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Abstract

Quantitative reasoning is a critical skill to an-
alyze data, yet the assessment of such abil-
ity remains limited. To address this gap,
we introduce the Quantitative Reasoning with
Data (QRDATA) benchmark, aiming to evalu-
ate Large Language Models’ capability in sta-
tistical and causal reasoning with real-world
data. The benchmark comprises a carefully con-
structed dataset of 411 questions accompanied
by data sheets from textbooks, online learning
materials, and academic papers. To compare
models’ quantitative reasoning abilities on data
and text, we enrich the benchmark with an aux-
iliary set of 290 text-only questions, namely
QRTEXT. We evaluate natural language reason-
ing, program-based reasoning, and agent rea-
soning methods including Chain-of-Thought,
Program-of-Thoughts, ReAct, and code in-
terpreter assistants on diverse models. The
strongest model GPT-4 achieves an accuracy
of 58%, which has much room for improve-
ment. Among open-source models, Deepseek-
coder-instruct, a code LLM pretrained on 2T
tokens, gets the highest accuracy of 37%. Anal-
ysis reveals that models encounter difficulties in
data analysis and causal reasoning, and strug-
gle in using causal knowledge and provided
data simultaneously. Code and data are in
https://github.com/xxxiaol/QRData.

1 Introduction

Data is everywhere in our daily life and work, from
win-loss charts in sports competitions to insurance
databases of national health. We rely on our quan-
titative reasoning skills to process the data, more
specifically, to extract information from the data,
draw inferences, and make predictions (Bueno de
Mesquita and Fowler, 2021).

There is evidence that current Large Lan-
guage Models (LLMs) can perform fundamental
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What is the Average Causal 
Effect (ATE) from t to y?

Statistical Reasoning

t y x1 x2

1 5.60 -0.53 -0.34 

0 6.88 -1.74 -1.80 

0 3.00 -0.81 -0.20 

… … … …

…

What is a 95% confidence interval 
for the population mean of y?

ihdp.csv

Causal Reasoning

Reasoning Steps

1. Understand the data
2. Identify the point estimate
3. Verify the conditions
4. Calculate the margin of error 
and construct the interval

1. Understand the data
2. Build the causal model
3. Apply propensity score 
weighting to estimate ATE
4. Run refutation tests

Advanced Quantitative 
Reasoning with Data

Figure 1: Examples of advanced quantitative reasoning
questions and reasoning steps.

data analysis like visualization and summariza-
tion (Cheng et al., 2023; Bai et al., 2023). How-
ever, little effort has been made to evaluate the
more challenging aspects of quantitative reason-
ing. On the other hand, there are papers evalu-
ating advanced quantitative reasoning abilities of
LLMs (Chen et al., 2023a; Jin et al., 2023a), but
they have not investigated whether LLMs can apply
these skills to real data.

In this paper, we focus on two main areas of
advanced quantitative reasoning: statistical reason-
ing and causal reasoning, with examples shown in
Figure 1. Given a data sheet from sample surveys,
statistical reasoning aims to infer the underlying
probability distribution, addressing questions like
what is a 95% confidence interval for the popu-
lation mean of y; while causal reasoning aims to
understand the causal relationship between vari-
ables, addressing questions like what is the average
treatment effect1 from t to y.

We propose the Quantitative Reasoning with
Data (QRDATA) benchmark. It requires models
to answer a quantitative reasoning question given
data sheets as input. Our benchmark shares a sim-

1Average treatment effect is a measure of causal effect,
quantifying the difference in average outcomes between units
assigned to the treatment and units assigned to the control.
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The CSV file ihdp.csv contains data obtained from the Infant Health and Development 
Program (IHDP). The study is designed to evaluate the effect of home visit from 
specialist doctors on the cognitive test scores of premature infants . The confounders 

x (x1-x25) correspond to collected measurements of the children and their mothers …

Data Description Question

What is the Average Treatment Effect (ATE) of the 
dataset? Please round the final answer to the nearest 
hundredth.

Correct Reasoning Steps:

1. Check rows of the dataset to understand its structure

import pandas as pd
data = pd.read_csv('ihdp.csv')
print(data.head())

2. Build a causal model based on the data description

ATE can be estimated using propensity score weighting:

3. Recall related method and apply to this scenario

…
ihdp_estimate = ihdp_model.estimate_effect(
  ihdp_identified_estimand,
  method_name="backdoor.propensity_score_weighting"
)
print('Estimated effect:', ihdp_estimate.value)

from dowhy import CausalModel

common_causes = ['x1', …, 'x25']
ihdp_model = CausalModel(
  data=data, treatment='t', outcome='y', 
  common_causes=common_causes
)

ihdp_refute_random_common_cause = ihdp_model.refute_estimate(
  ihdp_identified_estimand, ihdp_estimate,
  method_name="random_common_cause"
)
print('New effect:', ihdp_refute_random_common_cause.new_effect)

The estimate should not change if we add an independent random 
variable as a common cause to the dataset.

t y x1 x2

1 5.60 -0.53 -0.34 

0 6.88 -1.74 -1.80 

0 3.00 -0.81 -0.20 

… … … …

…

Final Answer: 4.02Estimated effect: 4.02

Sandbox Execution Results:

New effect: 4.02

4. Run refutation test to validate the estimate 

Figure 2: An example question of QRDATA and correct reasoning steps.

ilar form with table question answering (Pasupat
and Liang, 2015) and data analysis code gener-
ation (Lai et al., 2023) tasks, but has its unique
challenges: 1) Our benchmark requires advanced
quantitative knowledge and skills. Consider the ex-
ample in Figure 2. To answer the question, models
need to know what are common methods of esti-
mating the average treatment effect and how to use
them. To the best of our knowledge, few existing
benchmarks touch upon concepts in statistical rea-
soning with data, and none of them involve causal
reasoning with data. 2) Our benchmark requires
multi-turn reasoning. After execution of model
generated code, models need to read the execution
results, and write subsequent code or interpret the
results to produce the final answer. In the example,
models should first check the data structure before
safely indexing the variables in step 2. And after
the refutation test in step 4, models need to com-
pare the estimation before and after the refutation,
to decide if the estimated effect is reliable, or if
another estimation method should be used.

