER+RE approach becomes computation-
ally expensive during inference, especially as the
number of entities increases. This leads to an expo-
nential growth in potential combinations, expand-
ing the candidate space for valid compositions and
consequently extending the inference time.

3.2 End-to-End Prompt

To address this challenge, we develop an End-to-
End (E2E) prompting strategy that directly extracts
JSON-formatted sample data from articles. This
method is designed to efficiently handle the com-
plexity and scale of extracting N -ary relations from
scientific texts, bypassing the limitations of binary
classification frameworks in this context.

3While partial evaluation is theoretically possible by con-
sidering all potential samples identified in the NER step, such
an approach would yield limited insights.

3.3 Self-Consistency

The self-consistency method (Wang et al., 2023b),
aims to enhance the reasoning abilities of LLMs.
Originally, this method relied on taking a majority
vote from several model outputs. For our purposes,
since the output is a set of answers rather than a
single one, we apply the majority vote principle to
the elements within these sets.

We generate t predictions from the model, each
at a controlled temperature of 0.7. Our objective is
to identify which samples appear frequently across
these multiple predictions as a sign of higher confi-
dence from the model.

During evaluation, each model run generates a
list of predicted samples from a specific paper. We
refer to each list as the k-th prediction, denoted
Sk = {ak1, ak2, ..., akm}. For each predicted ele-
ment aij , we determine its match score matchij , by
counting how frequently it appears across all pre-
dictions {S1, S2, ..., St}. This score can vary from
1, meaning it appeared in only one prediction, to t,
indicating it was present in all predictions.

We then apply a threshold α to filter the samples.
Those with a matchij at or above α are retained,
as they were consistently predicted by the model.
Samples falling below this threshold suggest less
confidence in the prediction and are removed.

3.4 Condensing Articles with Dense Retrieval

LLMs, such as LLaMA2 with its token limit
of 4, 096, face challenges in maintaining perfor-
mance with longer input lengths. Recent advance-
ments have extended these limits (Dacheng Li*
and Zhang, 2023; Tworkowski et al., 2023); how-
ever, an increase in input length often leads to a
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decline in model performance. This raises the ques-
tion of whether condensing articles could serve as
an effective strategy to address such limitations.
We, therefore, employ the Generalizable T5-based
Dense Retrievers (GTR-large) (Ni et al., 2022) to
retrieve relevant parts of the documents.

This process involves dividing each document
Ci into segments ({Ci1, Ci2, ..., CiN}) and formu-
lating four queries (Qj) to extract targeted informa-
tion regarding an entity.4 On average, each segment
consists of 60 tokens. We then calculate the similar-
ity between each pair of segments and queries (Cik,
Qj). For every query Qj , we select the top k seg-
ments (TopK(Qj , Ci)) based on their similarity
scores. These top segments from all four queries
are then combined to form a condensed version of
the original document (

⋃4
j=1 TopK(Qj , Ci)).

4 Experiments

4.1 Benchmarking LLMs on PNCExtract

Models In our experiments, we employ LLaMA-
7b-Chat (Touvron et al., 2023), LongChat-7B-16K
(Dacheng Li* and Zhang, 2023), Vicuna-7B-v1.5
and Vicuna-7B-v1.5-16K (Chiang et al., 2023), and
GPT-4 Turbo (OpenAI, 2023). The LongChat-7B-
16K and Vicuna-7B-16K models are fine-tuned for
context lengths of 16K tokens, and GPT-4 Turbo
for 128K tokens.

Setup We divide our dataset into 52 validation
articles and 141 test articles. We assess the per-
formance using micro average Precision, Recall,
and F1 scores, considering both strict and partial
metrics at the sample and property levels. We
also compare two different prompting strategies
NER+RE and E2E. Moreover, we consider the self-
consistency technique.

4.1.1 Results
In Table 4 we report the partial and strict metrics
for multiple models and settings. We report the
best results for each model in the condensed paper
setting, selected across different k = {5, 10, 30},
which correspond to average token counts per docu-
ment of 790, 1420, and 3310, respectively. Further
details on the results across various levels of docu-
ment condensation are available in the Appendix E.
The results highlight several key observations:

4The queries are: “What chemical is used in the polymer
matrix?”, “What chemical is used in the polymer filler?”,
“What is the filler mass composition?”, and “What is the filler
volume composition?”.

