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Abstract

Visually-rich document information extraction
(VIE) is a vital aspect of document under-
standing, wherein Semantic Entity Recogni-
tion (SER) plays a significant role. How-
ever, few-shot SER on visually-rich docu-
ments remains relatively unexplored despite
its considerable potential for practical appli-
cations. To address this issue, we propose
a simple yet effective Plug-and-Play Tag-
guided method for few-shot Semantic Entity
Recognition (PPTSER) on visually-rich doc-
uments. PPTSER is built upon off-the-shelf
multi-modal pre-trained models. It leverages
the semantics of the tags to guide the SER
task, reformulating SER into entity typing and
span detection, handling both tasks simulta-
neously via cross-attention. Experimental re-
sults illustrate that PPTSER outperforms ex-
isting fine-tuning and few-shot methods, espe-
cially in low-data regimes. With full training
data, PPTSER achieves comparable or superior
performance to fine-tuning baseline. For in-
stance, on the FUNSD benchmark, our method
improves the performance of LayoutLMv3-
base in 1-shot, 3-shot and 5-shot scenarios
by 15.61%, 2.13%, and 2.01%, respectively.
Overall, PPTSER demonstrates promising gen-
eralizability, effectiveness, and plug-and-play
nature for few-shot SER on visually-rich doc-
uments. The codes will be available at
https://github.com/whlscut/PPTSER.

1 Introduction

Information extraction from visually-rich docu-
ments (VIE) is a process that concentrates on ex-
tracting pertinent information from various sources
such as scanned images, documents, and PDF files.
It effectively leverages layout and visual cues to de-
code the content enclosed within these documents
(Xu et al., 2020). As an important part of VIE,
Semantic Entity Recognition (SER) aims to extract
entity spans from the visually-rich document. SER

has been hailed as a significant advancement in
the realm of document intelligence, and has found
widespread applications in numerous sectors.

The advent of multi-modal pre-trained models
(Xu et al., 2020; Li et al., 2021c; Gu et al., 2021;
Huang et al., 2022b; Yu et al., 2023) has ushered
in a rapid evolution in SER methodologies. These
models, pre-trained on a large corpus of scanned
documents in a self-supervised manner, have sig-
nificantly enhanced the comprehension ability of
SER. Despite the remarkable achievements of the
multi-modal pre-trained models, they often rely on
extensive data for fine-tuning. However, acquiring
a large volume of well-annotated SER data poses
significant challenges such as: (1) Acquiring such
data necessitates substantial financial resources and
time. Annotators are required to label a multitude
of OCR detection boxes in the document, adhering
to meticulously designed guidelines. Identification
of content within a box and accurately assigning
labels to them are also tedious tasks. (2) The avail-
ability of data is often restricted due to privacy
concerns. In scenarios involving sensitive infor-
mation, such as invoices and insurance documents,
data accessibility is severely limited due to the con-
fidential nature of this information.

Despite the scarce research (Cheng et al., 2020;
Yao et al., 2021; Wang and Shang, 2022) on few-
shot Semantic Entity Recognition for visually-rich
documents (few-shot SER), results have shown lim-
itations in terms of generality and performance, and
were limited to the specific application scenario.
This paper, inspired by the comprehension capabil-
ities of pre-trained models and the selective focus
nature of the attention mechanism, introduces a
novel approach called PPTSER, a Plug-and-Play
Tag-guided method for few-shot Semantic Entity
Recognition on visually-rich documents. The un-
derlying principle of PPTSER consists of three
main components: (1) Semantic Understanding
and Alignment: Words related to SER tags are
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Figure 1: (a) Illustration of the traditional fine-tuning method. Doc. Tok. refers to Document Tokens. (b) Overview
of our PPTSER method. PPTSER replaces the last self-attention block with an improved attention block and omits
an extra classifier layer compared to traditional fine-tuning, which has less modules and parameters.

used as a prompt and are concatenated with the
document’s text tokens. This combined input is
then fed into a multi-modal pre-trained model. The
motivation behind this is that the pre-trained model
is expected to understand the semantics of both
the document tokens and the tag-related prompt,
thereby bringing the hidden states of the tokens
and tag-related words for a specific entity type
closer together. (2) Decoupling of SER task: SER
task is segmented into Entity Classification and
Entity Boundary Detection. This division aims to
facilitate the resolution of boundary determination
among adjacent entities of the same category within
visually-rich documents. (3) Efficient Usage of
Multi-head Attention: The attention weight ob-
tained from the last attention block between the
tag-related prompt and document tokens is directly
used as the probability of tokens belonging to dif-
ferent tags. This mechanism, with different heads
detecting various spans, is ideal for the SER task
with numerous entity spans. By fully exploiting
the weighted focus nature of the attention mech-
anism, the model eliminates the value transform
layer, feed-forward layer in the last attention block,
and omits a separate classifier layer compared to
traditional fine-tuning methods (as depicted in Fig-
ure 1), As a result, the total parameter is reduced.

Extensive experiments are conducted to show the
PPTSER’s effectiveness on commonly-used SER
benchmarks, covering multiple languages, in few-
shot to the full training set settings, and using dif-
ferent mainstream multi-modal pre-trained models.

The main contributions of this paper can be sum-
marized as follows:

• We have demonstrated that the semantics of
labels can effectively guide the SER task and
have proposed a plug-and-play method ideal
for few-shot SER on visually-rich documents.
To the best of our knowledge, we are the first

to propose a pluggable method that has shown
effectiveness on various pre-trained models
and languages.

• By innovatively leveraging the multi-head
attention mechanism embedded in the pre-
trained model, our method successfully ex-
tracts dense entities on visually-rich docu-
ments without adding any additional parame-
ters.

• Experimental results show the superiority of
our method over the traditional fine-tuning ap-
proaches in both few-shot and full-training-set
scenarios. Moreover, PPTSER outperforms
existing few-shot SER methods by significant
margin, thereby underscoring its overall effi-
cacy.

2 Method

2.1 Task Formulation

SER is usually formulated as a sequence labeling
task. For given tokens from the document x =
[xi], i = 1, 2, ..., n, SER aims to assign a label yi ∈
C for each token xi, where C is the SER label space.
Subsequently, entity spans would be analyzed from
the labeled tokens according to a specific scheme,
such as BIO (Ramshaw and Marcus, 1995) and IO
(Tjong Kim Sang and De Meulder, 2003).

In this paper, we primarily focus on the In-
Label-Space setting for few-shot SER. Specifi-
cally, the pre-trained model is firstly fine-tuned
on a small number of M annotated documents with
label space C and then directly evaluated on the test
set with the same label space C. This task presents
a significant challenge as the model needs to learn
the SER task with only limited training samples.

It is notable that in the context of few-shot SER,
the few-shot setting of N-way K-shot indicates that
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Figure 2: The overall architecture of PPTSER. Other Embeddings may include various embeddings such as Visual
Embedding, Type Embedding, among others, with their presence and format dependent on the type of the pre-trained
model used. In this architecture, the tokens extracted from documents and the tag-related prompt are concatenated
and subsequently encoded with the pre-trained model. The attention weight, obtained from the last attention block
between tokens and the prompt, is then used to ascertain whether the tokens correspond to the respective label type.

each of the N categories has K documents contain-
ing entities of that category as the support set, as
visually-rich documents are annotated at document
level. Moreover, a document often contains entity
spans of distinct types, causing potential overlaps
between the support sets for different entity types
across N categories. Consequently, the overall
number of annotated documents M < N ×K.

