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Abstract

Lifelong prompt tuning has significantly ad-
vanced parameter-efficient lifelong learning
with its efficiency and minimal storage de-
mands on various tasks. Our empirical stud-
ies, however, highlights certain transferabil-
ity constraints in the current methodologies:
a universal algorithm that guarantees consistent
positive transfer across all tasks is currently
unattainable, especially when dealing dissim-
ilar tasks that may engender negative trans-
fer. Identifying the misalignment between al-
gorithm selection and task specificity as the pri-
mary cause of negative transfer, we present the
Similarity Heuristic Lifelong Prompt Tuning
(SHLPT) framework. This innovative strategy
partitions tasks into two distinct subsets by har-
nessing a learnable similarity metric, thereby
facilitating fruitful transfer from tasks regard-
less of their similarity or dissimilarity. Addi-
tionally, SHLPT incorporates a parameter pool
to combat catastrophic forgetting effectively.
Our experiments shows that SHLPT outper-
forms state-of-the-art techniques in lifelong
learning benchmarks and demonstrates robust-
ness against negative transfer in diverse task
sequences.1

1 Introduction

Drawing on the remarkable capacity of humans to
amass new knowledge throughout their lifetime,
lifelong learning (LL) systems aim to emulate this
progressive learning trajectory by sequentially mas-
tering various tasks, each contributing to the sys-
tem’s cumulative knowledge base. However, it is
not trivial for deep learning models to achieve this
ideal due to inherent challenges. These include the
need to (1) avoid catastrophic forgetting - where
the acquisition of new information can lead to the
erosion of previously learned knowledge, and to

* Corresponding author.
1Source code is available at https://github.com/

wcyno23/SHLPT.

Task
Source → Target

Prompt
tuning

(w/o transfer)

Continual
Initialization
(w/ transfer)

Progressive
Prompts

(w/ transfer)

Yahoo → AG News
86.25 ± 1.75

86.83 ± 2.24 85.33 ± 1.61
DBpedia → AG News 83.92 ± 2.98 85.00 ± 1.73
Amazon → AG News 85.50 ± 1.75 86.17 ± 0.95
AG News → Yahoo

67.03 ± 0.46
66.43 ± 1.53 65.17 ± 2.11

DBpedia → Yahoo 67.73 ± 1.10 67.13 ± 1.65
Amazon → Yahoo 66.43 ± 1.53 65.77 ± 3.33
Yahoo → DBpedia

97.86 ± 0.50
97.57 ± 0.91 97.94 ± 0.38

AG News → DBpedia 98.33 ± 0.42 97.81 ± 0.89
Amazon → DBpedia 97.40 ± 0.47 97.76 ± 0.51
DBpedia → Amazon

47.53 ± 3.95
48.86 ± 1.10 48.67 ± 3.70

Yahoo → Amazon 43.73 ± 2.41 49.00 ± 3.89
AG News → Amazon 50.73 ± 4.32 50.60 ± 1.20

Table 1: Transfer learning results on AGNews, Yahoo,
DBpedia, Amazon. We use accuracy as the metric. Con-
tinual initialization refers to initializing the prompt for
the target task with the fine-tuned prompt obtained from
the source task. Progressive Prompts (Razdaibiedina
et al., 2022) refers to concatenating the prompts fine-
tuned on the source task onto the randomly initialized
prompt of the target task.

(2) promote efficient knowledge transfer - where
the model can leverage past learning experiences to
aid in the understanding and performance of future
tasks. Addressing these challenges is crucial for
the development of LL systems that can adapt and
grow in a manner akin to human learning.

Recent advancements in lifelong learning of lan-
guage model (LM) have integrated the concept of
prompt tuning to enhance its capabilities. These
approaches maintain the pre-trained model’s pa-
rameters, while training a small set of additional
prompts to adapt the model to various downstream
tasks. The efficiency and lightweight nature of
prompt tuning align well with the demands of LL,
sidestepping the need for the onerous storage of
entire model versions for every new task. This tech-
nique facilitates the model to accumulate knowl-
edge over time, adapt flexibly to new tasks, and
recall how to perform on older tasks with the aid
of task-specific prompts. Moreover, substantial ef-
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fort is dedicated to the transfer of knowledge from
past tasks. This includes methods such as prompt
concatenation (Razdaibiedina et al., 2022), param-
eter sharing (Wang et al., 2022b,c), and weighted
summation (Smith et al., 2023; Jiang et al., 2023a),
which are pivotal in ensuring that knowledge is
effectively retained and utilized throughout the life-
long learning process.

Current transfer learning methods commonly
presuppose that earlier tasks can positively impact
succeeding tasks. Razdaibiedina et al. (2022) lever-
ages prompts from previous tasks in the process of
learning new ones, and similarly, Zhu et al. (2022)
utilizes prompts from former tasks as a foundation
to harness prior knowledge. Nevertheless, we sug-
gest that when there is a considerable dissimilarity
between tasks, these approaches don’t consistently
assure positive transfer; on occasions, they might
even provoke negative transfer. This phenomenon
is vividly illustrated by the empirical analysis in
Table 1, which shows the transfer efficiency among
diverse tasks within different soft prompt learning.
On the other hand, how to effectively utilize nega-
tive transfer during the lifelong learning remains an
open question for research. In this paper, we will
further explore strategies for customized transfer
learning tailored to the characteristics of different
tasks, aimed at achieving more efficient knowl-
edge accumulation while mitigating the potential
impacts of negative transfer.

To address the issue of inconsistent knowledge
transfer, we introduce a new approach to life-
long prompt tuning, which we refer as to SHLPT
(Similarity Heuristic Lifelong Prompt Tuning).
First, we construct a prompt pool for learned tasks,
thereby reducing the risk of forgetting. Then, we
segment our knowledge transfer module into three
components: (1) assessing the similarity between
the current task and previous tasks, (2) categoriz-
ing the previous tasks into similar and dissimilar
subsets, and (3) applying different transfer algo-
rithms to each subset accordingly. For the initial
step, we calculate an attention-weighted combina-
tion of past prompt embeddings and incorporate
this into the current task’s prompt. During opti-
mization, the model assigns higher attention scores
to tasks that are more beneficial. Then, we utilize
this attention score as task similarity metric and
split task set accordingly. For tasks deemed similar,
we integrate their parameters to provide the current
task with an optimized starting point. Conversely,
for tasks that are dissimilar, we introduce a variety

of innovative regularization techniques aimed at
guiding the pre-trained model towards accessing
a broader range of knowledge. This nuanced ap-
proach allows the model to better adapt to each new
task while preserving and effectively utilizing the
knowledge from all previous learning experiences
without negative transfer.

