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Abstract

The rapid advancements of Large Language
Models (LLMs) are tightly associated with the
expansion of the training data size. However,
the unchecked ultra-large-scale training sets
introduce a series of potential risks like data
contamination, i.e. the benchmark data is used
for training. In this work, we propose a holistic
method named Polarized Augment Calibration
(PAC) along with a brand-new dataset named
StackMIA to help detect the contaminated data
and diminish the contamination effect. PAC ex-
tends the popular MIA (Membership Inference
Attack) — from the machine learning commu-
nity — by forming a more global target for de-
tecting training data to clarify invisible training
data. As a pioneering work, PAC is very much
plug-and-play that can be integrated with most
(if not all) current white- and black-box (for the
first time) LLMs. By extensive experiments,
PAC outperforms existing methods by at least
4.5%, in data contamination detection on more
than 4 dataset formats, with more than 10 base
LLMs. Besides, our application in real-world
scenarios highlights the prominent presence of
contamination and related issues. 1

1 Introduction

As is widely acknowledged, the rapid advance-
ments of Large Language Models (LLMs) in nat-
ural language tasks are largely attributed to the
incredible expansion of the size of the training data
(Kaplan et al., 2020). Despite the massive suc-
cesses, this unmanaged expansion has introduced
a series of significant issues that are yet explored,
particularly data contamination. This issue arises
notably when the benchmarking data is inadver-
tently included in the training sets. This contami-
nation leads to misleading evaluation results (Zhou
et al., 2023; Narayanan and Kapoor, 2023), thus de-
ducing difficulties in acquiring effective and secure

1Our code is available: https://github.com/yyy01/PAC.

models. Additionally, training on datasets with
copyrighted, private, or harmful content could vio-
late laws, infringe on privacy, and introduce biases
(Carlini et al., 2019; Nasr et al., 2018b). Unlike
in earlier stages of machine learning, we posit that
this problem would be much more prevalent in the
age of the LLMs, very much due to the inevitable
lack of scrutinization of the much-scaled — and
often private — training data (Magar and Schwartz,
2022; Dodge et al., 2021).

Polarized Augment Calibration (PAC)

Augmented Polarized Distance Calibration
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Figure 1: We focus on determining whether a given sam-
ple is contained in the training set of the LLMs. For a
candidate z, PAC utilizes random swap augmentation to
generate adjacent samples in local distribution regions.
Consequently, PAC compares the polarized distance of
z with its adjacent samples z̃, where the polarized dis-
tance is a spatial measurement jointly considering far
and near probability regions.

In this work, we position the training data detec-
tion for LLMs as an extension of the membership
inference attacks (MIA) (Shokri et al., 2017) in
the literature of machine learning. MIA targets
distinguishing whether the given data samples are
members (training data) or non-members (not be
trained). The previous line of work can generally
be categorized into score-based (i.e., calibration-
free) (Yeom et al., 2018; Salem et al., 2019; Shi
et al., 2023) and calibration-based (Watson et al.,
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2021; Carlini et al., 2022; Mattern et al., 2023)
methodologies. Despite the promise, these ap-
proaches hardly suffice for current LLMs. The con-
ventional setup in machine learning may generally
focus on a small-scale training set, accompanied by
global confidence distribution differences between
members and non-members. However, this assump-
tion no longer holds in LLMs, leading to a situation
where non-members can also exhibit misleadingly
high confidence levels, as shown in Figure 2. In
addition, the MIA approaches generally rely on
training an external reference or proxy model using
member data distribution approximated to the tar-
geted model. This, unfortunately, has contradicted
the black-box setup of many current LLMs.
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Figure 2: Histogram of the model confidence (follow
the loss attack to use perplexity) before and after PAC
in gpt-3 (davinci-002) on WikiMIA dataset (Shi et al.,
2023), where PAC significantly enhances the salience
of differences between members and non-members.

With this paper, we make two major efforts: (i)-a
holistic scheme named polarized augment calibra-
tion (PAC) to resolve the challenges of black-box
training data detection and (ii)-a brand new dataset
for newly released LLMs.

Notably, the current related methods mostly
assess the overfitting metric at individual points.
Upon revisiting the issue of typical MIA, we find
that the geometric properties of the samples may
better reflect the latent differences introduced by
training. For members, they should exhibit two
characteristics: (i) high confidence at individual
points; and (ii) being part of a poorly generalized
local manifold. In other words, if a sample lies in
a poor-generalization region but shows anomalous
confidence, it suggests that the model is merely
memorizing (or overfitting) rather than truly gener-
alizing.

Based on such observations, as depicted in Fig-
ure 1, we propose Polarized Augment Calibration
(PAC), which explores the confidence discrepancies
in local regions through data augmentation tech-

niques, aimed at detecting those overfitted training
samples. Upon this, to address the bias of existing
global confidence metrics, we have developed a
brand-new evaluation score named polarized dis-
tance, as a polarized calculation of flagged tokens
with far and near local regions in the probability
space. We further provide an in-depth explanation
of PAC detection from a theoretical perspective.
Compared to previous relevant methods relying on
fully probability-accessed LLMs, we introduce a
new probabilistic tracking method to extract proba-
bilities under limited conditions(e.g., OpenAI API)
for the first time.2 This becomes the trailblazers to
extend our detection to a black-box setup where
only access to partial probabilities is permitted, en-
abling PAC to be applied to almost all LLMs.

For the benchmark, the current available bench-
mark for the contamination problem is very lim-
ited. We construct and introduce StackMIA tai-
lored for reliable and scalable detection of the latest
LLMs. It ensures reliability by adopting a time-
based member/non-member classification similar
to (Shi et al., 2023), where members are visible dur-
ing pre-training and non-members are not. Stack-
MIA is dynamically updated, by offering detailed
timestamps in order to quickly adapt to any up-to-
date LLM through our curation pipeline. By con-
trast, the existing benchmark WikiMIA(Shi et al.,
2023) does not possess these properties, making
it hard to use, especially on the LLMs released
post-2023.