2.2 PPTSER

The fundamental concept and flow chart of
PPTSER is shown in Figure 2. The method be-
gins with the construction of a prompt based on
SER tags. This prompt is then concatenated with
the document tokens and jointly encoded using a
unified pre-trained model. Within the transformer
architecture of our model, attention weights be-
tween document tokens and the tag-related prompt
are computed in hierarchical attention blocks. We
use the attention weight between the tag-related
prompt and document tokens, which can be consid-
ered as a form of cross-attention, obtained from the
last attention block as the probability distribution
of tokens belonging to different SER entity types.

2.2.1 Tag-related Prompt Construction and
Target Generation

For an SER task with the label space C, we need
to construct tag-related words c̃i for each ci ∈ C,
and then the tag-related prompt C̃ = {c̃i}, i =

1, 2, ...m is built. In PPTSER, we simply use the
tag names as the tag-related words.

To enable PPTSER to accurately identify the
boundaries of entity spans, we employ BIO tag-
ging scheme in our method. However, when
dealing with an SER task involving entity types
E = {ei|e0 = Other}, i = 0, 1, 2, ...,m
(where Other represents the entities that are not
of interest), the label space would be C =
{e0, Bei , Iei}, and the prompt would be C̃ =
{e0, beginning of ei, inner of ei}, where i =
1, 2, ...,m. In such a scenario, the prompt C̃ be-
comes not only semantically redundant but also
excessively long, potentially impeding the effec-
tive semantic learning of the document tokens.

Thus, we reframe the SER task with a BIO tag-
ging scheme into two separate tasks: entity typing
and span detection. Entity typing involves assign-
ing an entity type for each document token, while
span detection aims to identify whether tokens are
at the beginning or interior of an entity span.

To further clarify, consider an SER task using
BIO tagging scheme with a predefined entity type
set E = {ei|e0 = Other}, i = 0, 1, 2, ...,m.
For entity typing, the label space and the tag-
related prompt would be Cent. = {cent.i |cent.i =
ei} and C̃ent. = {c̃ent.i |c̃ent.i = cent.i },where
i = 0, 1, 2, ...,m; And for span detection, the
label space and the prompt would be Cdet. =
{cdet.1 , cdet.2 } and C̃det. = {c̃det.1 , c̃det.2 }, where
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Figure 3: (a) PPTSER at training stage. Losses of entity typing and span detection are computed separately and then
combined for the overall loss calculation. And −1 signifies that the loss at those points is disregarded. (b) PPTSER
at inference stage. Combined predictions of entity typing and span detection are utilized to analyze the entity spans.

Cdet. = C̃det. = {beginning, inner}; Then the
full label space and prompt would be C = Cent. ∪
Cdet. = {cent.i , cdet.j } and C̃ = C̃ent. ∪ C̃det. =

{c̃ent.i , c̃det.j }, where i = 0, 1, 2, ...,m; j = 1, 2.
For a token with an entity type of ei(i ̸= 0) located
at the beginning/inner of an entity span, the cor-
responding labels would be ci for entity typing and
beginning/inner for span detection. However,
for the token with an entity type of Other, the
specific location of it within an entity span is irrele-
vant, and the loss for span detection is ignored here.
Consequently, we can formulate the entity typing
target yent. = [yent.i ] and the span detection target
ydet. = [ydet.i ], where i = 1, 2, ..., n.

It is worth emphasizing that our PPTSER frame-
work handles entity typing and span detection si-
multaneously. And prompts for them C̃ent. and
C̃det. are encoded in parallel, allowing them to ben-
efit from each other during the learning process.

2.2.2 Cross-attention within the Pre-trained
Model

Once the tag-related prompt C̃ is constructed, it
is concatenated with the document tokens x =
[xi], i = 1, 2, ..., n, forming a boosted input x′ =
x
⊕

C̃ = [xi, c̃
ent.
j , c̃det.k ], i = 1, 2, ..., n; j =

0, 1, 2, ...,m; k = 1, 2. Then, x′ is used as the
Text Embedding encoded in the pre-trained model.
Notably, when C̃ involves other kinds of embed-
ding, such as positional or visual embeddings, they
are set to 0, since C̃ are hypothetical tokens not
found in the document. Let’s denote the hidden
states from the second last block as Ht−1:

Ht−1 = [ht−1
i , h̃t−1

j , h̃t−1
k ] (1)

where ht−1
i , h̃t−1

j , h̃t−1
k are the hidden states for

x, C̃ent., C̃det., correspondingly.
Then, Ht−1 is partitioned into multiple seg-

ments Ht−1
i along the channel dimension, where

queries Qt
i and keys Kt

i of the ith attention head

are transformed as follows:

Qt
i = (W t

i )qH
t−1
i (2)

Kt
i = (W t

i )kH
t−1
i (3)

where (W t
i )q and (W t

i )k are learnable weights em-
bedded in the last attention block. And the self-
attention weight of distinct heads is computed as
below:

(W t
i )att. = Qt

i(K
t
i )

T (4)

where (W t
i )att. is a matrix with the shape of (n+

m + 3) × (n + m + 3). From this matrix, we
extract a sub-matrix (W t

i )
′
att. that takes the prompt

as queries and the document tokens as keys, which
possesses the shape of (m+3)×n. (W t

i )
′
att. can be

viewed as a form of cross-attention within the self-
attention, which depicts the relationship between
the tag-related prompt and document tokens.

We hypothesize that distinct heads of the atten-
tion mechanism enable the prompt to focus on dis-
tinct entity spans, which is suitable for the entity-
rich scenario in visually-rich documents. We select
the maximum weight across heads to get a sum-
mary relationship between the prompt and tokens:

(W t)
′
att. = max

i∈{1,2,...,l}
(W t

i )
′
att. (5)

Further, (W t)
′
att. is partitioned into two com-

ponents, namely (W t)ent.att. and (W t)det.att. as shown
in Figure 3(a). These components use the hidden
states of C̃ent. and C̃det. as queries, and possess the
shape of (m+ 1)× n and 2× n, correspondingly.
(W t)ent.att. and (W t)det.att. represent the probability
distribution for document tokens belonging to dis-
tinct tags. The losses are then calculated as follows:

Lent. = − 1

n

n∑

i=1

exp(went.
pi )∑m

j=0 exp(w
ent.
ji )

(6)

Ldet. = − 1

n

n∑

i=1

exp(wdet.
qi )

∑2
j=1 exp(w

det.
ji )

(7)
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where Lent. and Ldet. are the losses for entity typ-
ing and span detection, went.

ij and wdet.
ij are el-

ements in (W t)ent.att. and (W t)det.att. , and yent.i =
cent.p , ydet.i = cdet.q . And the total loss is formu-
lated as follows:

Loss = Lent. + αLdet. (8)

Here, α is the ratio factor to balance the losses,
and we set α = 0.1 for models with segment-level
positional embeddings and α = 1.5 for models
with word-level positional embeddings.