In this paper, we make several notable contri-
butions: (1) We address the novel challenge of
mitigating negative transfer and facilitating knowl-
edge transfer from dissimilar tasks in lifelong learn-
ing, which is particularly important in sequences
of low-similarity tasks. (2) We present SHLPT, an
innovative lifelong prompt tuning technique that
reduces forgetting and enables knowledge transfer
across tasks with varying degrees of similarity. Our
extensive experiments demonstrate that SHLPT sur-
passes existing methods on benchmark datasets. (3)
We introduce a challenging benchmark character-
ized by low task similarity, which typically results
in increased negative transfer. Our approach ex-
ceeds the performance of previous state-of-the-art
methods in this context.

2 Related Work

Lifelong Parameter Efficient Tuning. Parameter
efficient tuning tunes a subset of parameters of pre-
trained language models, and can largely reduce
the computation costs and memory usage (Houlsby
et al., 2019; Li and Liang, 2021; Hu et al., 2021;
Lester et al., 2021; Ben Zaken et al., 2022). For life-
long prompt tuning, LFPT5 (Qin and Joty, 2021)
uses distillation loss and a generative replay to learn
a continuous prompt. Progressive Prompts (Razdai-
biedina et al., 2022) learns a new prompt for every
task, and progressively concatenate it with previ-
ous prompts. LPT (Liang et al., 2023) employs
a trainable binary mask on the overall prompt to
selectively choose parameters for different tasks.
L2P (Wang et al., 2022c) initializes a prompt pool
and selects a certain number of prompts from it
for each task. Through this approach, parameters
among different tasks can be shared and isolated
simultaneously. Base on this parameter pool ar-
chitecture, CODA-prompt (Smith et al., 2023) em-
ploys an attention-based prompt selection strategy,
Diana (Dai et al., 2023) and HiDe-Prompt (Wang
et al., 2023a) decompose prompts into a hierarchi-
cal structure. In addition to lifelong learning on
prompt tuning, O-LoRA (Wang et al., 2023b) intro-
duces Orthogonal regularization to LoRA, facilitate
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learning in mutually orthogonal subspaces for dif-
ferent tasks; CLASSIC (Ke et al., 2021b) adds task
masks to the Adapter layer and utilizes contrastive
loss to transfer knowledge between similar tasks.
Similarity Heuristic Methods. Similarity heuris-
tic lifelong learning methods use task similarity to
identify which tasks can transfer knowledge and
minimize interference from dissimilar tasks. CAT
(Ke et al., 2020) compares the performance be-
tween transfer model and reference model to deter-
mine whether use the transfer model. B-CL (Ke
et al., 2021c) and CTR (Ke et al., 2021a) utilize
capsule network and routing algorithm to cluster
similar tasks along with their shareable features.
CLASSIC (Ke et al., 2021b) creates views form the
hidden space information of previous similar tasks,
and uses the contrastive loss to help current tasks
to learn shared knowledge.

3 Preliminary

3.1 Lifelong Learning Setup

In lifelong learning, the language model will be
sequentially finetuned across a series of 𝑛 tasks,
labeled 𝑇1, ..., 𝑇𝑛. These tasks could originate from
various domains and types. The training objective
is to minimize the expected loss of all learned tasks
with no access to data from previous tasks. Let
𝐷1, 𝐷2, ..., 𝐷𝑛 be the set of datasets corresponding
to tasks 𝑇1, 𝑇2, ..., 𝑇𝑛, respectively. Each dataset
𝐷𝑖 encompasses a collection of data (𝑋 𝑖, 𝑗 , 𝑦𝑖, 𝑗),
where 𝑋 𝑖, 𝑗 = [𝑥1, 𝑥2, ..., 𝑥𝑙] is the input text with
length 𝑙, and 𝑦𝑖, 𝑗 is the corresponding output. The
model is trained sequentially on these datasets with
loss function 𝐿𝑖 specific to each task.

In this paper, we categorize LL scenarios into
two types based on task similarity. In the first
type (de Masson D’Autume et al., 2019; Razdai-
biedina et al., 2022), the task sequence 𝑇1, ..., 𝑇𝑛
exhibits a relatively high degree of similarity, mean-
ing that the likelihood of any task 𝑇𝑡 being signif-
icantly dissimilar from previous tasks 𝑇𝑖 (𝑖 < 𝑡) is
low. The second type represents the opposite situa-
tion. The latter is more likely to emerge during the
early stages of a real-world system when it has not
yet accumulated a substantial knowledge base. We
suppose that dissimilar tasks sequences are more
prone to negative transfer, and for the first time,
we create a lifelong learning benchmark composed
of tasks that are dissimilar and likely to induce
negative transfer for research purposes.

3.2 Prompt Tuning
Prompt tuning, as introduced by Lester et al.
(2021), presents a resource-efficient methodol-
ogy for adapting language models without ne-
cessitating extensive fine-tuning of the original
model. This technique utilizes a small set of
trainable parameters known as a prompt, denoted
𝑃 = [𝑝1, 𝑝2, . . . , 𝑝𝑙𝑝 ], which serves as a pre-
fixed sequence to the input token embeddings
𝑋𝑒 = [𝑒(𝑥1), 𝑒(𝑥2), . . . , 𝑒(𝑥𝑙)]. Here, 𝑙𝑝 denotes
the length of the prompt, 𝑒 symbolizes the em-
bedding function, and each vector 𝑝𝑖 ∈ R𝑑 . For
simplification, we use 𝑋 to replace 𝑋𝑒 below.

In the process of prompt tuning, the model em-
ploys the combined sequence [𝑃; 𝑋] ∈ R(𝑙𝑝+𝑙)×𝑑

as the input for the LM. The objective function
for adapting to a specific downstream task is given
by L𝐷𝑜𝑤𝑛 ( [𝑃; 𝑋]) = − log 𝑝 (𝑦 | [𝑃; 𝑋]), which
seeks to maximize the likelihood of the correct out-
put 𝑦 given the input embedding 𝑋 and the prompt
vectors 𝑃. Notably, this fine-tuning procedure ex-
clusively modifies the prompt parameters 𝑃, leav-
ing the remaining weights of the LM fixed.

3.3 Empirical Study of Negative Transfer in
Prompt Tuning

Definition of Negative Transfer. Transfer learning
leverages data or knowledge from source tasks to
enhance target task’s learning performance. How-
ever, the effectiveness of transfer learning is not
always guaranteed (Zhang et al., 2022); the perfor-
mance on the target task may even worsen after
transfer learning, a situation that is referred to as
negative transfer (Pan and Yang, 2009). Let S be
one or more source tasks, T a target task, 𝜖T tar-
get task’s test error, 𝐴(S,T) a transfer learning
algorithm between S and T , 𝐴(∅,T) the same al-
gorithm without source tasks’ information. The
test error reduction after transfer learning can be
formulated as

𝑟T = 𝜖T (𝐴(∅,T)) − 𝜖T (𝐴(S,T)) (1)

A positive test error reduction 𝑟T indicates a suc-
cessful transfer learning result, while a negative
value indicates negative transfer.
Negative Transfer in Prompt Tuning. Vu et al.
(2022) shows many tasks can benefit each other un-
der soft prompt transfer learning setting. In order
to examine the negative transfer phenomenon in
this setting, we conduct a empirical study on the
transferability of soft prompt across a collection of
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Figure 1: Test error reduction on the target tasks (col-
umn) after transferring from different source tasks (row).
The negative transfer (indicated by cool colors) exists
when use single transfer algorithm.