Last but not least, we exhibit extensive exper-
iments on 10 commonly used models to evalu-
ate the PAC against six existing major baselines.
These results demonstrate that PAC outperforms
the strongest existing baseline by 5.9% and 4.5%
in the AUC score respectively on StackMIA and
WikiMIA. PAC further expresses superior robust-
ness under conditions of ambiguous memory or
detection of fine-tuning data. To further validate
the effectiveness of PAC in real-world applications,
we provide a set of case studies for data contam-
ination and different security risks (Carlini et al.,
2019; Nasr et al., 2018b,a) on ChatGPT and GPT-4.
The conclusions from these examples highlight the
ubiquity of security risks upon widespread deploy-
ment (Ye et al., 2023).

Our contributions can be summarized as:

1. We introduce PAC, an innovative, theory-
supported MIA method for black-box LLMs
that does not rely on external models, consis-
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tently outperforming leading approaches.

2. Our black-box probability extraction algo-
rithm makes PAC a trailblazer for LLMs with
restricted probability access. We also un-
veil the StackMIA benchmark, addressing the
gaps in MIA datasets for pretraining phrases.

3. Applying PAC to ChatGPT and GPT-4 high-
lights the prevalent data contamination issue,
prompting a call to the academic community
for solutions to ensure safer, more dependable
LLMs.

2 Related Work

Data Contamination. As Magar and Schwartz
(2022) mentioned, data contamination is the infil-
tration of downstream test data into the pretrain-
ing corpus, which may seriously mislead evalua-
tion results. Dodge et al. (2021) and Brown et al.
(2020) highlighted the tangible presence of con-
tamination issues in models (e.g. GPT-3) and cor-
pora (e.g. C4). Such contamination risks models
memorizing rather than learning, affecting their ex-
ploitation (Magar and Schwartz, 2022). Detection
methods have been proposed, using n-gram overlap
ratios against pre-training data to identify contam-
inated samples (Du et al., 2022; Wei et al., 2021;
Chowdhery et al., 2023). However, these existing
methods rely on access to the pretraining corpus,
which is unfeasible for many LLMs. Recent studies
(Golchin and Surdeanu, 2023; Weller et al., 2023)
shifted towards a more common black-box setting,
by extracting outputs with trigger tokens (Carlini
et al., 2021) or specified prompts (Sainz et al., 2023;
Nasr et al.) from LLMs as contaminated samples
and comparing with the test set. Unfortunately,
the extracted samples are usually too broad, mak-
ing these methods ineffective for detecting given
samples.

Membership Inference Attack. Membership
Inference Attacks (MIA), proposed by Shokri et al.
(2017), is defined as determining whether a given
sample is part of the training set. MIA is predicated
on the models’ inevitable overfitting (Yeom et al.,
2018), leading to a differential performance on
training samples (members) versus non-members.
MIA has been applied in privacy protection (Ja-
yaraman and Evans, 2019; Zanella-Béguelin et al.,
2020; Nasr et al., 2021, 2023; Steinke et al., 2023),
machine-generated text detection (Mitchell et al.,
2023; Solaiman et al., 2019), DNA inference (Zer-

houni and Nabel, 2008), etc. Given the limited
access to most current LLMs, research has con-
centrated on black-box conditions. Typical score-
based methods employ loss or partial token prob-
abilities (Shi et al., 2023), though these may in-
correctly flag non-members (Carlini et al., 2022).
Watson et al. (2021) proposed calibration-based
methods to utilize a difficulty calibration score to
regularize raw scores. Specifically, Carlini et al.
(2021), Ye et al. (2022), and Mireshghallah et al.
(2022) train reference models to rectify anoma-
lies with the average of different models. Mattern
et al. (2023) might be most closely aligned with
our work, utilizing additional models to generate
similar samples for calibration purposes. while Yet,
the practicality is constrained by their need for ex-
tra models. Furthermore, obtaining the necessary
probabilities for MIA is challenging in many recent
LLMs. To our knowledge, we are the pioneers in
developing a calibration-based detection method
jointly considering the calibration of global confi-
dence and local distribution.

3 Problem Definition and Preliminary
Work

We first provide a comprehensive formal definition
of the training data detection for LLMs in the con-
text of a two-stage training process (Kenton and
Toutanova, 2019). Upon this foundation, we in-
troduce a new dynamic data benchmark (Section
3.2) that can be applied to recently released LLMs.
By open-sourcing the benchmark upon publication,
we expect to use it to foster further research in the
community.

3.1 Problem Formulation
Two-stage training. The training process of LLMs
consists of two stages: unsupervised pre-training
on a large-scale corpora, and supervised fine-tuning
of labeled data for downstream tasks.

Given training set D = {zi}i∈|D|, zi for the fine-
tuning stage can be further represented as xi ∪ yi
(x, y respectively represent input and label). Both
zi and xi can be denoted as a tokens sequence
{uj}j∈|xi|or|zi|. Generally following (Brown et al.,
2020), the LM fθ is trained in two stages by maxi-
mizing the following likelihood separately:

Lpt(D) =
∑

i

∑
j log fθ(uj |u1, · · ·uj−1)

Lft(D) =
∑

i log fθ(yi|u1, · · · , u|xi|)
(1)

where i, j respectively denote the index of the sam-
ple z and the index of the token within z.
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Training Data Detection. Following the set-
tings of MIA (Yeom et al., 2018; Mattern et al.,
2023), for a given the target model fθ and the sam-
ple z, the objective of training data detection can be
defined as learning a detectorA : (z, fθ)→ {0, 1},
where 1 denotes that z is member data (z ∈ D) and
0 denotes that z /∈ D. As mentioned in Section
2, widely used calibration-free detection methods
directly construct computational scores (denoted
as L), such as the loss, and threshold them:

A(z, fθ) = 1(L(z, fθ) > ϵ) (2)

By comparing L with a predefined threshold ϵ,
A can achieve the detection of members or non-
members. For more recent calibration-based meth-
ods, a calibration function c is additionally intro-
duced to correct for the detector’s bias relative
to the target distribution. Calibration is typically
achieved by correcting the original scores with the
calibration function. The calibration function is
usually a designed score c : (z̃, fϕ)→ R based on
the differential performance on adjacent samples z̃
(Mattern et al., 2023) or reference models fϕ (Wat-
son et al., 2021). The reference models are usually
additional models trained on a similar training data
distribution. Consequently, the detector A can be
extended as:

A(z, fθ) = 1(L(z, fθ)− c(z̃, fϕ) > ϵ) (3)

Following the standard setup (Shi et al., 2023),
we primarily constrain detecting pre-training sam-
ples under black-box settings. Specifically, the de-
tection during the fine-tuning stage will be further
discussed in Section 5.6.