Model Strict Partial
P R F1 P R F1

Condensed Papers

LLaMA2 C 21.7 0.6 1.2 60.0 1.5 3.0
Vicuna 5.8 2.6 3.6 49.9 19.5 28.1
Vicuna-16k 17.7 5.9 8.9 60.4 19.9 29.9
LongChat 6.6 3.5 4.6 47.3 24.4 32.2
GPT-4 43.6 32.0 36.9 64.5 47.7 54.8

Full Papers

Vicuna-16k 18.4 1.5 2.7 65.7 4.6 8.5
LongChat 5.4 4.2 4.7 36.6 29.6 32.7
GPT-4 44.8 30.2 36.0 64.9 43.8 52.3
GPT-4 (NR) 28.4 37.2 32.2 - - -
GPT-4 + SC 51.6 31.1 38.8 73.5 43.8 54.9

Table 4: Precision, Recall, and F1 of different LLMs
on condensed and full papers using strict and partial
metrics. The table includes GPT-4 Turbo with different
prompting methods (NER+RE, E2E, and E2E with self-
consistency [SC]). “NR” denotes NER+RE prompting.
“LLaMA2 C” represents the LLaMA2-7b-chat model.
Models with limited context lengths are evaluated only
in the condensed paper scenario.

Effect of Document Length on the Performance
Table 4 demonstrates that shortening documents
proves beneficial in most cases. Additionally, Fig-
ure 3 shows the trend of partial F1 scores as doc-
ument length increases. We observe that GPT-4’s
performance decreases in extremely shortened set-
tings but is optimal when documents are shortened
to the top 30 segments. This indicates that while
reducing document length is beneficial, excessive
shortening may result in the loss of sample infor-
mation. Additionally, Table 5 provides bootstrap
analysis from 1000 resamplings, indicating that
GPT-4 Turbo has a higher mean F1 score on shorter
full-length documents.

M
ic

ro
 P

ar
tia

l F
1

0

15

30

45

60

Vicuna-7b Vicuna-7b-16k LongChat-7b-13k GPT-4

Top 5 Top 10 Top 30 Full

Figure 3: Comparison of Micro Partial F1 Scores Across
Different Models and Document Lengths. “Top 5”, “Top
10”, and “Top 30” indicate document summaries re-
trieved with k set to 5, 10, and 30 respectively.
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Length Interval Mean F1 SD 95% CI

(0, 8000) 44.2 04.0 (35.2, 51.2)
(8000, 20000) 35.2 05.7 (24.4, 46.7)

Table 5: Comparison of mean F1 scores, standard devia-
tions, and 95% confidence intervals for different token
length intervals.

E2E vs. NER+RE: The E2E prompting
method shows better performance compared to
the NER+RE approach, which is attributed to the
higher precision of E2E. Furthermore, the infer-
ence time of the GPT-4 Turbo (E2E) is 28 sec/ar-
ticle, faster than 45 sec/article for GPT-4 Turbo
(NER+RE).

Impact of Self-consistency on PNC Sample Ex-
traction: To optimize the application of self-
consistency, we first determine the most effective
number of predictions to sample and the optimal
value for α on the validation set (see Appendix D).
Based on that, we employ α = 3 and 8 predictions
on the test set. Table 4 shows that self-consistency
enhances the strict and partial F1.

Influence of the Partial Metric Adopting the
partial metric has several advantages. First, it helps
identify specific challenge areas. For example, in
Table 6, we show the model faces the most chal-
lenges in accurately predicting Composition. Fur-
thermore, human annotations for PNC samples are
often error-prone (Himanen et al., 2019; McCusker
et al., 2020), hence one potential use of an LLM
like GPT-4 would be to identify errors and send
them back for re-annotation. The partial metric can
help prioritize which samples to re-annotate.

Attributes P R F1

Matrix 50.2 23.5 32.1
Filler 53.1 25.0 34.0
Composition 44.4 20.4 28.0

Table 6: Micro average precision, recall, and F1 across
the attributes.

4.2 Comparing with Baselines
Previous works on document-level N -ary IE (Jain
et al., 2020; Jia et al., 2019b; Hou et al., 2019),
have relied on encoder-only models, making them
unsuitable for our specific task. For comparative
purposes, we prompt GPT-4 on the SciREX dataset
(Jain et al., 2020), which comprises 438 annotated
full-length machine learning papers. As shown in

Table 7, when prompted in a zero-shot, end-to-end
manner, GPT-4 Turbo outperforms the baseline
methods. Note that the baseline model, trained
on 300 papers, received extensive supervision in
the form of mention, coreference, binary relation,
and salient mention identification. This suggests
that we would need to expend a large amount of
annotation effort on PNCExtract to build a super-
vised pipeline comparable to the zero-shot GPT-4
approach presented here.