2.2.3 Decoding during the Inference Stage
The inference stage is shown in Figure 3(b). We
first apply the argmax operation on (W t)ent.att. and
(W t)det.att. along distinct prompt words to get the
predicted tag with the highest probability:

ŷent.i = argmax
j∈{0,1,2...,m}

went.
ji (9)

ŷdet.i = argmax
j∈{1,2}

wdet.
ji (10)

Then the prediction with BIO tagging scheme
ŷ = [ŷi], i = 1, 2, ..., n is formulated as follows:

ŷi =





Bŷent.
i

, ŷent.i ̸= Other, ŷdet.i = beginning

Iŷent.
i

, ŷent.i ̸= Other, ŷdet.i = inner

Other , ŷent.i = Other
(11)

Finally, the entity spans are analyzed from ŷ us-
ing the BIO tagging scheme. Notably, spans not
conform to BIO scheme, especially those starting
with a token predicted as ŷdet.i = inner, are la-
beled as Other. This operation, aimed at enhanc-
ing predicting accuracy, is applied in both PPTSER
and methods we compared to for a fair comparison.

To provide a more vivid demonstration of our
method, let’s suppose an example from the FUNSD
dataset, with the document content "... CASE
TYPE: Asbestos ... 82504862", where "..." in-
dicates omitted parts. Here, "CASE TYPE:" be-
longs to the entity type of question, "Asbestos"
to the entity type of answer, and "82504862" to
other. Assuming the tokenizer splits the doc-
ument into "CASE", "TYPE:", "Asbestos", and
"82504862", then x1 = "CASE", x2 = "TYPE:",
x3 = "Asbestos", x4 = "82504862" and their la-
bels for entity typing and span detection would
be yent. = [question, question, answer, other]
and ydet. = [beginning, inner, beginning,−1]
in Figure 3.

Subsequently, "CASE", "TYPE:", "Asbestos",
and "82504862" as document tokens are concate-
nated with the full tag-related prompt, and form
the boosted input x′ = "CASE TYPE: Asbestos
82504862 other question answer header beginning
inner". Then, x′ is input into the multi-modal pre-
trained model as the Text Embedding to obtain the
multi-head attention weight and the aggregated at-
tention weight from the last block, as shown in
Figure 2.

During the training stage, as shown in Figure
3(a), the aggregated attention weight is split into
attention weights between "other question answer
header" and document tokens, as well as "begin-
ning inner" and document tokens, which are then
used to calculate the losses for entity typing and
span detection, respectively, culminating in a com-
bined total loss. As for the inference stage shown
in Figure 3(b), we select the document tokens with
the highest probability for "other question answer
header" and "beginning inner" as ŷent. and ŷdet.,
then combine them to get the predictions under
BIO tagging scheme ŷ following the procedure de-
scribed previously. And the entity spans are finally
analyzed from ŷ, forming the output of { question:
"CASE TYPE:" } and { answer: "Asbestos" }.

3 Experiments

3.1 Experimental Settings

Benchmarks. We conducted experiments on
several widely used SER benchmarks, including
FUNSD (Jaume et al., 2019), CORD (Park et al.,
2019) and XFUND (Xu et al., 2022). FUNSD
targets form understanding with 199 scanned docu-
ments related to market reports, commercials, and
more. CORD, centered on receipt understanding,
features both coarse (e.g., menu, total) and fine-
grained (e.g., menu.unitprice, menu.price) annota-
tions. This benchmark provides an official split of
training, validation and test sets, and we strictly
follow the procedure by selecting the model weight
that achieved the best performance on the valida-
tion set for testing on the test set. XFUND focuses
on document understanding covering multiple lan-
guages. In this article, our primary focus is on the
Chinese subset of XFUND, denoted as XFUND-zh.

Few-shot Settings. PPTSER was evaluated on
1-shot, 3-shot, 5-shot, 7-shot and the full training
set scenarios. With no official few-shot divisions
in benchmarks mentioned above, we established
our own following the process in Appendix A. We
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Modality Text + Layout Text + Layout + Image

Methodology
BROS (AAAI 22) LiLT (ACL 22) LayoutLMv2 (ACL 21) LayoutLMv3 (MM 22)
FT Ours FT Ours FT Ours FT Ours

FUNSD

1-shot 48.08 54.39 ↑6.31 52.60 55.64 ↑3.04 48.22 52.17 ↑3.95 46.37 61.98 ↑15.61

3-shot 64.34 67.70 ↑3.36 67.64 69.17 ↑1.52 61.66 63.64 ↑1.98 74.73 76.86 ↑ 2.13

5-shot 67.77 70.64 ↑2.87 73.29 75.26 ↑1.97 65.86 67.49 ↑1.63 79.52 81.53 ↑ 2.01

7-shot 68.21 71.96 ↑3.75 73.39 75.71 ↑2.32 66.55 68.83 ↑2.28 79.84 81.60 ↑ 1.76

Full Data 83.83 83.91 ↑0.08 88.95 89.07 ↑0.12 83.52 83.72 ↑0.20 91.15 92.01 ↑ 0.86

CORD

1-shot 66.28 68.48 ↑2.20 70.04 75.57 ↑5.54 69.61 69.97 ↑0.36 70.35 74.19 ↑ 3.84

3-shot 79.02 79.61 ↑0.59 81.64 83.83 ↑2.19 80.63 81.66 ↑1.03 82.05 85.27 ↑ 3.22

5-shot 84.04 84.37 ↑0.34 85.52 87.06 ↑1.54 84.32 84.53 ↑0.21 85.83 87.77 ↑ 1.94

7-shot 83.68 84.09 ↑0.42 85.35 87.73 ↑2.38 84.76 85.31 ↑0.55 86.94 88.48 ↑ 1.54

Full Data 95.72 95.75 ↑0.03 95.80 96.04 ↑0.25 95.20 95.63 ↑0.44 96.34 96.39 ↑ 0.05

XFUND-zh

1-shot - - 60.10 67.64 ↑7.54 60.28 68.26 ↑7.98 52.92 56.65 ↑ 3.73

3-shot - - 72.61 74.17 ↑1.56 74.37 77.20 ↑2.83 69.08 75.24 ↑ 6.16

5-shot - - 77.40 79.40 ↑2.00 81.43 82.34 ↑0.91 75.25 79.26 ↑ 4.01

7-shot - - 80.47 81.38 ↑0.91 82.25 83.66 ↑1.41 77.85 80.97 ↑ 3.12

Full Data - - 90.47 90.61 ↑0.14 90.25 90.79 ↑0.54 91.61 92.19 ↑ 0.58

Table 1: F1 score (%) of PPTSER and traditional Fine-tuning methods. F1 score in Bold is better between our
PPTSER and Fine-tuning. FT refers to Fine-tuning methods.

selected as few samples as possible while meeting
the few-shot setting, which aligns with the real-
world application. Due to the inherent instability
of few-shot experiments, we randomly generated
5 different divisions for every scenario and tested
each with 2 diverse random seeds. Hence, our ex-
periment result is the average of 10 runs, ensuring
the reliability and credibility of our findings.

3.2 Comparisons with Existing Fine-Tuning
Methods

Setup. The foundation for our method is built
upon several widely used multi-modal pre-trained
models, incorporating different combinations of
modalities as input. This includes BROS (Hong
et al., 2022) and LiLT (Wang et al., 2022a) with tex-
tual and layout input, and LayoutLMv2 (Xu et al.,
2021a) and LayoutLMv3 (Huang et al., 2022b)
with textual, layout and image input. Since BROS
only supports English, we only tested it on FUNSD
and CORD. For testing on XFUND-zh, we used
LayoutXLM (Xu et al., 2021b), which is the mul-
tilingual version of LayoutLMv2. In our experi-
ments, we utilized base-size pre-trained models.

Results. Table 1 showcases the performance of
PPTSER against traditional fine-tuning methods.
The results clearly demonstrate that our PPTSER
outperforms traditional fine-tuning methods across
all tested scenarios and benchmarks. This under-
scores the superior performance of PPTSER in di-
verse language contexts with various base models.