3.2 Dynamic Benchmark Construction
StackMIA2 is based on the Stack Exchange dataset
3, which is widely used for pre-training. Specifi-
cally, we organize member and non-member data
with fine-grained release times to ensure reliability
and applicability to newly released LLMs. More
Details are provided in Appendix A.

Data collection and organization. We utilize
the data source provided by the official (Appendix
A). Each record contains a post and answers from
different users. Data collection: Following the
data selection strategy mentioned by LLMs such as
LLaMA (Touvron et al.), etc, we retain data from

2The StackMIAsub benchmark dataset is available here:
https://huggingface.co/datasets/darklight03/StackMIA

3https://archive.org/details/stackexchange

the 20 largest websites, including common themes
like English, math, etc. Subsequently, based on
the training timelines of most LLMs (Zhao et al.,
2023), we set January 1, 2017, as the latest cutoff
date for member data, i.e., data with both posts and
answers dated before this time are considered mem-
bers. For non-members, January 1, 2023, is set as
the earliest occurrence time. Lastly, we build an
automatic pipeline to remove HTML tags from the
text. Data filtering: Considering the potential dif-
ferences in answer sorting strategies (Ouyang et al.,
2022), we only retain the post records. We apply
automatic filtering based on: (1) posts contain only
texts, not formulas or code; (2) posts have not been
asked repeatedly. Data organization: To ensure
applicability to a vast array of LLMs released af-
ter 2023, we reorganize the non-member data with
fine-grained precision. We selected approximately
2000 posts created within each month, using the
month as a cutoff point. This allows future users to
construct subsets of StackMIA suitable for newly
released LLMs through our provided pipeline.

Benchmark test. Following the settings of (Shi
et al., 2023), we divide the original WikiMIA by
length. Simultaneously, we construct StackMI-
Asub4 dataset (8267 samples in total, Appendix
A) to conduct experiments in this paper. Specifi-
cally, we set May 1, 2023, as the cutoff date for
non-member data. Following (Shi et al., 2023), we
sequentially select approximately balanced sets of
member and non-member data by length. Addi-
tionally, we use GPT-3.5-turbo5 to construct (Ap-
pendix A) synonymous rewritten data to test the
stability of the methods under the condition of ap-
proximate memory (Ishihara, 2023). Referring to
(Ippolito et al., 2022), we set BLEU (Papineni et al.,
2002)> 0.75 as a condition to ensure semantic con-
sistency in the rewritten data.

4 Methodology

We introduce Polarized Augment Calibration
(PAC), an efficient and novel calibration-based
training data detection method. The key idea is to
construct adjacent samples using easy data augmen-
tation for calibrating a generalized distribution and
design a brand-new polarized distance to enhance
the salience. We further propose a probabilistic
tracking method suitable for models with partially

4The StackMIAsub benchmark dataset is available here:
https://huggingface.co/datasets/darklight03/StackMIAsub

5https://platform.openai.com/docs/api-reference
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inaccessible logits for the first time.

4.1 Generating Adjacent Samples

As mentioned in Section 3.1, for a given data
point z, we construct an adjacent sample space
z̃ for the calibration function c. We opt for a sim-
pler word-level perturbation approach through the
Easy Data Augment (Wei and Zou, 2019) frame-
work to generate z̃, which are adjacent in the lo-
cal distribution with z. The calibration through
these adjacent data points prevents calibration-free
scores from being confused with misleading high-
confidence, especially when the model provides
a well-generalized distribution of non-members
(Choquette-Choo et al., 2021). Specifically, we
randomly swap 2 tokens from z, and repeat this
process m times:

z̃ = σm(z) = σm({uj}j∈[1,|z|]) (4)

where σm represents a bijection from z to itself
(i.e., a permutation) after m random swaps. Further,
different from previous works, the augmentation-
based scheme focuses the calibration on local dis-
tribution and is much more efficient due to the
avoidance of introducing additional models.

4.2 Polarized Distance

Due to the challenges in constructing reference
models for LLMs, we calibrate directly using the
difference between z̃ and z without introducing
costly external models. As mentioned in Section
4.1, augmentation-based z̃ tends to exhibit non-
member characteristics more. In practice, using
traditional confidence scores, e.g. loss or perplex-
ity, as the L score fails to demonstrate stable sig-
nificance. (Shi et al., 2023) proposes to improve
classification effectiveness by calculating only a
portion of the low-probability outlier words. We
integrate this technique and expand it to focus si-
multaneously on far and close local regions of the
token probability, achieving a significant measure-
ment in probability space. Specifically, consider a
sequence of tokens for a given sample z, denoted
as z = {uj}j∈[1,|z|]. According to Equation 1, the
log-probability of each token ui can be denoted
as log fθ(ui|u1, · · · , ui−1). As depicted in Figure
1, we then sort the probabilities of each token and
select the largest k1% and the smallest k2% to form
sets, denoted as MAX(z, k1) and MIN(z, k2), re-
spectively. Subsequently, the polarized distance

LM can be denoted as:

LM = 1
K1

∑
ui∈MAX(z,k1)

log fθ(ui|u1, · · · , ui−1)

− 1
K2

∑
ui∈MIN(z,k2)

log fθ(ui|u1, · · · , ui−1)

(5)
where K1 and K2 denotes the size of MAX(z, k1)
and MIN(z, k2) set separately.