Model Prec. Rec. F1

Jain et al. (2020) 0.7 17.3 0.8
Zero-shot GPT-4 5.0 8.5 5.5

Table 7: Micro average precision, recall, and F1. The
baseline results are taken from the referenced paper.

4.3 Analysis of Errors
Accurately extracting PNC samples is a complex
task, and even state-of-the-art LLMs fail to cap-
ture all the samples. We find that out of 1052
ground-truth samples, 773 were not identified in
the model’s predictions. Furthermore, 364 of the
664 predictions were incorrect. This section dis-
cusses three categories of challenges faced by cur-
rent models in sample extraction and proposes po-
tential directions for future improvements.

Compositions in Tables and Figures NanoMine
aggregates samples from the literature, including
those presented in tables and visual elements within
research articles. As demonstrated in the first ex-
ample of Figure 4, a sample is derived from the
inset of a graph. Our present approach relies solely
on language models. Future research could focus
on advancing models to extract information from
both textual and visual data.

Disentangling the Complex Components in PNC
Samples The composition of PNC includes a va-
riety of components such as hardeners and surface
treatment agents. A common issue in our model’s
predictions is incorrectly identifying these auxil-
iary components as the main attributes. For exam-
ple, the second row in Figure 4 shows the model
predicting the filler material along with its surface
treatments instead of recognizing the filler by itself.

Non-standard/Uncommon Chemical Name Pre-
dictions The expression of chemical names is
inherently complex, with multiple names often ex-
isting for the same material. In some cases, pre-
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Challenging Example Ground-truth Sample Predicted Sample Explanation

{'Matrix Chemical Name': 'Polystyrene', 

'Matrix Abbreviation': 'PS', 

'Filler Chemical Name': 'Triphenyl 
phosphate', 

'Filler Abbreviation': 'TPP', 

'Filler Mass': '0.08', 

'Filler Volume': null}

The ground-truth sample with a 
filler mass of 0.08, sourced from a 
figure inset, was not mentioned in 
the text and thus not captured.

…the preparation of organophilic clay through 
the cationic exchange reactions with Na+-
montmorillonite clay.

{'Matrix Chemical Name': 'Epoxy resin', 

'Matrix Abbreviation': 'EPR', 

'Filler Chemical Name': 
'Montmorillonite', 

'Filler Abbreviation’: null, 

'Filler Mass': '0.01', 

'Filler Volume': null}

{'Matrix Chemical Name': 'Epoxy resin', 

'Matrix Abbreviation': 'EPR', 

'Filler Chemical Name': 'Organophilic 
clay modified with dodecyltriphenyl-
phosphonium', 

'Filler Abbreviation’: null, 

'Filler Mass': '0.01', 

'Filler Volume': null}

The predicted filler name in this 
case is conceptually correct. 
However, it is not a standard or 
commonly used chemical name.

Copolymer grafted SiO2 nanoparticles with a 
rubbery PHMA inner layer and a matrix 
compatible PGMA outer layer were prepared

{'Matrix Chemical Name': 'DGEBA Epoxy 
Resin', 

'Matrix Abbreviation': 'epoxy', 

'Filler Chemical Name': 'Silicon dioxide', 

'Filler Abbreviation': 'SiO2', 

'Filler Mass’: null,   

'Filler Volume’: ‘0.006’}

{'Matrix Chemical Name': 'DGEBA 
Epoxy Resin', 

'Matrix Abbreviation': ‘epoxy', 

'Filler Chemical Name': 'SiO2/PHMA/
PGMA', 

'Filler Abbreviation’: null, 

'Filler Mass': null,  

‘Filler Volume’: ‘0.006’}

PHMA and PGMA are the 
chemicals used in particle 
surface treatment, not the 
main filler.