Overall, both PPTSER and the fine-tuning
method demonstrate improved performance with

increased training data. However, our PPTSER con-
sistently outperforms previous fine-tuning meth-
ods in all few-shot settings, especially with ex-
ceptionally scarce data. In the 1-shot scenario on
FUNSD, where only a single annotated document
is available, PPTSER achieves gains of +6.31%
with BROS, +3.04% with LiLT, +3.95% with Lay-
outLMv2 and the highest gain of +15.62% with
LayoutLMv3, emphasizing its effectiveness in data-
scarce situations. Notably, even when trained with
the full training data, our PPTSER still achieves
comparable performance to the fine-tuning method,
and even outperforms it in certain scenarios. For
example, we observe a gain of +0.86% on FUNSD
with LayoutLMv3. This full data setting is often
neglected in other few-shot research, further un-
derscoring the superiority of our approach when
dealing with varying amounts of available data.

Our findings demonstrate that PPTSER is highly
adaptive to different amounts of training data with
distinct base models, making it an effective method
for addressing the SER problem.

3.3 Comparisons with Existing Few-shot
Methods

Setup. We selected the PPTSER models that per-
formed better under different modality settings, de-
noted as PPTSERLiLT and PPTSERLMv3, and com-
pared them with previous few-shot methods. For
a comprehensive comparison, we re-implemented
LASER (Wang and Shang, 2022) on our few-shot
divisions. However, it can only handle the coarse-
level typing for CORD (CORD-Lv1) and is limited
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Modality Text Text + Layout Text + Layout + Image

Methodology
EntLM

(NAACL 22)
COPNER

(COLING 22)
LASER

(ACL 22)
COPNERLiLT

(COLING 22)
PPTSERLiLT

(Ours)
COPNERLMv3

(COLING 22)
PPTSERLMv3

(Ours)

FUNSD

1-shot 24.32 19.37 38.47 55.15 55.64 51.19 61.98
3-shot 34.94 31.21 44.88 68.66 69.17 75.84 76.86
5-shot 39.55 35.13 49.31 73.43 75.26 77.55 81.53
7-shot 41.41 37.31 52.56 73.35 75.71 78.53 81.60

Full Data 67.42 64.58 69.23 87.74 89.07 91.26 92.01

CORD-Lv1

1-shot 74.29 68.61 66.80 86.97 90.50 86.98 90.02
3-shot 83.68 82.25 76.09 94.16 94.79 94.03 95.13
5-shot 87.11 86.08 82.23 94.86 96.21 95.74 96.21
7-shot 87.31 86.74 83.61 95.04 96.13 96.06 96.51

Full Data 95.93 95.90 96.56 99.21 99.42 99.45 99.45

CORD

1-shot 57.86 54.52 - 70.05 75.57 67.33 74.19
3-shot 71.68 71.32 - 81.27 83.83 80.07 85.27
5-shot 77.74 78.98 - 84.80 87.06 85.30 87.77
7-shot 78.63 78.63 - 85.76 87.73 86.87 88.48

Full Data 93.50 94.16 - 95.74 96.04 95.79 96.39

XFUND-zh

1-shot 26.38 23.29 - 48.76 67.64 54.26 56.71
3-shot 37.22 37.49 - 64.59 74.17 71.27 75.24
5-shot 43.54 44.36 - 69.03 79.40 76.37 79.26
7-shot 46.62 46.90 - 74.44 81.38 79.29 80.97

Full Data 66.20 67.11 - 89.17 90.61 91.99 92.19

Table 2: F1 score (%) of PPTSER and other Few-shot methods. F1 score in Bold is the best, and that with underline
is the second best.
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Figure 4: F1 score (%) of PPTSER on CORD bench-
mark with different settings when obtaining the attention
weight from different blocks.

to the English language. Since research on few-
shot SER is rather limited, we selected two other
few-shot NER methods for comparison. Specifi-
cally, We chose COPNER (Huang et al., 2022a)
and EntLM (Ma et al., 2022b) due to their simi-
lar In-Label-Space setting with ours. Considering
COPNER can also be used as a pluggable method,
we also integrated it with LayoutLMv3 and LiLT,
denoted as COPNERLiLT and COPNERLMv3.

Results. The overall experimental results are
presented in Table 2. The results clearly show that
PPTSER outshines existing few-shot NER and SER
methods by a large margin. Interestingly, COPNER
shows some degree of pluggability with various
multi-modal pre-trained models, but PPTSER still
outperforms it across all settings and benchmarks.

In summary, our PPTSER surpasses existing few-

shot NER and few-shot SER methods on various
visually-rich documents, showcasing its effective-
ness in handling few-shot SER challenge.

4 Ablation Study

We have conducted extensive analyses of our
PPTSER to ensure its effectiveness and rationality.
For convenience, experiments are conducted on the
CORD dataset using PPTSER building upon LiLT.

Origin of Attention Weights. To pinpoint the
source of superiority in PPTSER, we explored
whether it stems from our meticulous design or the
decreased over-fitting achieved through parameter
reduction. We extracted attention weights from var-
ious blocks, including the default 12th block and
shallower 7th ∼ 11th block. And the experimen-
tal results shown in Figure 4 reveal that extracting
attention weights from the last block is more ef-
fective than from other blocks, which has greatly
assured the effectiveness of our design.

Effectiveness of Decoupling Strategies. Table
3 also shows comparisons with different frame-
works of prompts. In this context, default set-
ting refers to our design to decouple the SER task
into entity typing and span detection then process-
ing them concurrently, while plain BIO prompt
refers to the direct usage of the aforementioned
C̃ = {e0, beginning of ei, inner of ei} as the
prompt, without decoupling. The result shows that
our decoupling avoids disrupting the language mod-
eling of document tokens and performs better.
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Model
Designs

Baseline Decoupling Strategies Prompt Engineering Aggregation Stratergies
default setting plain BIO prompt unrelated words random embeddings mean single head

1-shot 75.57 74.28 70.80 71.43 74.43 75.21
3-shot 83.83 82.41 82.69 83.07 83.05 83.92
5-shot 87.06 86.25 85.78 86.29 86.64 86.98
7-shot 87.73 86.49 86.42 86.95 86.74 87.24
Full Data 96.04 95.29 96.26 95.72 96.21 96.06

∆ - -1.10 -1.66 -1.35 -0.63 -0.17

Table 3: F1 score (%) of PPTSER on CORD benchmark with different designs. ∆ denotes the average deviation of
the F1 score relative to the default setting.

Methodology
BROS (AAAI 22) LiLT (ACL 22) LayoutLMv2 (ACL 21) LayoutLMv3 (MM 22)

FT Ours FT Ours FT Ours FT Ours

FUNSD 108.91M 103.59M 130.17M 123.81M 200.29M 194.38M 125.33M 119.42M
CORD 108.95M 103.59M 130.22M 123.81M 200.33M 194.38M 125.96M 119.42M
XFUND-zh - - 130.17M 123.81M 200.29M 194.38M 125.33M 119.42M

Table 4: Parameters of our PPTSER and traditional Fine-tuning methods. The metric in Bold indicates the method
with fewer parameters. FT refers to Fine-tuning method.