General. According to the previous sections,
the implementation of PAC can be represented as:

A(z, fθ) = 1[LM (z, fθ)−
N∑ LM (σm(z),fϕ)

N > ϵ]
(6)

where N denotes the number of repetitions to re-
duce random errors.

4.3 Theoretical Analysis
The explanation for the approach of PAC is quite
straightforward: through carefully designed dis-
crete perturbations, it makes z̃ (i.e., σm(z)) exhibit
non-member characteristics. Since LLMs typically
rely on original natural corpora, such perturbations
can confuse the model (Jin et al., 2020; Morris
et al., 2020; Li et al., 2021), thereby obtaining mea-
surable differences between z and z̃. By calculat-
ing the difference in the probability distribution of
far and near local regions (expressed as the high-
est and lowest probabilities), LM can reflect the
model’s predictive uncertainty (Duan et al., 2023)
and volatility. Given a sample z, when it occurs:

LM (z, fθ)≫ LM (σm(z), fθ) (7)

This means that the impact of the perturbations is
significant, which indicates that z may be overfit-
ting. In this case, z will be classified as a member
sample. Furthermore, we provide a simple detailed
mathematical proof in Appendix C.

4.4 Black-box Probabilistic Tracking
Almost all detection methods require accessing
the probabilities of all tokens for z, which is
not feasible for some current black-box models,
such as GPT-4 (Achiam et al., 2023) accessed by
official API. These models only provide a log-
probability query interface for the top n words,
where n ⩽ 5 usually. To address this issue, we
take the GPT models as an example and construct
a black-box probabilistic tracking algorithm using
the logit_bias6 function provided by the OpenAI

6https://platform.openai.com/docs/api-
reference/completions/create#completions-create-logit_bias
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API to track probability outputs. Such a function
allows for setting biases of the logits for specific
token IDs, which can be obtained through the tikto-
ken library7. Utilizing this feature, for each token
in turn ui ∈ z, we enumerate biases added to the
corresponding token ID until the top n probability
query results are just altered. The obtained bias
threshold γi can be approximated as the difference
between the log-probability of ui and the known
token uτ (see Appendix D for the proof). Thus,
the probabilities of all tokens in z can be obtained
by:

log fθ(ui|·) = log fθ(uτ |·)− γi (8)

where · represents the prefix tokens of ui. Due to
the monotonicity of the impact of bias growth on
query results, the enumeration process can be opti-
mized for the binary search. Thus, we achieve
a reduction in time complexity from O(N) to
O(logN) for obtaining the log probability of a sin-
gle token with a logit of N , which is cost-effective
and efficient.

With this extraction method, PAC becomes the
first method capable of detecting training data from
almost any black-box LLMs.

4.5 Pseudo Code

We provide a simple pseudocode (as shown in Al-
gorithm 1) to illustrate the specific implementation
steps of PAC.

Algorithm 1 Polarized Augment Calibration

Input: given data sample z = {ui}i∈|z|,
source model fθ, and decision threshold ϵ
Output: True – z is a member sample, False
– z is a non-member sample.

1: Get the augmented sample z̃ with random
swap, repeating m times

2: Select the highest K1 probability tokens and
lowerst K2 probability tokens to construct
MAX and MIN set

3: Calculate polarized distance LM (z)
4: L ← 1

K1

∑
MAX

log fθ(u|·)− 1
K2

∑
MIN

log fθ(u|·)
5: d← LM (z)− LM (z̃)
6: return True if d > ϵ else False

7https://github.com/openai/tiktoken

5 Experiments

5.1 Experiments Settings

Baseline Methods: We selected six popular meth-
ods to evaluate our approach: four calibration-
based and two calibration-free. Calibration-
based methods include: the Neighborhood at-
tack (Neighbor) (Mattern et al., 2023), which
assesses loss differences between original sam-
ples and their neighbors generated by masked lan-
guage models; and perplexity-based calibration
(Carlini et al., 2021) techniques utilizing Zlib en-
tropy (Zlib) (Gailly and Adler, 2004), lowercased
sample perplexity (Lower), and comparisons with
reference models trained on the same dataset (Ref).
Calibration-free methods comprise the Min-K%
method (Shi et al., 2023), predicting pre-trained
samples through low-probability outlier words; and
the Loss Attack (Yeom et al., 2018), substituting
loss with Perplexity (PPL) in LLMs.

Datasets and Metric. We utilize the StackMI-
Asub benchmark (Section 3.2) and the WikiMIA
dataset proposed by (Shi et al., 2023). WikiMIA
(Appendix B) leverages Wikipedia timestamps and
model release dates to identify member and non-
member data sets, applicable for LLMs trained up
to 2023. Both datasets are transformed into two
formats as the guidelines in Section 3.2: the origi-
nal format (ori) and the synonym rewritten format
(syn).

For evaluation, we follow (Mattern et al., 2023;
Carlini et al., 2022; Watson et al., 2021) and plot
the ROC curve analysis method. To facilitate nu-
merical comparison, we primarily use the AUC
score (Area Under the ROC Curve). The AUC
score (Appendix F), independent of any specific
threshold, accurately gauges the method’s ability to
differentiate between members and non-members.
It also eliminates bias from threshold selection.