{'Matrix Chemical Name': 'Polystyrene', 

'Matrix Abbreviation': 'PS', 

'Filler Chemical Name': 'Triphenyl 
phosphate', 

'Filler Abbreviation': 'TPP', 

'Filler Mass': ‘0.04', 

'Filler Volume': null}

The organophilic clay was prepared by a 
cationic exchange method, which is a reaction 
between the sodium cations of MMT clay and 
both intercalation agents of dodecyltriphenyl-
phosphonium bromide

Compositions in Tables and Figures

Non-standard/Uncommon Chemical Name Predictions

Disentangling the Complex Components in PNC Samples

Figure 4: Examples of challenges for LLMs, showcasing three categories of challenges encountered in capturing
accurate PNC sample compositions. Each row demonstrates a specific challenge, the ground-truth sample, the
model’s prediction, and a brief explanation of the issue."

dicted chemical names are conceptually accurate
yet challenging to standardize. This suggests the
necessity for more sophisticated approaches that
can handle the diverse and complex representations
of chemical compounds. The third example in Fig-
ure 4 shows an example of this.

5 Related Work

Early works have focused on training models
specifically for the tasks of NER and RE. Building
on this, recently Wadhwa et al. (2023) and Wang
et al. (2023a) show that LLMs can effectively carry
out these tasks through prompting.

In the specific area of models trained on a ma-
terials science corpus, MatSciBERT (Gupta et al.,
2022) employs a BERT (Devlin et al., 2018) model
trained specifically on a materials science corpus.
Song et al. (2023b) further developed HoneyBee,
a fine-tuned Llama-based model for materials sci-
ence. MatSciBERT was not applicable to our task,
as detailed in Section 3, and HoneyBee’s model
weights were not accessible during our research
phase. Other contributions in this field include
studies by Shetty et al. (2023), Hiroyuki Oka and
Ishii (2021), and Tchoua et al., focusing on the
extraction of polymer-related data from scientific
articles.

Similar to Dunn et al. (2022), Xie et al. (2023),
Tang et al. (2023) and Cheung et al. (2023) our
study also focuses on extracting N -ary relations
from materials science papers. However, our ap-
proach diverges in two significant aspects: we ana-
lyze full-length papers, not just selected sentences,
and we extend our evaluation to partial assessment
of N -ary relations, rather than limiting it to binary
assessments.

6 Discussion and Future Works

We introduced PNCExtract, a benchmark focused
on the extraction of PNC samples from full-length
materials science articles. To the best of our knowl-
edge, this is the first benchmark enabling detailed
N -ary IE from full-length materials science articles.
We hope that this effort encourages further research
into generative end-to-end methods for scientific
information extraction from full-length documents.
Future investigations should also consider more
advanced techniques for condensing entire scien-
tific papers. To overcome the challenges in PNC
sample extraction discussed in Section 4.3, future
studies could investigate multimodal strategies that
integrate text and visual data. Additionally, exper-
imenting fine-tuning methods could lead to more
precise chemical name generation.
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7 Limitation

Although our dataset comprises samples derived
from figures within the papers, the current paper
is confined to the assessment of language models
exclusively. We acknowledge that incorporating
multimodal models, which can process both text
and visual information, has the potential to enhance
the results reported in this paper.

Furthermore, despite our efforts to correct
NanoMine, another limitation of our study is the po-
tential presence of inaccuracies within the dataset.

Additionally, our paper selectively examines a
subset of attributes from PNC samples. Conse-
quently, we do not account for every possible vari-
able, such as “Filler Particle Surface Treatment.”
This limited attribute selection means we do not
distinguish between otherwise identical samples
when this additional attribute could lead to differ-
entiation. Acknowledging this, including a broader
range of attributes in future work could lead to the
identification of a more diverse array of samples.

8 Ethics Statement

We do not believe there are significant ethical issues
associated with this research.
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A Processing NanoMine

In the sample composition section of NanoMine,
various attributes describe the components of a
sample. For our analysis, we focus on six specific
attributes. Nonetheless, we encounter instances
where the formatting in NanoMine is inconsistent.
We excluded those articles. This is because our
data processing and evaluation require a uniform
structure. For example, in Figure 5, we identify
an example of an inconsistency where the “Filler
Chemical Name” is presented as a list rather than
a single value, which deviates from the standard
JSON format we expect. This inconsistency makes
the sample incompatible with our dataset’s format,
leading to its removal from our analysis.