Prompt Engineering. We evaluated PPTSER
using diverse prompt types. Beyond the default
setting that uses tag names as prompts, we ex-
plored an unrelated words setting by replacing the
whole prompts with irrelevant words like apple
and orange. In the random embeddings setting, we
replaced the whole prompt’s text embedding with
random tensors. As Table 3 indicates, the default
setting yields the highest score, suggesting the pre-
trained model does grasp the prompt’s semantics,
and tag semantics can direct the SER task. This in-
dicates the careful selection and design of prompts
can markedly influence model performance.

Aggregation Strategies of Attention Weights.
Table 3 compares how various strategies to aggre-
gate attention weights across different heads affect
performance. While default setting and mean refer
to obtain the maximum and average value across
attention weighs of distinct heads, single head uses
just a single head of the attention weights to gen-
erate the final probability. The results indicate that
the max operation outperforms others, which aligns
with our hypothesis that different attention heads
focus on entities with different semantics.

Parameter Efficiency. The parameter compar-
isons of our PPTSER methods and traditional fine-
tuning are presented in Table 4. As the parameters
might vary across diverse models and benchmarks,
we offer a concise breakdown of the results from
the methods we have tested. The results illustrate
that our PPTSER has fewer parameters in compari-
son to traditional fine-tuning methods. For a more
detailed analysis, please refer to Appendix E.

5 Related Works

SER on Visually-rich Documents. Although
some early works of SER relied on heuristic al-
gorithms (Simon et al., 1997; Schuster et al., 2013),
the majority of research focused on neural network-
based methods. Some of them leveraged textual
features (Chiu and Nichols, 2016), visual features
(Guo et al., 2019), or combined them with layout
features (Yu et al., 2021; Wang et al., 2021a) to ad-
dress this issue, but the emergence of multi-modal
pre-trained models has revolutionized SER. These
models are jointly pre-trained on a large-scale un-
labeled document dataset with textual, layout, and
even visual cues, so they have the potential to bet-
ter understand a structured document. LayoutLM
(Xu et al., 2020) was the first to combine textual
and OCR positional features at the pre-training
stage. Later, LayoutLMv2 (Xu et al., 2021a) and
LayoutLMv3 (Huang et al., 2022b) further inte-
grated visual features into the pre-training process
with different architectures. Moreover, Wang et al.
(2022a) advanced the model architecture with a
language-agnostic layout transformer in their work,
LiLT. Alongside the advancements in model struc-
tures, other works (Appalaraju et al., 2021; Li et al.,
2021b,a; Hong et al., 2022; Luo et al., 2023) have
focused on the diverse pre-training tasks to facili-
tate the fusion of diverse modalities at pre-training
stage. While these advancements have improved
SER capabilities to some extent, their few-shot
learning abilities still require further examination.

Few-shot SER on Visually-rich Documents.
Unlike SER, few-shot SER is not fully explored
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yet. Cheng et al. (2020) proposed to utilize graph-
matching techniques (Zanfir and Sminchisescu,
2018), representing documents as graphs with
nodes as OCR-scanned boxes. For an unseen docu-
ment, the type of entities was determined by com-
paring the relationships in the graph of unseen doc-
ument with those in the graphs of support docu-
ments. Yao et al. (2021) also adopted a graph-
matching approach to address this issue, but the
entity type was determined based on the relation-
ships in different forms with more complex solvers.
Taking a different way, Wang and Shang (2022)
introduced a novel labeling scheme for SER. They
reshaped SER as a generative task, and used Lay-
outReader (Wang et al., 2021b) for SER label gener-
ation. Although these studies preliminary explored
few-shot SER, they lacked generality and plugga-
bility, and their performances in various scenes
require further exploration and improvement.

Few-shot NER in Plain Texts. While few-shot
SER on visually-rich documents has seen limited
exploration, there has been extensive research on
few-shot Named Entity Recognition (NER) in plain
texts (Wang et al., 2022b; Das et al., 2022; Ma et al.,
2022a; Cheng et al., 2023). However, only few of
these studies have considered the scenario where
only limited data in the target domain is available.
Huang et al. (2022a) proposed using the NER tag
as a prompt and employing contrastive learning to
address this issue. On the other hand, Ma et al.
(2022b) reformulated few-shot NER as a Language
Modeling task and used the pre-trained Masked
Language Model head to predict a word related
to the entity type for each text token. However,
since these methods are designed to address the
NER problem with sparse entities in plain texts,
they might not be suitable for entity-rich scenarios
in visually-rich documents. Additionally, they do
not emphasize the issue of detecting entity bound-
aries, without which adjacent entities of the same
type might be erroneously merged into one. The
comparison with two representative few-shot NER
methods also show the effectiveness of our method.

6 Conclusion

In this paper, we present PPTSER, an innovative
and efficient strategy for few-shot entity recogni-
tion on visually-rich documents using a plug-and-
play, tag-guided approach. PPTSER redefines the
SER task as a dual-function operation of entity
typing and span detection, and utilizes the atten-

tion weight between document tokens and prompts
related to SER tags as the target probability distri-
butions. Our findings show that PPTSER is both
effective and versatile in various data situations,
from few-shot to full data scenarios. In the future,
we plan to further investigate the capabilities of
PPTSER across a range of VIE tasks like Entity
Linking. In addition, we aim to explore PPTSER’s
potential in other few-shot scenarios, particularly
those outside of the In-Label-Space setting. It is
our hope that our work will spark further research
and advancements in the realm of few-shot SER.

Limitations

Due to space constraints, our exploration of the
few-shot SER setting is primarily limited to the
In-Label-Space. Future research is essential to in-
vestigate the potential applications of our PPTSER
in other few-shot settings and its adaptability to
additional VIE tasks.

Ethical Considerations

Our proposed PPTSER is a purely methodological
innovation, which inherently avoids direct negative
social impacts. By leveraging the self-attention
mechanism within multi-modal pre-trained models
without adding extra modules, it does not intro-
duce additional ethical risks beyond those already
present in the existing multi-modal pre-trained
models.
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A Few-shot Divisions Generation

To cater to the real-world application scenarios, we
have organized our few-shot divisions from the full
training set with Algorithm 1. Our goal was to ran-
domly select the minimum number of documents
that satisfy the N-way K-shot requirement of each
of the N categories has K documents containing
entities of that category as the support set.

It is worth noticing that in the context of few-
shot SER on visually-rich documents, the few-shot
setting of N-way K-shot signifies that each of the
N categories has K documents containing entities
of that category as the support set, instead of there
are K entity spans for each of N entity types as
the support set for the setting of few-shot NER on
plain texts.

B Implementation Details

B.1 Implementation Details of PPTSER

We used one NVIDIA 3090 to fine-tune our model
with AdamW optimizer. The learning rate is 5e−5
with a warm up ratio of 0.1, and we fine-tuned
the model for 2000 iterations with a batch size of
8 by default. Besides the default augmentation
strategies for images adopted in LayoutLMv2 and
LayoutLMv3, we did not employ any additional
augmentation strategies.

B.2 Modification on few-shot NER method for
visually-rich documents

In Section 3.3, we mentioned that we adapted two
methods originally used for few-shot NER on plain
text for few-shot SER on visually-rich documents.
We will briefly introduce these modifications.

COPNER (Huang et al., 2022a). The COP-
NER method employs contrastive learning, feeding
both entity label semantics and sentences into a
plain text pre-trained language model. This ap-
proach uses the hidden state output of the pre-
trained model to calculate a contrastive loss be-
tween sentence tokens and label semantics, then
determining the entity type of tokens. However,
the original COPNER could only determine if a
token belonged to an entity category, without rec-
ognizing boundaries between entities. Therefore,
we also improved it with the entity typing and span
detection framework introduced in our paper. That
is, while determining the entity type of tokens, we
also input the tokens beginning and inner into
the pre-trained model to detect the entity boundary.