Models. We conduct experiments against 10
commonly used LLMs. Six models are applica-
ble for both WikiMIA and StackMIA, including
LLaMA-13B (Touvron et al.), LLaMA2-13B (Tou-
vron et al., 2023), GPT-J-6B (Wang and Komat-
suzaki, 2021), GPT-Neo-2.7B (Black et al., 2021),
OPT-6.7B (Zhang et al., 2022), and Pythia-6.9B
(Biderman et al., 2023). The two GPT-3 base mod-
els, Davinci-002 and Baggage-002 (Ouyang et al.,
2022), are suited for the WikiMIA dataset. Addi-
tionally, two newer models are applicable for Stack-
MIA, including StableLM-7B (Tow et al., 2023)
and Falcon-7B (Almazrouei et al., 2023).
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5.2 Implements

According to Section 4, the key hyper-parameters
affecting the PAC include the times of perturba-
tions m, the tokens ratio in min-max distance k1
and k2, and the number of adjacent samples N . To
ensure efficiency, N is globally fixed at 5. Based on
this, we conduct a grid search (Liashchynskyi and
Liashchynskyi, 2019) on a reserved small-scale val-
idation set of StackMIA using LLaMA-13B. The fi-
nal settings are k1 = 5, k2 = 30, and m = 0.3×|z|,
where |z| denotes the token number of z.

5.3 PAC as A More Effective Detector

Based on the settings described in Section 5.1, the
primary comparison results between PAC and the
baseline methods are listed in Table 1. The exper-
imental outcomes indicate that PAC consistently
outperforms across all models and all data formats.
Specifically, PAC shows an average AUC score
improvement of 4.5% on WikiMIA and 5.9% on
StackMIAsub compared to all other baseline meth-
ods. Moreover, PAC maintains robust performance
even under the conditions of synonymously approx-
imate memories. Notably, the Min-K% method
exhibits the second-best performance in all set-
tings, validating the reliability of using local re-
gions of token probabilities. And different from
previous methods, PAC exhibits prominence in
member recognition (Figure 2). In summary, PAC
is an effective and versatile solution for detecting
pre-training data of LLMs.

5.4 Ablation Study

To further validate the design of augment calibra-
tion and polarized distance, we conduct ablation
studies on (1) methods for generating adjacent sam-
ples, and (2) metric scores. We limit the model to
LLaMA-13B as an example.

Generation method. We evaluate the perfor-
mance of four popular methods to generate adjacent
samples. Table 2 demonstrates a clear conclusion:
augmentation based on random swaps is far more
effective than any other generation method. We
believe the underlying reason is that the swap oper-
ation ensures better non-member attributes, making
the metric more significant.

Metric Score. Similarly, we compared differ-
ent metric scores in terms of their significance in
difficulty calibration. As shown in Table 2, the
polarized distance more readily facilitates the dis-
tinction between members and non-members.

5.5 Analysis Study

To explore the factors influencing the detection, we
focus on the four aspects, using LLaMA-13B and
Pythia series as examples. All results are shown in
Figure 3.
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Figure 3: The AUC results as four different factors vary.

Memorization times. We employ continual pre-
training to increase the times that a member is seen
by the model. The results show that detection diffi-
culty decreases with memorization times increase,
likely due to an increase in the degree of overfitting.

Number of adjacent samples. We varied the
number of adjacent samples from one to twice the
number of adjacent samples we used. The results
demonstrate that with an increase in quantity, PAC
maintain robust performance after initial improve-
ments.

Sample Length. As the length of samples varies,
PAC tends to achieve better performance in both
lower and higher lengths. This is likely because
they respectively contain more distinctive features
and more information, making detection easier.

Model Size. The performance of PAC continu-
ously improves with an increase in model param-
eters. This may be due to larger models having a
stronger learning capacity within constant training
iterations.

5.6 PAC as A Two-Stage Detector

As more developers utilize various domain-specific
data to fine-tune the same foundational models,
the expansion of detection capabilities to the fine-
tuning stage becomes increasingly critical. Limited
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Model Form
WikiMIA StackMIAsub

PPL Zlib Lower Ref Neighbor Min-K% Ours PPL Zlib Lower Ref Neighbor Min-K% Ours

LLaMA
ori 0.664 0.632 0.563 0.604 0.617 0.674 0.706↑4.7% 0.605 0.556 0.532 0.487 0.552 0.612 0.648↑5.9%

syn 0.684 0.627 0.545 0.587 0.610 0.681 0.728↑6.4% 0.564 0.534 0.517 0.492 0.528 0.565 0.592↑4.7%

LLaMA2
ori 0.540 0.555 0.520 0.540 0.509 0.535 0.560↑0.9% 0.602 0.555 0.529 0.499 0.549 0.610 0.643↑5.4%

syn 0.556 0.558 0.508 0.528 0.506 0.546 0.572↑2.5% 0.563 0.533 0.519 0.507 0.525 0.565 0.592↑4.7%

GPT-J
ori 0.641 0.620 0.558 0.616 0.631 0.675 0.681↑0.9% 0.584 0.549 0.526 0.537 0.550 0.595 0.605↑1.7%

syn 0.632 0.602 0.545 0.599 0.605 0.644 0.666↑3.4% 0.544 0.525 0.507 0.548 0.518 0.549 0.560↑2.0%

GPT-Neo
ori 0.616 0.603 0.560 0.593 0.619 0.648 0.666↑2.8% 0.579 0.547 0.531 0.538 0.555 0.590 0.600↑1.7%

syn 0.610 0.590 0.561 0.579 0.596 0.631 0.653↑3.5% 0.539 0.523 0.507 0.545 0.520 0.545 0.556↑2.0%

OPT
ori 0.602 0.591 0.560 0.633 0.577 0.625 0.648↑3.7% 0.602 0.558 0.533 0.492 0.583 0.607 0.619↑2.0%

syn 0.603 0.584 0.551 0.643 0.577 0.619 0.646↑4.4% 0.559 0.534 0.518 0.508 0.545 0.560 0.572↑2.1%

Pythia
ori 0.635 0.617 0.550 0.629 0.626 0.664 0.697↑5.0% 0.598 0.557 0.532 0.549 0.559 0.604 0.624↑3.3%

syn 0.634 0.602 0.549 0.623 0.614 0.642 0.696↑8.4% 0.553 0.532 0.515 0.559 0.525 0.556 0.578↑4.0%