language tasks (details on the tasks are available in
Appendix A, while experimental specifics can be
found in Appendix C). Here, a prompt learned on
one source task is transferred and used as the initial
prompt for a target task. As shown in Figure 1, the
negative transfer is a common occurrence in the set-
ting of soft prompt transfer, particularly when the
source and target tasks are highly dissimilar – for
instance, Yahoo→RTE resulted in a 5.3% drop in
accuracy (from 78.67 to 73.33). When the source
and target task pairs are similar, transfers tend to
yield positive results. For instance, Amazon→Yelp,
both tasks involve sentiment analysis of reviews,
leading to an 2.4% increase in accuracy. Interest-
ingly, positive transfer can sometimes occur even
between dissimilar tasks (e.g., CB→QQP). To bet-
ter predict and avoid negative transfer, we design a
similarity estimator that can discern transfer poten-
tial more effectively.

We further evaluated the few-shot (16 shot per
class) performance of two task similarity agnostic
transfer learning methods on four tasks from Stan-
dard CL Benchmark (de Masson D’Autume et al.,
2019): AGNews, Yahoo, DBpedia, Amazon. Re-
sults in Table 1 indicate that these two methods also
cannot guarantee positive transfer among all tasks
(e.g., DBpedia→AG News, Amazon→Yahoo).

Negative Transfer Benchmark. Based on above
results, we have developed a benchmark for life-
long learning research that consists of tasks prone
to negative transfer (Appendix B). This benchmark
requires lifelong learning algorithms to effectively
avoid negative transfer or further benefit from tasks
involving negative transfer.

Theoretical Analysis. We further analyze the
causes of negative transfer from theoretical bound

for domain adaptation (Ben-David et al., 2010) .

𝜖T (𝐴(S,T)) ≤ 𝜖S (𝐴(S,T)) + 1
2
𝑑HΔH (𝐷𝑠 , 𝐷𝑡 ) + 𝜆 (2)

where 𝐷 is domain distribution, 𝑑HΔH (𝐷𝑠, 𝐷𝑡 )
is the divergence between source domain S and
target domain T , 𝜆 is a problem-specific constant.
Based on the theoretical bound, negative transfer
in LL can be attributed to the following reasons:
(1) large error in the source tasks. This is caused
by the few-shot setting or the learning difficulty of
source tasks. (2) large distribution divergence. This
is because the tasks are too dissimilar. (3) Unsuit-
able transfer learning algorithms. Transfer learning
algorithms cannot adapt to all scenarios, an unsuit-
able algorithm may leads to negative transfer.

4 Method

To this end, we propose SHLPT (Similarity
Heuristic Lifelong Prompt Tuning), which intends
to achieve the following goals for a robust life-
long learning system: (1) avoid forgetting previous
knowledge, (2) transfer knowledge from both simi-
lar and dissimilar tasks, (3) reduce the probability
of negative transfer during the transfer stage.

SHLPT is composed of the following three struc-
tures: (1) A prompt pool preserving previous task’s
prompts {𝑃1, 𝑃2, ..., 𝑃𝑡 } to avoid forgetting of past
learning in a lifelong learning context. During the
testing phase, identification of the task is neces-
sary. (2) A task similarity estimator which can
estimate the similarity between current tasks and
previous tasks. We operate under the premise that
"the more similar the tasks, the more effective the
knowledge transfer." Based on estimated similar-
ity, the collection of previous prompts is further
categorized into two subsets: prompts from sim-
ilar tasks 𝑃1

𝑠 , 𝑃
2
𝑠 , ..., 𝑃

𝑚
𝑠 , and those from dissimi-

lar tasks 𝑃1
𝑑 , 𝑃

2
𝑑 , ..., 𝑃

𝑛
𝑑 . (3) Two transfer learning

algorithms address transfer problems in different
scenarios. One to disseminate shared knowledge
extracted from similar tasks, and the other to dif-
ferentiate core features from dissimilar tasks. Each
structure is detailed below.

4.1 Attention-based Similarity Estimator
To tailor the transfer learning algorithm for appro-
priate tasks, we first conduct a similarity assess-
ment and partitioning of the previous task. When
training task 𝑡, the previous task’s prompt embed-
dings are recorded as {𝑃1, 𝑃2, ..., 𝑃𝑡−1}. Rather
than calculate similarity between different tasks,
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Figure 2: Illustration of our method SHLPT. The previous task prompts are partitioned based on an instance-wise
similarity. Then, different transfer learning algorithm is applied on similar and dissimilar task scenarios. Similar
tasks’ prompts are composed and added to current task prompt. The current task’s model behavior and representation
are pushed away from those of dissimilar tasks. Only current task’s prompt 𝑃𝑡+1 and encoder in similarity estimator
are trainable.

we calculate similarity between task 𝑡’s every in-
stance and previous tasks, which is more robust
to data variance (Wu et al., 2022). Given that we
lack access to data from past tasks, our similarity
assessment relies on the prompts of previous tasks.
Let 𝛼𝑖 (𝑋) to denote the instance-wise attention
value for previous task 𝑖 given 𝑋 . It is calculated
by extracting features from three elements: pre-
vious task prompts{𝑃1, 𝑃2, ..., 𝑃𝑡−1}, current task
prompt 𝑃𝑡 and instance embedding 𝑋 . The max
pooling operation is first applied to 𝑋 ∈ R𝑙×𝑑 and
𝑃𝑖 ∈ R𝑙𝑝×𝑑 , and transforms them into compact
forms �̂�, 𝑃𝑖 ∈ R𝑑 , respectively. �̂� is then fed to a
two-layer network to map it to the prompt space:

�̃� = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑆𝑖𝐿𝑈 ( �̂�𝑊𝑑𝑜𝑤𝑛)𝑊𝑢𝑝), (3)

where 𝑊𝑑𝑜𝑤𝑛 ∈ R𝑑×𝑟 and 𝑊𝑢𝑝 ∈ R𝑟×𝑑 are train-
able projection weights, SiLU (Elfwing et al., 2018)
is employed as an activation function and Layer-
Norm (Ba et al., 2016) is used to address the issue
of gradient explosion, following Asai et al. (2022).
Finally, the similarity 𝛼𝑖 of previous task 𝑖 can be
obtained through tempering softmax of inner prod-
uct between �̃� and 𝑃𝑖

𝛼𝑖 (𝑋) = 𝑒�̃��̂�𝑖/𝜏𝑠𝑖𝑚∑𝑡−1
𝑗=1 𝑒

�̃�𝑃 𝑗/𝜏𝑠𝑖𝑚
(4)

where 𝜏𝑠𝑖𝑚 is a modifiable temperature parameter
controlling the separation of similarity. Lian et al.
(2020a) points out that the parameter 𝜏 in temper-
ing softmax is an important factor controlling the
output distribution. If 𝜏 is too large, the output is
close to the uniform distribution. Conversely, if
𝜏 is too small, there will be a gradient vanishing
problem. The temperature should be neither too
large nor too small (Lian et al., 2020b).