The model’s output hidden state is then used to cal-
culate a contrastive loss between sentence tokens
and these beginning and inner tokens.

Besides, we retained this core process but re-
placed the original language model pre-trained on
pure text with a multi-modal pre-trained model.
Experiments show that our use of multi-head cross-
attention methods is more suitable for SER tasks
on visually-rich documents, especially in Chinese
contexts.

EntLM (Ma et al., 2022b). EntLM treats NER
as a task of Language Modeling. For testing a
few-shot NER dataset on plain text, it first selects
a related word for each entity type. Then, using
the pre-trained Masked Language Modeling head
of BERT, it predicts the probability distribution
of each sentence token over these related words,
thereby determining the probability distribution of
tokens across different entity types.

The selection of related words relies on the
distant data obtained from BOND (Liang et al.,
2020), which uses BERT and the corpora from
Wikipedia to create rough annotations for the NER
test set. However, in the realm of visually-rich doc-
uments, such rough annotated data is not provided
by BOND, and due to the relative abstract expres-
sion of SER tags from natural language expressions
and the difference between structured documents
and natural language expressions, it’s not feasible
to obtain rough annotations using corpora from
Wikipedia with BERT. Therefore, we directly use
the ground truth annotations from the SER test set
as distant data to find related words associated with
entity types in the SER dataset. Although the ex-
perimental results on EntLM might be artificially
high due to some exposure to the entity distribution
in the test set, our proposed method significantly
outperforms others that only accept text modality
inputs, including EntLM.

In summary, methods for few-shot NER on plain
text may not necessarily transition well to the task
of few-shot SER on visually-rich documents. The
notable performance of our proposed method in
few-shot SER on visually-rich documents further
highlights the innovation and contribution of our
research.
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Algorithm 1: Few-shot Divisions Generation

Input: Novel Dataset with the label space C = {c1, c2, ..., cN}, full training set Dfull

Output: N-way K-shot few-shot training set Dtrain

1 Dtrain = {}
2 Number of documents that contain entities of ci in Dfull: Q = {c1 : 0, c2 : 0, ..., cN : 0}
3 Document set that contain entities of ci in Dfull: R = {c1 : {}, c2 : {}, ..., cN : {}}
4 for doci in Dfull do
5 for cj in C do
6 if doci contain entities of cj then
7 Q[cj ] += 1
8 R[cj ].append(doci)

9 end
10 end
11 end
12 Q′ = sorted(Q, key = lambda x : x[1]) = {c′1 : n1, c

′
2 : n2, ..., c

′
N : nN} (n1 ≤ n2 ≤ ... ≤

nN )
13 Number of documents that contain entities of ci in Dtrain: S = {c1 : 0, c2 : 0, ..., cN : 0}
14 for c′i in keys of Q′ do
15 for S[c′i] < K do
16 if R[c′i] is empty then
17 break
18 end
19 Randomly select a document doccandidate from R[c′i]
20 R[c′j ].pop(doccandidate)
21 if doccandidate /∈ Dtrain then
22 Dtrain.append(doccandidate)
23 for cj ∈ C do
24 if doccandidate contain entities of cj then
25 S[cj ] += 1
26 end
27 end
28 else
29 continue
30 end
31 end
32 end
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Modality Text + Layout Text + Layout + Image

Methodology
BROS (AAAI 22) LiLT (ACL 22) LayoutLMv2 (ACL 21) LayoutLMv3 (MM 22)

FT Ours FT Ours FT Ours FT Ours

FUNSD

1-shot 49.17 52.50 51.07 50.91 44.15 46.91 42.67 56.27
3-shot 63.07 64.31 65.65 67.24 60.67 60.65 72.66 75.18
5-shot 66.31 68.10 71.11 72.95 63.45 64.36 77.29 79.53
7-shot 69.24 71.06 72.49 74.14 65.94 66.79 79.22 81.31

Full Data 83.42 83.67 88.62 88.89 83.54 83.59 91.41 91.96

CORD

1-shot 64.92 68.04 69.31 75.35 68.08 69.73 70.03 74.02
3-shot 78.75 79.26 81.63 83.85 79.92 81.35 81.97 85.09
5-shot 83.86 84.23 85.62 87.03 83.84 84.42 85.76 87.71
7-shot 83.56 83.76 85.39 87.74 84.40 85.09 86.92 88.37

Full Data 95.72 95.88 95.82 96.06 94.95 95.64 96.34 96.39

XFUND-zh

1-shot - - 59.03 64.90 59.17 67.04 46.64 54.59
3-shot - - 71.33 71.54 73.17 75.21 62.73 72.36
5-shot - - 75.09 77.07 79.21 79.96 69.39 76.57
7-shot - - 77.34 77.70 79.68 80.22 72.03 77.95

Full Data - - 87.92 88.17 88.60 88.95 89.09 91.04

(a) Precision (%) of our PPTSER and Traditional Fine-tuning methods.

Modality Text + Layout Text + Layout + Image

Methodology
BROS (AAAI 22) LiLT (ACL 22) LayoutLMv2 (ACL 21) LayoutLMv3 (MM 22)

FT Ours FT Ours FT Ours FT Ours

FUNSD

1-shot 49.75 57.89 54.39 61.77 53.64 59.15 53.14 70.07
3-shot 65.82 71.50 69.81 71.35 62.82 67.01 76.94 78.64
5-shot 69.32 73.43 75.61 77.76 68.50 70.97 81.92 83.65
7-shot 67.54 72.94 74.33 77.38 67.23 71.04 80.51 81.91

Full Data 84.26 84.15 89.30 89.26 83.51 83.85 90.91 92.05

CORD

1-shot 67.70 68.95 70.79 75.80 71.23 70.22 70.67 74.35
3-shot 79.30 79.96 81.65 83.82 81.36 81.98 82.14 85.45
5-shot 84.21 84.52 85.43 87.08 84.81 84.63 85.91 87.84
7-shot 83.79 84.43 85.32 87.72 85.12 85.54 86.97 88.59

Full Data 95.72 95.61 95.78 96.03 95.45 95.62 96.34 96.40

XFUND-zh

1-shot - - 61.54 70.68 61.46 69.68 61.21 59.24
3-shot - - 74.22 77.22 75.88 79.46 77.24 78.58
5-shot - - 79.99 82.02 83.88 85.02 82.27 82.23
7-shot - - 83.97 85.44 85.03 87.43 84.76 84.30

Full Data - - 93.18 93.20 91.96 92.72 94.27 93.37

(b) Recall (%) of our PPTSER and Traditional Fine-tuning methods.

Table 5: Precision and Recall of PPTSER and Traditional Fine-tuning methods. Metrics in Bold is better between
PPTSER and Fine-tuning and FT refers to Fine-tuning methods.

C Further Analysis of Experimental
Results

This section presents further analysis and additional
performance metrics obtained from the main exper-
iments.

C.1 Further Analysis of Comparisons with
Existing Fine-Tuning Methods

Table 5a and Table 5b present the precision and
recall of PPTSER compared to the traditional
fine-tuning method. The results demonstrate that
PPTSER consistently outperforms the traditional
fine-tuning method in most cases, leading to im-
proved overall performance in terms of F1 scores.

Additionally, we observed from Table 1 and Ta-

ble 5 that the improvement of PPTSER on the
CORD dataset is generally less pronounced com-
pared to its performance on other benchmarks. This
prompted further investigation on our part.