PNC Sample: 
{

    “Matrix Chemical Name”: “polystyrene”,

    “Matrix Abbreviation”: “PS”,

    “Filler Chemical Name”: [“octyldimethylmethoxysilane”,


 “silica”]

    “Filler Abbreviation”: “ODMMS”,

    “Filler Composition Mass”: null,

    “Filler Composition Volume”: null

}

Figure 5: An inconsistent sample in NanoMine that we
exclude from our dataset.

B Dataset Curation and Cleaning

During our curation process, we selectively disre-
gard certain attributes from NanoMine based on
three criteria:

• Complexity in Extraction and Evaluation: At-
tributes that cannot be directly extracted with
a language model or evaluated are disregarded.
For example, intricate descriptions (such as
“an average particle diameter of 10 um”) are
excluded due to their complexity in evalua-
tion.

• Rarity in the Dataset: We also disregard at-
tributes infrequently occurring in NanoMine.
For instance, “Tacticity” is noted in only
0.05% of samples. This rarity might stem
from either its infrequent mention in research
papers or oversights by annotators.

• Relative Importance: Attributes that are less
important for our analysis, such as “Manu-
facturer Or Source Name”, are also excluded.
Our focus is on extracting attributes that are
most relevant for identifying a nanocomposite
sample.

C Terms of Use

We used OpenAI (gpt-4 and gpt-4-1106-preview),
LLaMA2, LongChat, and Vicuna models, and
NanoMine data repository in accordance with their
licenses and terms of use.

D Computational Experiments Details

Models Details All of the open-sourced models
used in our experiments (e.g. LLaMA2, LongChat,
and Vicuna) have 7 billion parameters.
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Computational Budget We perform all of the
experiments with one NVIDIA RTX A6000 GPU.
Each of the experiments with LLaMA2, LongChat,
and Vicuna took 2− 3 hours.

α #Predictions F1

2

9 39.3
8 39.2
7 41.2
6 40.8
5 41.4
4 39.9

3

9 41.8
8 43.4
7 39.7
6 39.0
5 36.0

Table 8: F1 scores for alpha levels 2 and 3, with various
numbers of predictions.

Hyperparameter Settings For all experiments,
except those involving self-consistency, the temper-
ature parameter is set to zero to ensure consistent
evaluation of the models. In the case of the self-
consistency experiment, we determine the optimal
value for the α threshold by tuning α on the vali-
dation set. Table 8 shows that the optimal perfor-
mance is achieved with α at 3 and by sampling 8
predictions.

E Model Performance on Condensed and
Full Papers

Table 9 presents an evaluation of various LLMs
across different condensation levels and their per-
formance on full-length papers.

F Prompts

In this section, we present all the prompts used in
our experiments.

F.1 E2E Prompt

Please read the following paragraphs ,
find all the nano -composite samples ,
and then fill out the given JSON

template for each one of those
nanocomposite samples. If there are
multiple Filler Composition Mass/
Volume for a unique set of Matrix/
Filler Chemical Name , please give a
list for the Composition. If an
attribute is not mentioned in the

paragraphs fill that section with "
null". Mass and Volume Composition
should be followed by a %.

{
"Matrix Chemical Name": "

chemical_name",
"Matrix Chemical Abbreviation ": "

abbreviation",
"Filler Chemical Name": "

chemical_name",
"Filler Chemical Abbreviation ": "

abbreviation",
"Filler Composition Mass": "

mass_value",
"Filler Composition Volume ": "

volume_value"
}

[PAPER SPLIT]

F.2 NER prompt

Please identify the matrix name(s),
filler name(s), and filler
composition fraction(s). Here is an
example of what you should return:

{
"Matrix Chemical Names ": ["Poly(

vinyl acetate)", "Glycerol"],
"Matrix Chemical Abbreviation ": ["

PVAc"],
"Filler Chemical Names ": [" Silicon

dioxide"],
"Filler Chemical Abbreviation ": ["

SiO2"],
"Filler Composition Fraction ":

["6%", "12%" , "20%", "23%",
"32%"]

}

[PAPER SPLIT]

F.3 RE Prompt

Is the following sample a valid polymer
nanocomposite sample mentioned in
the article? Yes or No?