Having obtained the task similarity between cur-
rent instance and previous tasks, previous tasks
can be easily partitioned based on it. We compare
similarity value 𝛼𝑖 with threshold 𝛿. If 𝛼𝑖 > 𝛿,
the prompt corresponding to task 𝑖 is classified
into similar task prompt set {𝑃𝑠1 , 𝑃𝑠2 , ..., 𝑃𝑠𝑚},
otherwise it will be moved into dissimilar set
{𝑃𝑑1 , 𝑃𝑑2 , ..., 𝑃𝑑𝑛}. Here 𝑠𝑖 and 𝑑 𝑗 denotes the
original indicate of 𝑖-th similar task and 𝑗-th dis-
similar task, respectively.{

𝑃 → {𝑃𝑠1 , 𝑃𝑠2 , ..., 𝑃𝑠𝑚}, if 𝛼 > 𝛿
𝑃 → {𝑃𝑑1 , 𝑃𝑑2 , ..., 𝑃𝑑𝑛}, if 𝛼 ≤ 𝛿

(5)

We use a predefined threshold to clearly partition
the previous task into two sets, enabling the model
to avoid negative transfer by applying the suitable
transfer algorithm for different task scenario.

4.2 Similar Task Transferring
Towards previous tasks similar to current tasks, we
consider transferring by prompt initialization per-
spective. Previous work has shown prompt tuning
is sensitive to parameter initialization and usually
suffer from slow convergence (Lester et al., 2021;
Vu et al., 2022; Wang et al., 2022a; Shi and Lipani,
2023). Thus, we use a mixture of similar tasks’
prompt embeddings to initialize prompt, and sum
it with a newly allocated prompt 𝑃𝑡 for the current
task. This method not only enhances model perfor-
mance on current task, but also reduces the overall
training time. The final prompt is derived as:

𝑃(𝑋) =
𝑡−1∑︁
𝑗=1

𝛼 𝑗 (𝑋)𝑃 𝑗 + 𝑃𝑡 (6)

Here, only the current prompt 𝑃𝑡 and weights
in similar estimator network are trainable. The
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prompt 𝑃 𝑗 of previous tasks are fixed, thus pre-
venting forgetting or backward regression on those
tasks. The dissimilar tasks’ prompts are explic-
itly excluded to reduce their interference. Mixture
value 𝛼𝑖 is obtained from following steps. First,
per task similarity is input into a threshold function
to let dissimilar tasks’ similarity value to 0.

𝛼𝑖 =

{
𝛼𝑖 , if 𝛼𝑖 > 𝛿

0, if 𝛼𝑖 ≤ 𝛿
(7)

Then, a normalization operation is applied on it to
let the overall sum equal to 1. At the end of current
task training stage, all training samples’ similarity
𝛼 are averaged and used to calculate final prompt
embedding 𝑃 of current task. Then 𝑃 is added to
the prompt pool.

4.3 Dissimilar Task Transferring

Exclude dissimilar tasks from specific transfer
learning algorithm can also mitigate negative trans-
fer. Furthermore, we explore the use of an alter-
native transfer learning algorithm capable of lever-
aging dissimilar tasks to facilitate positive transfer
effects. This is a novel problem that do not men-
tioned in previous lifelong learning researches.

Rather than transfer knowledge from prompt pa-
rameters (Asai et al., 2022; Wang et al., 2022a), our
approach leverages the knowledge embedded in a
pre-trained model with selected prompts. Since
higher layers of a pre-trained model often exhibit
more task-specific behavior (Liu et al., 2019), we
introduce two novel loss functions that based on
language model’s inner representation. These func-
tions are designed to differentiate the behaviors of
the current task from those of dissimilar tasks.

4.3.1 Hidden States Contrastive Loss(HSC)

Recognizing that dissimilar tasks may offer lim-
ited shareable knowledge with the current task, our
approach emphasizes the divergence in the out-
put representations of these tasks. we prepend
the transferred current task’s prompt 𝑃(𝑋), as
well as the prompts from the dissimilar tasks
{𝑃𝑑1 , 𝑃𝑑2 , ..., 𝑃𝑑𝑛}, and input the combined results
into a pre-trained language model. We then cal-
culate the last hidden states of the decoder, ℎ for
the current task, and ℎ1, ..., ℎ𝑛 for the 𝑛 dissimi-
lar tasks, all based on the same instance. The pairs
(ℎ, ℎ1), ..., (ℎ, ℎ𝑛) are treated as negative examples,
while (ℎ, ℎ) is treated as a positive example. The

hidden states contrastive(HSC) loss is defined as

L𝐻𝑆𝐶 = −log
exp(cos(ℎ, ℎ)/𝜏ℎ𝑠𝑐 )

exp(cos(ℎ, ℎ)/𝜏ℎ𝑠𝑐 ) +
∑𝑛

𝑘=1 exp(cos(ℎ, ℎ𝑘 )/𝜏ℎ𝑠𝑐 )
(8)

where cos refers to cosine similarity, 𝜏ℎ𝑠𝑐 refers to
temperature parameter. The HSC loss is designed
to diverge the hidden states representation between
current task and dissimilar tasks for a same input.

4.3.2 Activation States Contrastive Loss(ASC)
Previous work has shown activation states of neu-
rons in transformers’ feed forward network are as-
sociated to specific behaviour (Geva et al., 2021;
Dai et al., 2022), and can be used to calculate task
similarity (Su et al., 2022). The feed forward net-
work FFN can be formulated as

FFN(ℎ) = 𝑓 (ℎ𝑊𝑖)𝑊𝑜 (9)

where 𝑓 is an activation function, ℎ is the hidden
states and 𝑊𝑖 ,𝑊𝑜 are parameter matrices.

We denote activation value 𝑓 (ℎ𝑊𝑖) as 𝑠. The ac-
tivation states, computed as 𝑠𝑖𝑔𝑛(𝑠), take the form
of binary vectors where each element indicates the
status of a particular neuron.

Since the activation value 𝑠 contains more in-
formation, we use it for our implementation. We
then add a mask 𝑚 to filter out neurons activated
by instance X.

𝑚 = 1 − 𝑠𝑖𝑔𝑛(𝑠0), 𝑠 = 𝑠 ⊙ 𝑚, (10)

where 𝑠0 is the activation value when no prompt
is prepended, ⊙ refers to element-wise multiply.
As previous probing experiments has shown higher
layers’ feature are more task-specific (Liu et al.,
2019), we construct our activation contrastive loss
based on last FFN layers’ activation states from
current task: 𝑠 and dissimilar tasks: {𝑠1, ..., 𝑠𝑛}

L𝐴𝑆𝐶 = −log
exp(cos(𝑠, 𝑠)/𝜏𝑎𝑠𝑐 )

exp(cos(𝑠, 𝑠)/𝜏𝑎𝑠𝑐 ) +
∑𝑛

𝑘=1 exp(cos(𝑠, 𝑠𝑘 )/𝜏𝑎𝑠𝑐 )
(11)

where 𝜏𝑎𝑠𝑐 refers to temperature parameter. The
activation states contrastive loss aims to reduce
the overlapping rate of activation states between
current task and dissimilar tasks.