As mentioned in Section 2.1, our N-way K-shot
setting implies that each of the N categories has K
documents containing entities of that category as
the support set. Given that a single document in
the CORD dataset cannot encompass entities from
all categories, we selected more than K documents
under the K-shot setup in the previous experiments.
Consequently, we reselected 1 to 5 document sam-
ples as the training set for CORD and conducted ad-
ditional experiments with LiLT, which showed the
most significant improvement, and LayoutLMv2,
which showed the least. The results, as illustrated

10535



Methodology
LayoutLMv2 LiLT
FT Ours FT Ours

Sample
Number

1 33.28 33.81 40.46 42.47
2 44.86 47.09 49.39 54.18
3 54.24 56.91 56.31 63.71
4 61.54 62.23 61.36 69.19
5 63.89 64.92 64.09 69.83

(a) F1 score (%) of our PPTSER and Traditional Fine-tuning
methods on CORD benchmark.

Methodology
LayoutLMv2 LiLT
FT Ours FT Ours

Sample
Number

1 33.10 34.06 40.35 40.08
2 42.31 46.20 47.26 52.58
3 51.31 57.50 53.58 62.92
4 59.58 62.50 60.17 68.72
5 61.93 64.65 63.21 69.47

(b) Precision (%) of our PPTSER and Traditional Fine-tuning
methods on CORD benchmark.

Methodology
LayoutLMv2 LiLT
FT Ours FT Ours

Sample
Number

1 33.82 33.75 41.36 45.28
2 48.01 48.10 51.81 55.89
3 57.60 56.35 57.73 64.52
4 63.64 61.97 62.63 69.68
5 66.00 65.22 65.01 70.19

(c) Recall (%) of our PPTSER and Traditional Fine-tuning
methods on CORD benchmark.

Table 6: Performances of our PPTSER and Traditional
Fine-tuning methods on CORD benchmark with various
numbers of sample as the support set. Metrics in Bold
is the best and FT refers to Fine-tuning methods.

in Table 6, led to several conclusions:

• Sample Size: The K-shot division on CORD
often includes more than K samples. For ex-
ample, in the 1-shot experiment, our train-
ing set averaged 7.6 samples. In contrast,
on FUNSD, a single sample typically encom-
passes entities of all 4 types, resulting in only
1 sample in the training set for the 1-shot sce-
nario. Our findings indicate that as the sample
size increases, the performance gap between
our method and conventional fine-tuning di-
minishes, yet our method retains its advan-
tage. Therefore, under the same K-shot set-
ting, CORD involves more samples than other
datasets, which leads to a less pronounced
improvement.

• Label Complexity: We believe that the la-
bels in CORD are more complex and ab-
stract, making it harder for the model to grasp
their semantic meanings compared to those

in FUNSD. For instance, entity categories in
FUNSD include header, question, and answer,
whereas in CORD, they involve more abstract
types like menu.num and total.creditcardprice.
The experimental results indicate that when
the sample size is extremely small, the im-
provement on CORD from our method is lim-
ited. However, this improvement increases
rapidly with the sample size, suggesting our
method can more accurately capture the re-
lationship between document tokens and tag-
related prompts with relatively more samples.

• Pre-trained Models: Different pre-trained
models have varying degrees of understand-
ing of labels. This could explain why some
pre-trained models show weaker improvement
on CORD. Our supplementary experiments
reveal that the extent of improvement of our
method is consistently better with the LiLT
than the LayoutLMv2, suggesting that LiLT
better understands the semantic information
implied by the labels.

C.2 Further Analysis of Comparisons with
Existing Few-shot Methods

We also present a detailed comparison of PPTSER
with other few-shot methods, including precision
and recall metrics in Table 7a and Table 7b. Similar
to the F1 score, models enhanced with PPTSER
usually demonstrate superior performance com-
pared to both few-shot NER and few-shot SER
methods.
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Modality Text Text + Layout Text + Layout + Image

Methodology
EntLM

(NAACL 22)
COPNER

(COLING 22)
LASER

(ACL 22)
COPNERLiLT

(COLING 22)
PPTSERLiLT

(Ours)
COPNERLMv3

(COLING 22)
PPTSERLMv3

(Ours)

FUNSD

1-shot 22.85 18.67 36.61 53.79 50.91 49.01 56.27
3-shot 33.39 30.97 46.71 67.26 67.24 73.54 75.18
5-shot 37.23 32.57 46.80 71.40 72.95 75.40 79.53
7-shot 40.29 35.43 51.17 72.81 74.14 78.63 81.31

Full Data 67.53 63.39 69.08 87.45 88.89 91.45 91.96

CORD-Lv1

1-shot 73.23 67.42 65.56 86.93 90.62 86.80 90.05
3-shot 82.85 81.37 75.43 94.39 94.97 93.99 95.14
5-shot 86.87 85.87 82.07 94.94 96.38 95.65 96.20
7-shot 86.65 86.54 83.54 95.12 96.25 96.05 96.53

Full Data 95.93 95.83 96.50 99.23 99.43 99.45 99.45

CORD

1-shot 57.45 51.22 - 70.27 75.35 67.14 74.02
3-shot 71.42 67.26 - 81.48 83.85 79.89 85.09
5-shot 77.70 74.59 - 84.92 87.03 85.13 87.71
7-shot 78.51 75.69 - 85.86 87.74 86.83 88.37

Full Data 93.56 92.33 - 95.75 96.06 95.79 96.39

XFUND-zh

1-shot 27.02 23.98 - 49.49 64.90 53.37 54.59
3-shot 35.94 35.72 - 64.69 71.54 69.98 72.36
5-shot 43.18 42.93 - 68.21 77.07 73.48 76.57
7-shot 45.13 44.66 - 72.61 77.70 76.42 77.95

Full Data 64.75 65.59 - 87.23 88.17 91.10 91.04

(a) Precision (%) of PPTSER and other Few-shot methods.

Modality Text Text + Layout Text + Layout + Image

Methodology
EntLM

(NAACL 22)
COPNER

(COLING 22)
LASER

(ACL 22)
COPNERLiLT

(COLING 22)
PPTSERLiLT

(Ours)
COPNERLMv3

(COLING 22)
PPTSERLMv3

(Ours)

FUNSD

1-shot 28.01 21.53 41.05 56.72 61.77 54.43 70.07
3-shot 37.56 32.12 46.55 70.17 71.35 78.32 78.64
5-shot 42.42 38.28 52.14 75.59 77.76 79.83 83.65
7-shot 42.79 39.57 54.08 73.92 77.38 78.45 81.91

Full Data 67.31 65.81 69.41 88.04 89.26 91.06 92.05

CORD-Lv1

1-shot 75.38 69.90 68.12 87.01 90.38 87.16 89.99
3-shot 84.54 83.17 76.77 93.95 94.61 94.06 95.12
5-shot 87.35 86.30 82.42 94.78 96.04 95.84 96.23
7-shot 87.99 86.97 83.71 94.96 96.00 96.07 96.50

Full Data 95.94 95.97 96.62 99.19 99.42 99.45 99.45

CORD

1-shot 58.29 53.79 - 69.83 75.80 67.51 74.35
3-shot 71.95 68.35 - 81.08 83.82 80.24 85.45
5-shot 77.78 74.69 - 84.68 87.08 85.47 87.84
7-shot 78.76 76.51 - 85.66 87.72 86.91 88.59

Full Data 93.45 92.68 - 95.72 96.03 95.79 96.40

XFUND-zh

1-shot 26.35 23.26 - 48.26 70.68 55.67 59.24
3-shot 39.62 40.48 - 64.88 77.22 72.89 78.58
5-shot 44.03 46.14 - 70.00 82.02 79.92 82.23
7-shot 48.46 49.58 - 76.58 85.44 82.47 84.30

Full Data 67.72 68.71 - 91.20 93.20 92.91 93.37

(b) Recall (%) of PPTSER and other Few-shot methods.