StableLM
ori - - - - - - - 0.515 0.506 0.449 0.482 0.518 0.510 0.589↑14%

syn - - - - - - - 0.491 0.488 0.437 0.484 0.501 0.487 0.576↑15%

Falcon
ori - - - - - - - 0.613 0.566 0.519 0.577 0.573 0.617 0.641↑3.9%

syn - - - - - - - 0.569 0.541 0.505 0.588 0.537 0.569 0.593↑0.8%

davinci
ori 0.638 0.621 0.497 0.554 0.607 0.656 0.694↑5.8% - - - - - - -
syn 0.654 0.616 0.507 0.564 0.608 0.651 0.691↑5.6% - - - - - - -

babbage
ori 0.569 0.575 0.492 0.475 0.537 0.559 0.607↑6.7% - - - - - - -
syn 0.582 0.576 0.513 0.483 0.540 0.574 0.621↑6.7% - - - - - - -

Mean
ori 0.613 0.602 0.537 0.581 0.590 0.629 0.657↑4.5% 0.587 0.549 0.519 0.520 0.554 0.593 0.621↑5.9%

syn 0.619 0.594 0.535 0.576 0.582 0.623 0.659↑5.8% 0.548 0.526 0.503 0.529 0.524 0.549 0.577↑5.1%

Table 1: The AUC results of training data detection across various models on the WikiMIA and StackMIAsub. In
particular, the percentage data represent the minimum percentage performance improvement of our PAC method.

Generation Method

Dataset None Neighbor replace delete ours

WikiMIA -4.2% -7.5% -8.0% -7.2% 0.706
StackMIAsub -5.4% -12.7% -6.9% -6.3% 0.648

Metric Score

Dataset PPL Zlib Min Max ours

WikiMIA -17.4% -17.4% -2.1% -14.4% 0.706
StackMIAsub -22.3% -23.4% -0.7% -22.0% 0.648

Table 2: The AUC results on different generation meth-
ods and metric scores. ‘replace’ and ‘delete’ denote syn-
onym replacement and random deletion, respectively.
The scores not mentioned before include the log proba-
bility sum of tokens in high-probability regions.

works (Song and Shmatikov, 2019; Mahloujifar
et al., 2021) have addressed this issue but are not
extendable to a two-stage process. We select a re-
cent clear fine-tuning dataset after contamination
check, Platypus (Lee et al., 2023), to fine-tune the
LLaMA-13B model under a 5 epoch set. To further
simulate real-world scenarios, we conducted detec-
tion with both output portions and entire samples.
As Figure 4 shows, PAC still exhibits excellent
and stable performance even compared to the PPL
score, which is directly equivalent to the training
objective.

PPL Zlib Lower Neighbor Min-K% Ours
Method

0.6

0.7

0.8

0.9

1.0

AU
C

Ours (whole) Ours (output) Whole Output

Figure 4: The AUC results in two-stage detection.
‘whole’ and ‘output’ represent two different settings
of using the whole sample and the output part to detect.

5.7 PAC as A Robust Threshold Interpreter

As mentioned in Section 3.1, the selection of thresh-
old ϵ affects the final detection effectiveness. Thus,
we focus on the threshold obtained in the scenario
where the knowledge about all samples is limited.
We randomly select 10%-50% (in 5% intervals) of
the original dataset to form subsets. Then, follow-
ing Lipton et al. (2014), we threshold PAC by max-
imizing the F1-score. As shown in Table 3, PAC
consistently outperforms baselines by at least 3%
in accuracy. Simultaneously, the variance of the
threshold ϵ obtained through subsets is relatively
small (around 0.1), indicating that PAC requires
only a small proportion of data to acquire a robust
threshold, which is not limited by access-restricted
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data.

Dataset Metric PPL Zlib Neighbor Min-K% Ours

WikiMIA
acc 0.59 0.57 0.59 0.58 0.65
std 1.93 0.01 0.18 0.58 0.14∗

StackMIAsub
acc 0.54 0.52 0.52 0.55 0.58
std 1.32 0.03 0.18 0.25 0.09∗

Mix
acc 0.55 0.53 0.52 0.55 0.58
std 1.49 0.03 0.12 0.26 0.07∗

Table 3: Results of threshold selection, where ‘acc’ and
‘std’ represent the accuracy and standard variance. The
‘Mix’ denotes a mixed data set of the others.

6 Case Study: Date Contamination

To further uncover the potential risks of existing
LLMs (Large Language Models) through PAC, we
selected two logical reasoning datasets, GSM8K
(Cobbe et al., 2021) and AQuA (Garcia et al., 2020),
and one ethical bias investigation dataset, TOXI-
GEN (Hartvigsen et al., 2022) on GPTs LLMs.
As depicted in Table 4, both GPT-3 and the more
advanced ChatGPT and GPT-4 exhibited varying
degrees of contamination, reaching up to 91.4% on
davinci-002. Furthermore, all models unfortunately
showed severe ethical bias data contamination in
the training set (Figure 5). Based on the above, we
call on the community to focus on finding solutions
to the contamination problem to develop safer and
more robust LLMs.

Model
GSM8K AQuA TOXIGEN

Avg
Rate Total Rate Total Rate Total

davinci-002 95.3% 1319 89.8% 254 45.5% 178 89.4%

babbage-002 84.6% 1319 72.4% 254 33.7% 178 77.7%

gpt-3.5-turbo 82.0% 200 13.5% 200 5.06% 178 34.6%

GPT-4 64.0% 50 34.0% 50 6.7% 178 21.9%

Table 4: The cases of data contamination on GPTs.
The results show both GPT-3 and the more advanced
ChatGPT and GPT-4 exhibit varying degrees of contam-
ination.

0 20% 40% 60% 80% 100%

Raw Data

Davinci
Contaminated

Babbage
Contaminated

40

40

35
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37
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37

33

Asian Black LGBTQ+ Native American Physically Disability

Figure 5: Bias data contamination cases of GPT-3 mod-
els. Cases are randomly selected from the TOXIGEN
dataset.