Finally, the overall loss is computed by

L = L𝐷𝑜𝑤𝑛 + 𝜆1L𝐻𝑆𝐶 + 𝜆2L𝐴𝑆𝐶 (12)

where L𝐷𝑜𝑤𝑛 is the standard prompt tuning loss
on the downstream task. In addition, we use the
hidden states and activation states at first position
of the decoder output to compute contrastive losses.
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5 Experimental Setup

5.1 Datasets and Metrics

We utilize three benchmarks to evaluate the model
performance:
Standard CL Benchmark is a widely used bench-
mark for lifelong language learning models’ evalu-
ation. It consists of four text classification datasets
on different tasks or domains (Zhang et al., 2015):
AGNews (topic classification), Yahoo (QA cate-
gorization), DBpedia (Wikipedia article classifica-
tion), Amazon (sentiment analysis).
Large Number of Tasks consists of 15 classifi-
cation tasks and is used to evaluate lifelong learn-
ing methods’ performance on long sequences of
tasks (Razdaibiedina et al., 2022). It includes
four datasets from standard CL benchmark, four
datasets from GLUE benchmark (Wang et al.,
2018), five datasets from SuperGLUE benchmark
(Wang et al., 2019a), Yelp reviews (Zhang et al.,
2015) and IMDB reviews (Maas et al., 2011).
Negative Transfer Benchmark is a benchmark
that we introduced to evaluate the robustness of a
lifelong learning system under sequences of dis-
similar/negative transfer tasks. We construct the
benchmark in the following steps: First, we use
initialization from the source task as the transfer
algorithm and test which source/target task pair ex-
hibits negative transfer in a collection of datasets:
MNLI, QQP, RTE from GLUE benchmark (Wang
et al., 2018), WiC, CB, COPA, BoolQ, MultiRC
from SuperGLUE benchmark (Wang et al., 2019a),
SQuAD 2.0 (Rajpurkar et al., 2018), Yahoo, Yelp
and Amazon (Zhang et al., 2015). The experiment
result is shown in Figure 1 and Appendix C. Then,
we construct three dissimilar task sequences, with
the requirement that preceding tasks induce nega-
tive transfer on subsequent tasks.

The detailed information regarding the task se-
quences are provided in the Appendix B. We use
normalized F1 score (McCann et al., 2018) for
SQuAD, accuracy for other datasets. The task de-
tails and metrics are provided in the Appendix A.

5.2 Baselines and Training Details

We compare SHLPT with the following baselines,
including recent SOTA methods. Finetune: con-
tinually finetunes the whole model parameters on
sequences of tasks. Online EWC (Schwarz et al.,
2018): utilizes a regularization loss to constrain
updates on crucial parameters associated with pre-
vious tasks. ER (Chaudhry et al., 2019): replays

samples from previous tasks when training future
tasks. Per-task Prompts: trains each task with a
separate prompt and keeps the remaining parame-
ters fixed. This represents prompt tuning without
transfer. L2P (Wang et al., 2022c): maintains a
prompt pool and selects prompts from it using an
instance-wise query. CODA-Prompt (Smith et al.,
2023): implements instance-wise prompts through
a weighted summation of prompts from the pool.
ProgPrompt (Razdaibiedina et al., 2022): train a
new prompt for each task and progressively con-
catenate it with prompts from old tasks.

To ensure a fair comparison with ProgPrompt
and SHLPT, task identity is provided during test
stage for L2P and CODA-prompt. While the task
identity is not mandatory for these two methods,
providing it can enhance their performance. The
above methods are all implemented on original T5-
large model. We report the mean results over three
runs with different random seeds. The temperature
𝜏𝑠𝑖𝑚 for similarity estimator is set to 2 × 104. The
temperature 𝜏 for each contrastive loss is set to 1
while the weights 𝜆1 and 𝜆2 of the losses are set to
0.1 and 0.5 respectively. The similarity threshold
𝛿 is set to 0.06 for Standard CL Benchmark and
Large Number of Tasks, and 1.5 for Negative Trans-
fer Benchmark. We include further analysis of the
sensitivity of SHLPT to the similarity threshold, as
well as additional training details, in Appendix D.

6 Results and Analysis

6.1 Results on Existing Benchmark

We first evaluate our method and other baselines
on two existing benchmark: Standard CL Bench-
mark and Large Number of Tasks. Considering
the task order may impact the results, we con-
duct experiments under three different task orders.
Table 2 shows that our method SHLPT outper-
forms all baselines in these two existing bench-
marks. SHLPT improves the recent SOTA with
an increase of accuracy by 2.6% on Standard CL
Benchmark and 0.95% on Large Number of Tasks.
Since prompt-based methods can all avoid forget-
ting, we attribute the improvement of SHLPT to its
better inter-task transfer effect.

In addition to the average accuracy metrics, we
also provide the backward transfer scores and for-
ward transfer scores in Appendix H. These scores
are employed to evaluate the effectiveness of miti-
gating forgetting and negative transfer.
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Method Standard CL Benchmark Large Number of Tasks

Order1 Order2 Order3 Avg Order4 Order5 Order6 Avg

Finetune 30.92 32.27 35.94 33.04 13.40 11.58 14.38 13.12
Online EWC 62.82 57.31 66.37 62.17 49.70 49.82 48.61 49.38
ER 64.63 69.36 67.28 67.09 60.34 55.98 54.37 56.90
Per-task Prompts 78.50 78.50 78.50 78.50 75.51 75.51 75.51 75.51
L2P 76.26 75.63 74.97 75.62 73.86 73.67 74.07 73.87
CODA-Prompt 77.01 80.16 75.86 77.67 76.21 77.02 76.40 76.54
ProgPrompt 73.73 77.06 78.13 76.31 73.71 72.52 71.51 72.58
SHLPT(ours) 80.21 79.69 80.93 80.28 77.62 76.97 77.87 77.49

Table 2: Results on Standard CL Benchmark and Large Number of Tasks. We present the model’s average accuracy
after learning the last task. The standard deviations are provided in Appendix G.

Method Negative Transfer Benchmark

Seq1 Seq2 Seq3 Avg

Finetune 44.91 46.00 22.95 37.95
Online EWC 70.68 59.30 56.79 62.26
ER 58.18 66.26 62.41 62.28
Per-task Prompts 83.45 81.65 69.03 78.04
L2P 82.60 80.59 68.04 77.08
CODA-Prompt 82.66 80.08 69.71 77.48
ProgPrompt 78.79 80.00 67.58 75.46
SHLPT(ours) 83.37 82.47 70.16 78.67

Table 3: Results on Negative Transfer Benchmark. We
report the average score after learning the last task. The
standard deviations are provided in Appendix G.