Table 7: Precision and Recall of PPTSER and other Few-shot methods. Metrics in Bold is the best, and that with
underline is the second best.
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CORD

7th block 8th block 9th block 10th block 11th block 12th block

1-shot 68.27 69.63 68.34 68.93 74.27 75.57
3-shot 80.09 81.16 80.81 81.51 82.89 83.83
5-shot 84.29 85.25 85.00 84.84 86.41 87.06
7-shot 84.58 85.86 85.48 85.97 86.79 87.73
Full Data 95.63 95.59 95.48 96.12 95.86 96.04

∆ -3.47 -2.55 -3.03 -2.57 -0.80 -

(a) F1 score (%) of PPTSER on CORD benchmark when obtaining the attention weight from different blocks.

CORD

7th block 8th block 9th block 10th block 11th block 12th block

1-shot 67.36 69.02 67.86 68.53 73.91 75.35
3-shot 79.76 81.19 80.78 81.46 82.76 83.85
5-shot 80.98 85.38 85.01 84.78 86.22 87.03
7-shot 84.41 85.92 85.52 85.97 86.68 87.74
Full Data 95.70 95.64 95.55 96.16 95.87 96.06

∆ -4.36 -2.58 -3.06 -2.63 -0.92 -

(b) Precision (%) of PPTSER on CORD benchmark when obtaining the attention weight from different blocks.

CORD

7th block 8th block 9th block 10th block 11th block 12th block

1-shot 69.21 70.25 68.83 69.34 74.64 75.80
3-shot 80.43 81.14 80.84 81.56 83.03 83.82
5-shot 80.41 85.13 84.99 84.89 86.60 87.08
7-shot 84.75 85.80 85.43 85.97 86.90 87.72
Full Data 95.57 95.54 95.41 96.09 95.85 96.03

∆ -4.02 -2.52 -2.99 -2.52 -0.69 -

(c) Recall (%) of PPTSER on CORD benchmark when obtaining the attention weight from different blocks.

Table 8: Performances of PPTSER on CORD benchmark when obtaining the attention weight from different blocks.
∆ denotes the average deviation of the corresponding metrics compared to that in the 12th block.

C.3 Further Analysis of Attention weights
obtained from different blocks

We additionally provide the numerical metrics of
distinct settings to obtain the attention weight from
different blocks. Table 8 illustrates the experi-
mental results, indicating that obtaining attention
weights from the last block yields the best perfor-
mance of F1 score, precision, and recall. Although
the reduction of parameters alleviates over-fitting
to some extent, since some shallower blocks outper-
form certain deeper ones in the 1-shot scenario, our
default setting to obtain the attention weight from
the last block significantly outperforms the alterna-
tive settings of obtaining the attention weight from
shallower blocks. This finding strongly reinforces
the effectiveness of our design.

C.4 Further Analysis of Different Designs on
PPTSER

Besides, we also offer the precision and recall of
our PPTSER under different designs in Table 9a
and Table 9b. The outcomes clearly indicate that
our PPTSER, characterized by its meticulous de-
sign, outperforms other designs across all metrics
evaluated, including the F1 score, Precision, and
Recall. This superiority not only showcases the
robustness of our design but also significantly sub-
stantiates the efficacy of our PPTSER framework in
tackling the few-shot SER problem on visually-rich
documents.
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Model
Designs

Baseline Decoupling Strategies Prompt Engineering Aggregation Stratergies
default setting plain BIO prompt unrelated words random embeddings mean single head

1-shot 75.35 73.92 70.58 71.32 74.16 74.92
3-shot 83.85 82.44 82.83 83.24 83.04 84.07
5-shot 87.03 86.50 85.84 86.47 86.61 86.97
7-shot 87.74 86.64 86.44 87.09 86.76 87.30
Full Data 96.06 95.58 96.27 95.75 96.23 96.08

∆ - -0.99 -1.61 -1.23 -0.64 -0.14

(a) Precision (%) of PPTSER on CORD benchmark with different designs.

Model
Designs

Baseline Decoupling Strategies Prompt Engineering Aggregation Stratergies
default setting plain BIO prompt unrelated words random embeddings mean single head

1-shot 75.80 74.66 71.03 71.54 74.69 75.51
3-shot 83.82 82.37 82.54 82.90 83.06 83.77
5-shot 87.08 86.01 85.72 86.11 86.67 86.99
7-shot 87.72 86.35 86.40 86.81 86.71 87.19
Full Data 96.03 95.00 96.24 95.70 96.18 96.03

∆ - -1.21 -1.70 -1.48 -0.63 -0.19

(b) Recall (%) of PPTSER on CORD benchmark with different designs.

Table 9: Precision and Recall of PPTSER on CORD benchmark with different designs. ∆ denotes the average
deviation of the corresponding metrics relative to the default setting.

Methodology GPT-4Vision LLaVA-1.6 Ours

1-shot 50.07 12.60 61.98
3-shot 51.83 16.99 76.86
5-shot - 23.17 81.53
7-shot - 27.09 81.60

Table 10: F1 score (%) of Multi-modal Large Language
Models and our PPTSER on FUNSD benchmark. Ours
refers to PPTSER with LayoutLMv3 as backbone.

D Comparisons with Multi-modal Large
Language Model

To further explore the superiority of our approach,
we conducted few-shot SER experiments with
current mainstream Multi-modal Large Language
Models. We selected GPT-4Vision (Achiam et al.,
2024) and LLaVA-1.6 (Liu et al., 2023). Since
GPT-4Vision is not open-source, we employed In-
Context Learning (Brown et al., 2020) for few-shot
learning. For the open-source LLaVA-1.6, we di-
rectly fine-tuned it with a small number of samples.
The experiments were conducted on the FUNSD
benchmark. Due to the dialog length limitation of
GPT-4Vision, we only tested its performance in
1-shot and 3-shot scenarios. As shown in Table 10,
our results surpass those of the two Multi-modal
Large Language Models, further demonstrating the
effectiveness of our proposed method on dedicated
models.

E In-depth Parameter Analysis of
PPTSER over Traditional Fine-tuning

We provide a further analysis of the parameter
counts in this section. As shown in Table 4, our
PPTSER maintains consistent parameters across
different benchmarks with the same pre-trained
model. This is attributed to the fact that PPTSER
does not necessitate the use of an extra cross-
attention module in previous works (Dai et al.,
2023) that employ cross-attention, and does not
require an additional classifier layer, unlike the tra-
ditional fine-tuning method. Besides, the parameter
variance arises when employing the traditional fine-
tuning method with the same pre-trained models
on different benchmarks, owing to variations in the
number of entity types present in those benchmarks.
Furthermore, as PPTSER omits the value transform
layer and the feed-forward layer in the final atten-
tion block, we achieve a reduction in the parameter
count of the pre-trained model it is based on. Ad-
ditionally, the extent of parameter reduction varies
among different pre-trained models due to dispari-
ties in their architectural designs, resulting in slice
differences in the eliminations of the modules.
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