7 Conclusion

We introduce Polarized Augment Calibration
(PAC), a groundbreaking approach that expands the
Membership Inference Attack (MIA) framework to
detect training data in black-box LLMs. PAC un-
veils a new angle for MIA by utilizing confidence
discrepancies across spatial data distributions and
innovatively considering both distant and proximal
probability regions to refine confidence metrics.
This method is rigorously backed by theory and
proven through comprehensive testing. We also
present a novel detection technique for API-based
black-box models using a proprietary probability
tracking algorithm and launch StackMIA, a dataset
aimed at overcoming the limitations of existing
pre-trained data detection datasets. Applying PAC
exposes widespread data contamination issues in
even the most advanced LLMs, urging a communal
effort towards addressing these challenges.

8 Limitations

While PAC shows promising results in detecting
training data contamination in LLMs, its full poten-
tial is yet to be realized due to certain constraints.
The limited availability of detailed training data
information from LLMs providers restricts com-
prehensive validation across diverse models, un-
derscoring the method’s novelty yet implicating its
untapped applicability. Additionally, the efficacy of
PAC could be further enhanced with a more varied
dataset, suggesting its adaptability and scope for
refinement in varied LLMs. However, our current
computational resources limit the extent of experi-
ments, particularly on larger-scale LLMs, hinting
at the method’s scalability potential yet to be fully
explored.
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A Details of StackMIA

A.1 Stack Exchange

The Stack Exchange Data Dump contains user-
contributed content on the Stack Exchange network.
It is one of the largest publicly available reposito-
ries of question-answer pairs and covers a wide
range of subjects –from programming to garden-
ing, to Buddhism. Many large language models
therefore include this dataset in their training data
to enrich the training data and improve the model’s
ability to answer questions in different domains.

A.2 StackMIAsub

We follow Shi et al. (2023) to divide all the sam-
ples we collected into 4 categories based on length,
ranging from 32 words to 256 words. The specific
composition of StackMIA is shown in the Table 5.

Length 32 64 128 256 Total

Member 1596 1740 680 90 4106
Non-member 1615 1740 720 86 4161

Table 5: The samples composition of StackMIA dataset.

A.3 Synonymous Rewritten Data

As mentioned in Section 3.2, we rewrite the origi-
nal samples to simulate approximate memorization
scenarios by prompting GPT-3.5-turbo API. Part
of the prompts we used to rewrite the sentence are
listed as follows:

• “Rewrite the sentence with the smallest pos-
sible margin, keeping the same semantics
and do not complete anything, ensuring that
BLEU > 0.75 before and after the change:
‘text’ ”

• “Slightly rewrite the following sentence with-
out changing the sentence structure, and do
not complete any sentence: ‘text’ ”

• “Randomly replace 2 words in the giving sen-
tence with synonyms: ‘text’ ”

• “Replace 5 percent of the prepositions with a
synonym in the giving sentence: ‘text’ ”

The case comparison of the samples before and
after the synonymous transformation with Chat-
GPT is listed in Table 7.

Length 32 64 128 256 Total

Member 387 284 139 51 861
Non-member 389 258 111 31 789

Table 6: The samples composition of WikiMIA Dataset.

B Details of WikiMIA

WikiMIA is a benchmark for MIA((Shi et al.,
2023)), with data sourced from Wikipedia. For
non-member data, the dataset collects recent event
pages using January 1, 2023, as the cutoff date. For
member data, the dataset collects articles before
2017. The specific composition of WikiMIA is
shown in the Table 6.

C A Simple Proof of PAC method

Here we provide a mathematical proof why our
method can effectively distinguishes members and
non-members.

As mentioned in Equation 5, given a sample z,
the Polarized Distance can be briefly represented
as the difference between the two terms T1 and T2:

T1 =
1
K1

∑
ui∈MAX(z,k1)

logfθ(ui|u1, · · · , ui−1)

T2 =
1
K2

∑
ui∈MIN(z,k2)

logfθ(ui|u1, · · · , ui−1)

(9)
Each term can be scaled to the following inequality:

|z|
K1

T1 ⩾ Eu∈z[log fθ(u|·)]
|z|
K2

T2 ⩽ Eu∈z[log fθ(u|·)]
(10)

where E function denotes the expectation function
and · denotes the prefix tokens sequence. Then the
MinMax Distance can be represented as:

0 ⩾ LM = T1 − T2 ⩾ K1−K2
|z| Eu∈z[log fθ(u|·)]

(11)
Then Equation 6 can be further converted to:

K1−K2
|z| Eu∈z[log fθ(u|·)] ⩽
LM (z)− LM (σm(z)) ⩽

K2−K1
|σm(z)|Eu∈σm(z)[log fθ(u|·)]

(12)

Since the coefficient is constant, the threshold in-
terval of the final calculated indicator can be equiv-
alently expressed as:

Eu∈z[log fθ(u|·)] + Eu∈σm(z)[log fθ(u|·)]
(13)
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Among them, the former term can be considered as
a variant of the LLM training objective. Therefore,
the value of Formula 13 will change significantly
as z is fitted as member data. Moreover, there exists
a positive correlation between the posterior term
and the forward tendency according to Jin et al.
(2020). This means that the threshold intervals of
members and non-members are more sparse than
solely using the probability of z directly. Therefore,
our indicator significantly captures differences be-
tween members and non-members.