6.2 Results on Negative Transfer Benchmark

We also assess SHLPT using a challenge Negative
Transfer Benchmark that we proposed. Our motiva-
tion is to test robustness to sequences of dissimilar
tasks. When similarity is low, negative transfer
is more likely to occur. This is a more realistic
lifelong learning scenario, requiring the model to
mitigate negative transfer and transfer knowledge
from dissimilar tasks. We conduct experiments
on three different sequences that exhibit negative
transfer and the overall results are shown in Table 3.
SHLPT achieves an improvement of 1.2% in av-
erage score over CODA-Prompt. These findings
indicate that SHLPT exhibits greater robustness
when confronted with sequences of tasks involving
negative transfer. The backward transfer scores and
forward transfer scores are reported in Appendix H.

6.3 Ablation Studies

We present the ablation results in Table 4. "-ASE",
"-ASC", "-HSC" and "-STT" denote models with-
out Attention-based Similarity Estimator, without
ASC loss, without HSC loss, without Similar Task
Transferring, respectively. For "-ASE", we replace
the similarity estimator with one that outputs the
same similarity across all old tasks (for example,

Model Seq1 Seq2 Seq3 Seq4 Avg

-ASE 81.84 80.54 70.30 80.15 78.21
-ASC 83.22 82.22 70.92 79.69 79.01
-HSC 83.51 82.01 70.13 80.01 78.92
-STT 83.37 82.47 70.16 79.49 78.87
-ASC,-HSC 81.06 82.44 70.58 80.20 78.57

SHLPT 83.37 82.47 70.16 80.21 79.05

Table 4: Ablation experiment results. Seq1-3 refer to
sequences from Negative Transfer Benchmark, Seq4
refers to the sequence from Standard CL Benchmark
with Order1. The standard deviations are provided in
Appendix G.

{0.25, 0.25, 0.25, 0.25}). “-STT” and SHLPT have
same result in Seq1-3, because there is no simi-
lar task in Negative Transfer Benchmark. We ob-
serve substantial drops when eliminating “STT” in
Seq4, indicating that it contributes to certain trans-
fer benefits. Table 4 shows that every component
is effective and the full SHLPT gives best results.

6.4 Knowledge Transfer from Dissimilar
Tasks

We further investigate whether the proposed two
contrastive losses can facilitate positive knowledge
transfers from dissimilar tasks. The experiments
are conducted on eight task pairs where negative
transfer is observed when transferring through ini-
tialization. Table 5 demonstrates that in the major-
ity of cases, these two losses have positive transfers
on dissimilar tasks. Notably, the combination of
both losses yields the best transfer effects (+2.1%).
This confirms SHLPT’s effectiveness in transfer-
ring knowledge across diverse task sequences.

6.5 Task Order Analysis

As Table 2 shows, task order may affect the per-
formance of SHLPT. For example, SHLPT’s per-
formance is relatively low on Order5. We further
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Task
Source → Target

Prompt
tuning

(w/o transfer)

Continual
Initialization
(w/ transfer)

Add HSC
Loss

(w/ transfer)

Add ASC
Loss

(w/ transfer)

Add ASC
& HSC Loss
(w/ transfer)

QQP → RTE 78.67 73.67 83.00 79.00 82.33
Yahoo → RTE 73.33 82.67 87.00 84.67
MNLI → CB 87.50 83.93 91.67 91.07 91.67

SQuAD → CB 83.93 92.26 89.88 89.29
COPA → QQP 86.00 81.00 81.67 85.67 86.67
Yahoo → QQP 81.00 85.33 85.67 85.33

COPA → MNLI 88.67 87.11 90.22 89.11 88.22
SQuAD → MNLI 86.44 90.00 89.78 90.00
Average Accuracy 85.21 81.30 87.10 87.15 87.27

Table 5: Different transfer learning algorithms’ transfer learning results on negative transfer task pairs. Positive
transfer are shown in red and negative transfer are shown in blue.

investigate the possible reasons for this order’s im-
pact on performance, as outlined below.

In Order5, SHLPT’s performance on RTE is infe-
rior compared to others, as shown in Table 6. The
difference in RTE’s previous tasks between three
orders is that Order5 includes MultiRC, which is
dissimilar to RTE in task type, and negative transfer
(MultiRC → RTE) is observed in Table 10. This
may indicate that SHLPT has poor transfer perfor-
mance when transferring from MultiRC to RTE. In
conclusion, the task order can impact SHLPT’s per-
formance, as SHLPT has different transfer learning
results based on different previous task sets.

Task RTE QQP Yahoo

Order4 84.17 87.17 74.43
Order5 79.00 83.50 73.73
Order6 85.00 85.33 76.70

Table 6: Results of three tasks on which SHLPT per-
forms poorly in Order5 compared to other orders.

The additional analysis about the training curves
of task similarities and the impact of ASC loss on
activation states is provided in Appendix E and
Appendix F.

7 Conclusion

In this paper, we introduce a novel method SHLPT
for lifelong language learning. SHLPT aims to
alleviate negative transfer by learning task simi-
larity in one step and employing suitable transfer
method for different old task scenarios (similar or
dissimilar). Experimental results show SHLPT out-
performs baseline methods via better knowledge
transfer on two existing benchmarks and our cus-
tom Negative Transfer Benchmark.

Limitations

Though our approach has achieve significant re-
sults, there are still some limitations. Firstly,
SHLPT requires task identity at training and in-
ference stage. The identification and mitigation of
negative transfer in task agnostic lifelong learning
setting remain undiscovered. Secondly, we do not
evaluate SHLPT on multilingual tasks (Wang et al.,
2020) or other application tasks (Lian et al., 2014;
Wang et al., 2019b; Jiang et al., 2023b), and nega-
tive transfer may also occur in these scenario. Last,
the scalability of SHLPT across different language
models, especially LLM, has not been thoroughly
researched. We leave these for our future work.
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A Dataset Details

We present detailed information about datasets
we used in Table 7. Following previous stud-
ies (Asai et al., 2022; Razdaibiedina et al.,
2022), we use datasets from http://goo.gl/
JyCnZq for Standard CL Benchmark, while using
HuggingFace datasets library (https://github.
com/huggingface/datasets) for the remaining
datasets.

B Task Sequence Details

We use six differ orders of sequences in existing
benchmark experiments, and the sequence informa-
tion is presented in Table 8. For Negative Transfer
Benchmark, we utilize three sequences composed
of different datasets. The benchmark requires that
preceding tasks induce negative transfer on subse-
quent tasks. Therefore, we do not alter the order
as it may involve positive transfer. The sequence
information is shown in Table 9.