Sample:
[JSON OBJECT]

Article:
[PAPER SPLIT]
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Model Strict Partial
Prec. Rec. F1 Prec. Rec. F1

Condensed Papers (Top 5)

LLaMA2-7b Chat 9.4 0.4 0.7 41.5 0.9 1.8
LongChat-7b-13k 3.7 1.4 2.1 43.3 15.2 22.5
Vicuna-7b-v1.5 5.8 2.6 3.6 49.9 19.5 28.1
Vicuna-7b-v1.5-16k 17.7 5.9 8.9 60.4 19.9 29.9
GPT-4 Turbo 31.9 18.6 23.5 63.1 35.6 45.5

Condensed Papers (Top 10)

LLaMA2-7b Chat 21.7 0.6 1.2 60.0 1.5 3.0
LongChat-7b-13k 2.0 0.8 1.1 45.0 17.6 25.3
Vicuna-7b-v1.5 14.7 3.0 5.0 60.0 10.4 17.7
Vicuna-7b-v1.5-16k 15.0 4.9 7.4 58.3 17.8 27.3
GPT-4 Turbo 33.7 23.0 27.3 61.5 42.3 50.1

Condensed Papers (Top 30)

LongChat-7b-13k 4.7 7.0 3.5 48.2 24.3 32.4
Vicuna-7b-v1.5 6.5 0.2 0.5 55.7 1.8 3.6
Vicuna-7b-v1.5-16k 17.3 5.6 8.4 62.2 18.3 28.2
GPT-4 Turbo 43.6 32.0 36.9 64.5 47.7 54.8

Full Papers

Vicuna-7b-v1.5-16k 18.4 1.5 2.7 65.7 4.6 8.5
LongChat-7b-13k 5.4 4.2 4.7 36.6 29.6 32.7
GPT-4 Turbo 44.8 30.2 36.0 64.9 43.8 52.3

Table 9: Precision, Recall, and F1 of different LLMs on condensed and full papers using strict and partial metrics.
The results are segmented based on the degree of paper condensation (Top 5, Top 10, Top 30 segments) and for full
paper length

G Re-Annotation Example Text

Below, we provide an example of the text that is
automatically generated which facilitates the re-
annotation.

File name: L381

True sample 0 is matched with predicted
sample 0

But there ’s a discrepancy between the
predicted sample and the true sample
Filler Composition Volume.

True sample: {’Matrix Chemical Name ’: ’
Polystyrene ’, ’Matrix Abbreviation ’:
’PS ’, ’Filler Chemical Name ’: ’

Reduced graphene oxide ’, ’Filler
Abbreviation ’: ’rGO ’, ’Filler
Composition Mass ’: None , ’Filler
Composition Volume ’: ’0.00428 ’}

Predicted sample: {’Matrix Chemical Name
’: ’Polystyrene ’, ’Matrix Chemical
Abbreviation ’: ’PS’, ’Filler
Chemical Name ’: ’Reduced Graphene
Oxide ’, ’Filler Chemical
Abbreviation ’: ’rGO ’, ’Filler
Composition Mass ’: ’null ’, ’Filler
Composition Volume ’: ’2.10%’}

True sample 5 is matched with predicted
sample 5

But there ’s a discrepancy between the
predicted sample and the true sample
Filler Composition Volume.

True sample: {’Matrix Chemical Name ’: ’

Polystyrene ’, ’Matrix Abbreviation ’:
’PS’, ’Filler Chemical Name ’: ’

Reduced graphene oxide ’, ’Filler
Abbreviation ’: ’rGO ’, ’Filler
Composition Mass ’: None , ’Filler
Composition Volume ’: ’0.0127 ’}

Predicted sample: {’Matrix Chemical Name
’: ’Polystyrene ’, ’Matrix Chemical
Abbreviation ’: ’PS ’, ’Filler
Chemical Name ’: ’Reduced Graphene
Oxide ’, ’Filler Chemical
Abbreviation ’: ’rGO ’, ’Filler
Composition Mass ’: ’null ’, ’Filler
Composition Volume ’: ’0.053% ’}

Standardized predicted sample: {’Matrix
Chemical Name ’: ’Polystyrene ’, ’
Matrix Chemical Abbreviation ’: ’PS’,
’Filler Chemical Name ’: ’Reduced

Graphene Oxide ’, ’Filler Chemical
Abbreviation ’: ’rGO ’, ’Filler
Composition Mass ’: ’null ’, ’Filler
Composition Volume ’: ’0.053% ’}

True sample 1 is exactly matched with
predicted sample 3.

True sample 2 is exactly matched with
predicted sample 2.

True sample 3 is exactly matched with
predicted sample 1.

True sample 4 is exactly matched with
predicted sample 4.
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