D Proof of Probability Extraction

Assume that the logit output of the model fθ(ui|·)
is l1, · · · , lN , and then the log-probability of ui can
be represented as:

log fθ(ui|·) = log eli∑M
j=1 e

lj
= li − log

∑N
j=1 e

lj

(14)
Then, the log-probability log f ′

θ(ui|·) after adding
a fixed bias γi to the logit of ui can be calculated
as:

log f ′
θ(ui|·) ≈ log eli+γi∑N

j=1 e
lj

= (li + γi)− log
∑N

j=1 e
lj

(15)

Then the original log-probability can be calculated
as:

log fθ(ui|·) ≈ log f ′
θ(ui|·)− γi (16)

E Baseline Details

E.1 Reference model comparison

Reference model-based methods target at training
reference models in the same manner as the target
model (e.g., on the shadow data sampled from the
same underlying pretraining data distribution). The
raw score of the original samples can be calibrated
with the average of the score in these reference
models. Due to the high cost of strictly training
a shadow LLM, we follow Carlini et al. (2021)
to choose a much smaller model trained on the
same underlying dataset. Specifically, we choose
LLaMA-7B as the reference model of LLaMA-
13B, LLaMA2-7B for LLaMA2-13B, GPT-Neo-
125M for GPT-Neo-2.7B, OPT-125M for OPT-
6.7B, Pythia-70M for Pythia-6.9B, StableLM 3B
for StableLM-7B. Specially, for those LLMs with-
out smaller models in the series, we use an approxi-
mate model trained on the mentioned same-dataset
or distribution in their official statement, includ-
ing GPT-Neo-125M for GPT-J-6B both trained on

the Pile (Gao et al.), GPT-Neo-125M for Falcon-
7B trained on the Pile and GPT2-124M (Radford
et al.) for two OpenAI base models (Davinci-002
and Babbage-002).

E.2 Neighborhood Attack via Neighbourhood
Comparison

This method is proposed by Mattern et al. (2023).
The main idea is to compare the neighbors’ losses
and those of the original sample under the target
model by computing their differences.

In our replication process, we followed the
method on official Github 8 to select key hyper-
parameters. Specifically, We randomly mask 30
percent of the tokens in the original sample with a
span length of 2 to generate 25 masked sentences
from the original sample and then use the T5-3b
mask-filling model to generate 25 neighbors.

To evaluate the score of a sample, we use the
formula as follows:

L(x)−
N∑ L(x̃)

N

σ

where σ is the standard deviation of the neighbours’
losses.

E.3 Min-K%
The Min-K% method, proposed by Shi et al. (2023),
is quite straightforward. It builds on the hypothe-
sis that a non-member example is more likely to
include a few outlier words with high negative log-
likelihood (or low probability), while a member
example is less likely to include words with high
negative log-likelihood. Specifically, Min-K% is
calculated as :

model(x) =
1

E

∑

xi∈Min−K%(x)

log p(xi|x1, ..., xi−1).

(17)
where x = x1, x2, ..., xN is the tokens in the
sentences, while log p(xi|x1, ..., xi−1) is the log-
likelihood of a token, xi.

In particular, we follow the original paper to set
K = 20 for detection in experiments.

F Descriptions of AUC score

To evaluate with AUC score, we first plot the ROC
curve through the True Positive Rate (TPR) and
False Positive Rate(FPR). The ROC curve is used to

8https://github.com/mireshghallah/neighborhood-
curvature-mia
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plot TPR versus FPR using different classification
thresholds. Lowering the classification threshold
causes more categories of items to be classified as
positive, thus increasing the number of false posi-
tives and true examples. AUC is then defined as the
Area Under the ROC curve, providing an aggregate
measure of the effect of all possible classification
thresholds.

G Sentiment Analysis

We further conducted syntax analysis experiments
on both member and non-member samples. The
specific results are shown in Figure 6.
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Figure 6: Sentiment analysis on WikiMIA & StackMIA
datasets. The X-axis represents the prediction score
given by AMD, and the Y-axis represents the sentiment
analysis score, with higher scores meaning positive and
lower scores meaning negative.

H More Experiments Demonstrations

The visualizing AUC results of training data detec-
tion across various models with different methods
are shown in Figure 7 & 8.
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Figure 7: The AUC results of training data detection
across various models with different methods on the
WikiMIA dataset.
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Figure 8: The AUC results of training data detection
across various models with different methods on the
StackMIAsub dataset.
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ori Density Functional Theory (DFT) is formulated to obtain ground state properties of atoms,
molecules and condensed matter. However, why is DFT not able to predict the exact band gaps
of semiconductors and insulators? Does it mean that the band gaps of semiconductors and
insulators are not the ground states?

syn Why is it that Density Functional Theory (DFT) cannot accurately predict the precise band
gaps of semiconductors and insulators, even though it is designed to determine the ground state
properties of atoms, molecules, and condensed matter? Does this imply that the band gaps of
semiconductors and insulators are not considered as ground states?

ori I am currently studying Electrical & Electronic Engineering. I wish to pursue Quantum
Mechanics or Quantum Computing as my research subject. Is it possible for me to do my
M.Tech. and then pursue my research subject? What are the prerequisites for studying these
subjects? I would be grateful if you could help me.

syn I am presently studying Electrical & Electronic Engineering. I desire to pursue Quantum
Mechanics or Quantum Computing as my research topic. Is it feasible for me to do my M.Tech.
and then pursue my research topic? What are the requirements for studying these subjects? I
would be thankful if you could assist me.

ori How is the meaning of a sentences affected by chosing one of those words? For instance, what’s
the different between The screech cicadas reverberated through the forest. and The screech
cicadas reverberated throughout the forest.

syn How does the choice of one of those words affect the meaning of a sentence? For example,
what is the difference between T̈he screech cicadas reverberated through the forest.änd T̈he
screech cicadas reverberated throughout the forest.?̈

ori The majority of definitions give the same meaning - P̈andora’s boxïs a synonym for ä source of
extensive but unforeseen troubles or problems.Äre there any other metaphors or phrases with
the same meaning?

syn Do any other metaphors or phrases convey the same meaning as the majority of definitions,
which state that P̈andora’s boxïs synonymous with ä source of extensive but unforeseen troubles
or problems?̈

ori The majority of definitions give the same meaning - P̈andora’s boxïs a synonym for ä source of
extensive but unforeseen troubles or problems.Äre there any other metaphors or phrases with
the same meaning?

syn Do any other metaphors or phrases convey the same meaning as the majority of definitions,
which state that P̈andora’s boxïs synonymous with ä source of extensive but unforeseen troubles
or problems?̈"

Table 7: The cases before and after are synonymous rewritten with ChatGPT. The listed cases are selected from the
member data with a length between 32 and 64.
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