C Soft Prompt Transfer Results

The detailed results of our empirical study experi-
ment are shown in Table 10. We perform transfer
by initializing the target prompt from the source
prompt. For classification tasks, we sample 100
samples per class to form the training set and vali-
dation set, and 100 samples per class to form the
test set. For SQuAD dataset, we sample 400 sam-
ples to form the training set and validation set, and
400 samples to form the test set.

D Implementation Details

We implement all methods with PyTorch (Paszke
et al., 2019) and huggingface transformers (Wolf
et al., 2020) library. All the experiments are run
on eight NVIDIA 3090 GPUs. We set the max
token length to 256 for all datasets. Following
Razdaibiedina et al. (2022), we use the available
validation set as the test set and create validation set
from the training set. If not specifically mentioned,
for classification tasks, we sample 75 samples per
class to form the training set and validation set, and
100 samples per class to form the test set, follow-
ing Qin and Joty (2021). For SQuAD dataset, we
sample 300 samples to form the training set and
validation set, and 400 samples to form the test set.
We use AdamW optimizer (Loshchilov and Hutter,
2017) with a weight decay of 0.01 and a batch size
of 8. All results are averaged over three runs with
random seeds {42, 142, 242}.

For baselines that tuning all parameters (Fine-
tune, online EWC, ER), we use the learning rate of
1 × 10−4. For prompt-based methods, we use the
learning rate of 0.3.

For SHLPT, we perform grid search on 𝜏𝑠𝑖𝑚
within {2×104, 2×105, 2×106, 2×107}, 𝜏ℎ𝑠𝑐 and
𝜏𝑎𝑠𝑐 within {0.03, 0.5, 0.8, 1}, and 𝜆1 and 𝜆2 within
{0.03, 0.1, 0.5, 0.8, 1.5}. We set prompt token
length to 150 and train the model with 80 epochs
in Large Number of Tasks benchmark, while for
others, we train 50 epochs. Early stopping mecha-
nism is employed on all experiments. For similarity
threshold 𝛿: as the Standard CL Benchmark and
Large Number of Tasks contain some similar task
pairs, we perform a grid search within the range
of {0.02, 0.04, ..., 0.20}. We opt for a relatively
low value range as we aim to ensure that no simi-
lar tasks are mistakenly categorized as dissimilar.
Then we select 0.06 for these benchmarks. For
Negative Transfer Benchmark, the previous task
are all dissimilar from current task, so we search in
a relatively high value range: {0.50,...,1.50}. And
we select 1.5 for this benchmark.

Table 11 reports the searching results of thresh-
old on Standard CL Benchmark in Order1. The re-
sults exhibits relatively minor changes as the thresh-
old approaches 0. When the threshold increases,
we notice that there is a certain performance de-
crease observed in the tasks towards the end of the
task sequence. This is because the threshold value
affects how and when SHLPT partitions previous
tasks, thus further impacting the performance of the
transfer algorithm. The tasks within the Standard
CL Benchmark exhibit relatively high similarity,
hence a lower threshold can prevent similar tasks
from being partitioned as dissimilar.

E Similarity Training Curve

We conduct an experiment on datasets from Stan-
dard CL Benchmark and show how similarity is
learned in the similarity estimator. Figure 3 il-
lustrates the variation of similarity between the
Amazon task and four source tasks during SHLPT
training. The similarity is quickly learned within
a few steps, and the most similar task, Yelp, also
aligns with intuition (both are sentiment analysis
tasks for reviews).

F Effects of ASC Loss on activation states

To investigate how much ASC loss affects activa-
tion states, we visualize the cosine similarity of
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Figure 3: The variation of similarity output by the esti-
mator as training steps increase. We only display a few
steps in the early epochs because the similarity does not
change afterwards.

activation states between prompts trained on differ-
ent tasks (Figure 4). The similarity is calculated as
follows: we average the similarity values of activa-
tion states from different prompts for all samples
on each dataset (row). For the figure on the right,
we added ASC Loss during the training process
to diverge activation states from other tasks. As
shown in Figure 4, activation states vary across
different tasks, and adding ASC Loss reduces the
similarity of these tasks’ activation states, thereby
promoting more diverse neuron activation and a
more varied utilization of pre-training knowledge.

Figure 4: The cosine similarity of activation states at
last layer obtained from prompts trained on different
tasks.

G Standard Deviations

Table 12, 13, 14 report the standard deviations of
the results from Table 2 (on Standard CL Bench-
mark and Large Number of Tasks), 3 (on Negative
Transfer Benchmark), 4 (ablation studies). Based
on the standard deviation results, we find that the
performance of SHLPT on the Large Number of
Tasks benchmark is significantly better than other
baselines. While on the Standard CL Benchmark
and Negative Transfer Benchmark, SHLPT also
shows a considerable improvement. We believe
that the variations in improvement across differ-

ent benchmarks may stem from this reason: the
Large Number of Tasks benchmark contains more
datasets, thus resulting in a more significant cu-
mulative performance gain for each task through
transfer learning.

H Backward Transfer Scores and
Forward Transfer Scores

We further compare SHLPT and the baseline meth-
ods in terms of backward transfer scores and for-
ward transfer scores, as defined in Wang et al.
(2024). Table 15 reports the average results across
three orders/sequences on three benchmarks.

The prompt-based methods, such as L2P, show
no forgetting phenomenon, resulting in a backward
transfer score of 0. Conversely, other baselines
have negative backward transfer scores, as subse-
quent tasks induce forgetting, leading to impaired
performance in previous tasks.

We use the forward transfer scores to measure
negative transfer in lifelong learning, similar to
the negative transfer gap in Wang et al. (2019b).
A negative forward transfer score indicates nega-
tive transfer, while a positive score indicates pos-
itive transfer. As shown in Table 15, our method
SHLPT achieves the best forward transfer score
and exhibits the most effective mitigation of nega-
tive transfer in three benchmarks.
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Dataset name Category Task Domain Metric

1. Yelp CL benchmark sentiment analysis Yelp reviews accuracy
2. Amazon CL benchmark sentiment analysis Amazon reviews accuracy
3. DBpedia CL benchmark topic classification Wikipedia accuracy
4. Yahoo CL benchmark topic classification Yahoo Q&A accuracy
5. AG News CL benchmark topic classification news accuracy
6. MNLI GLUE NLI various accuracy
7. QQP GLUE paraphrase detection Quora accuracy
8. RTE GLUE NLI news, Wikipedia accuracy
9. SST2 GLUE sentiment analysis movie reviews accuracy
10. WiC SuperGLUE word sense disambiguation lexical databases accuracy
11. CB SuperGLUE NLI various accuracy
12. COPA SuperGLUE QA blogs, encyclopedia accuracy
13. BoolQ SuperGLUE boolean QA Wikipedia accuracy
14. MultiRC SuperGLUE QA various accuracy & F1
15. IMDB Other sentiment analysis movie reviews accuracy
16. SQuAD v2 Other extractive QA Wikipedia nF1 & EM

Table 7: Details of 16 tasks used in our experiments. For datasets utilizing two metrics, the primary metric is the
one listed first.

Order Task Sequence

1 DBpedia→ Amazon→ Yahoo→ AG News
2 DBpedia→ Amazon→ AG News→ Yahoo
3 Yahoo→ Amazon→ AG News→ DBpedia

4 MNLI→ CB→ WiC→ COPA→ QQP→ BoolQ→ RTE→ IMDB→
Yelp→ Amazon→ SST2→ DBpedia→ AG News→ MultiRC→ Yahoo

5 MultiRC→ BoolQ→ WiC→ MNLI→ CB→ COPA→ QQP→ RTE→
IMDB→ SST2→ DBpedia→ AG News→ Yelp→ Amazon→ Yahoo

6 Yelp→ Amazon→ MNLI→ CB→ COPA→ QQP→ RTE→ IMDB→
SST2→ DBpedia→ AG News→ Yahoo→ MultiRC→ BoolQ→ WiC

Table 8: Different orders of task sequences used in existing benchmark experiments. Orders 1-3 are employed for
Standard CL Benchmark. Orders 4-6 are employed for Large Number of Tasks.

Sequence ID Task Sequence

1 Yahoo→ RTE→ QQP→ CB→ MNLI
2 QQP→ RTE→ SQuAD v2→ MNLI→ CB
3 MultiRC→ RTE→ SQuAD v2→ WiC→ MNLI

Table 9: Three different task sequences used in Negative Transfer Benchmark.

WiC MultiRC QQP RTE CB MNLI SQuAD Yahoo Yelp Amazon

Baseline 62.67 52.00 86.00 78.67 87.50 88.67 65.58 74.67 58.67 54.27
WiC 55.50 84.33 80.67 86.90 87.33 66.74 75.93 60.67 56.27

MultiRC 59.33 86.33 77.00 87.67 88.22 64.73 74.13 58.00 45.47
QQP 62.67 53.33 73.67 87.50 88.87 66.84 75.27 57.87 53.73
RTE 59.00 55.67 86.00 86.91 87.33 65.55 76.13 60.13 54.93
CB 65.67 51.00 89.00 78.67 88.22 67.94 75.13 59.60 55.47

MNLI 59.67 51.67 87.67 75.67 83.93 66.40 74.40 60.13 54.80
SQuAD v2 62.67 48.00 87.00 81.00 83.93 86.44 75.07 58.93 55.47

Yahoo 65.67 52.33 81.00 73.33 84.52 88.00 66.85 60.00 56.80
Yelp 61.33 54.67 81.00 80.67 91.67 88.45 68.23 76.07 55.60

Amazon 62.67 55.00 80.67 77.00 86.90 88.44 64.57 74.67 61.07

Table 10: Each cell in the columns represents the performance of the target task transferred from a specific source
task (row). Baseline refers to the task accuracy without transfer. Positive transfers are shown in red while negative
transfers are shown in blue.
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Threshold 𝛿 0.02 0.04 0.06 0.08 0.10 0.15 0.20

Accuracy (%) 80.00 ± 0.20 80.03 ± 0.24 80.21 ± 0.37 80.02 ± 0.18 80.02 ± 0.18 79.57 ± 0.25 79.63 ± 0.14

Table 11: Searching results for SHLPT’s optimal similarity threshold on the Standard CL Benchmark in Order1. We
report the average accuracy after learning the last task.

Method Standard CL Benchmark Large Number of Tasks

Order1 Order2 Order3 Avg Order4 Order5 Order6 Avg

Finetune ±1.38 ±0.24 ±3.61 ±0.67 ±3.98 ±0.41 ±0.41 ±1.45
Online EWC ±4.37 ±4.04 ±4.16 ±2.47 ±9.44 ±6.36 ±5.74 ±1.69
ER ±2.47 ±1.04 ±3.79 ±2.27 ±4.22 ±6.06 ±1.06 ±1.82
Per-task Prompts ±2.20 ±2.20 ±2.20 ±2.20 ±0.92 ±0.92 ±0.92 ±0.92
L2P ±0.98 ±0.54 ±0.44 ±0.20 ±1.00 ±0.79 ±1.00 ±0.34
CODA-Prompt ±2.17 ±1.40 ±5.18 ±1.72 ±0.84 ±0.01 ±0.35 ±0.33
ProgPrompt ±3.39 ±2.19 ±0.49 ±1.86 ±1.19 ±1.50 ±0.68 ±0.41
SHLPT(ours) ±0.37 ±0.40 ±0.47 ±0.07 ±0.39 ±1.32 ±0.45 ±0.42

Table 12: Standard deviations of the related metrics of SHLPT and baseline methods on Standard CL Benchmark
and Large Number of Tasks.

Method Negative Transfer Benchmark

Seq1 Seq2 Seq3 Avg

Finetune ±4.69 ±1.13 ±9.44 ±1.67
Online EWC ±3.67 ±7.16 ±6.06 ±5.38
ER ±8.42 ±5.37 ±1.23 ±1.92
Per-task Prompts ±0.77 ±1.36 ±1.73 ±1.25
L2P ±1.40 ±1.79 ±1.31 ±1.46
CODA-Prompt ±0.15 ±0.78 ±2.26 ±0.67
ProgPrompt ±1.25 ±1.13 ±2.44 ±1.39
SHLPT(ours) ±1.21 ±0.78 ±0.39 ±0.28

Table 13: Standard deviations of the related metrics of SHLPT and baseline methods on Negative Transfer
Benchmark.

Model Seq1 Seq2 Seq3 Seq4 Avg

-ASE ±1.73 ±0.29 ±1.07 ±1.68 ±0.75
-ASC ±0.62 ±0.36 ±1.57 ±0.75 ±0.20
-HSC ±0.31 ±1.39 ±0.39 ±0.87 ±0.33
-STT ±1.21 ±0.78 ±0.39 ±0.43 ±0.11
-ASC,-HSC ±1.36 ±0.49 ±0.80 ±0.71 ±0.52

SHLPT ±1.21 ±0.78 ±0.39 ±0.37 ±0.29

Table 14: Standard deviations of the related metrics of SHLPT and the ablations.

Method Standard CL Benchmark Large Number of Tasks Negative Transfer Benchmark

BWT FWT BWT FWT BWT FWT

Finetune -62.00 -0.69 -64.41 -3.73 -44.02 -3.43
Online EWC -21.56 -2.17 -24.27 -4.98 -13.30 -3.94
ER -15.82 -1.21 -16.62 -4.55 -9.04 -8.06
L2P 0.00 -4.34 0.00 -2.30 0.00 -0.85
CODA-Prompt 0.00 -1.80 0.00 0.56 0.00 -0.49
ProgPrompt 0.00 -3.57 0.00 -3.88 0.00 -3.17
SHLPT(ours) 0.00 1.36 0.00 1.45 0.00 0.99

Table 15: The average backward transfer scores (BWT) and forward transfer scores (FWT) on Standard CL
Benchmark, Large Number of Tasks and Negative Transfer Benchmark.
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