To obtain high-quality quantitative reasoning
questions and corresponding data, we construct
QRDATA from open-source textbooks, online
learning resources, and academic papers that are
accompanied by data. This ensures that all the
questions are reasonable and match well with the
data. Through careful manual construction, our
dataset consists of 411 questions along with 195
data sheets. To analyze the difficulty of data analy-
sis, we also collect an auxiliary dataset of Quanti-
tative Reasoning with Text (QRTEXT). QRTEXT

contains 290 questions from textbooks and aca-
demic papers, and the questions can be solved
based on text descriptions only.

We evaluate a wide range of models and rea-
soning approaches on QRDATA. To find what is a
good solution to the task, we implement natural lan-
guage reasoning with Chain-of-Thought (Wei et al.,
2022), program-based reasoning with Program-
of-Thoughts (Chen et al., 2022), agent reasoning
with ReAct (Yao et al., 2022) and the code inter-
preter assistants of GPT models. We also com-
pare general-purpose LLMs with LLMs finetuned
for specific abilities like math, code, and agent
reasoning, to find out whether these abilities help
in tackling our benchmark. Experimental results
show that the best closed-source LLM GPT-4 (Ope-
nAI, 2023) achieves an accuracy of 58% with the
code interpreter assistant, and the best open-source
LLM Deepseek-coder-instruct (Guo et al., 2024)
achieves 37% with Program-of-Thoughts.

As there is much room for improvement in
model performance, we further dive into what are
the primary difficulties. We find that data analy-
sis is challenging for LLMs, especially for smaller
open-source LLMs. And all models including GPT-
4 and Gemini (Team et al., 2023) struggle with
causal reasoning. They acquire causal knowledge
from the pretraining corpus, but can hardly inte-
grate the knowledge with the provided data in rea-
soning.

Our main contributions are as follows: 1) We
propose QRDATA, the first benchmark for ad-
vanced quantitative reasoning with data, to assess
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models’ abilities of data-based statistical and causal
reasoning. 2) We evaluate various models and rea-
soning approaches on QRDATA, and provide in-
sights into effective approaches to tackle the bench-
mark. 3) We analyze the difficulties of current
models in data analysis and causal reasoning.

2 Benchmark Construction

In this section, we introduce how the QRDATA

benchmark is constructed. To ensure the quality
of our benchmark, we first gather teaching and
research resources for quantitative reasoning, and
then annotate questions based on the materials. To
compare the performance of quantitative reasoning
on data and text, we also introduce an auxiliary
dataset QRTEXT for analysis.

Resource Selection. We look for quantitative rea-
soning resources with the following criteria: 1) The
resource is related to quantitative reasoning, espe-
cially statistical reasoning and causal reasoning. 2)
It contains multiple quantitative reasoning ques-
tions with corresponding data and answers. 3) It is
open-source and allows adaptation.

Eight resources are selected based on these
criteria, including two books: OpenIntro Statis-
tics (Diez et al., 2012) and Quantitative Social Sci-
ence (Imai, 2018); one online learning resource:
Causal Inference for the Brave and True2; and
five datasets from academic papers: Flow cy-
tometry (Sachs et al., 2005), IHDP (Hill, 2011),
Jobs (Shalit et al., 2017), Neuropathic pain diag-
nosis (Tu et al., 2019), and Arctic sea ice (Huang
et al., 2021).

Question Collection. We collect multiple-choice
questions and numerical questions from these re-
sources, and ensure that the gold answer is unique.
For textbooks and online learning resources, we ex-
tract the list of data sheets from their websites. If a
data sheet is used in exercises, we use the exercise
question and its solution as the question and an-
swer; if it is used in the main content, we annotate
questions and answers based on the content.

For existing causal discovery datasets (Flow cy-
tometry, Neuropathic pain diagnosis, and Arctic
sea ice), we collect multiple-choice questions like
Which cause-and-effect relationship is more likely?
A. headache causes groin pain B. groin pain causes
headache C. No causal relationship exists follow-

2https://matheusfacure.github.io/python-causality-
handbook/landing-page.html

Count

Data Files 195
Avg. Rows per File 15219
Avg. Columns per File 46
Avg. Words of Data Description 73

Questions 411
Multiple Choice / Numerical 248 / 163
Statistical / Causal 142 / 269
Avg. Words of Question 32

Table 1: Statistics of QRDATA.
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Figure 3: Key concepts in QRDATA.

ing the style of Kıcıman et al. (2023). For causal
estimation datasets (IHDP and Jobs), we collect
numerical questions of estimating average treat-
ment effect (ATE), average treatment effect on the
treated (ATT), and average treatment effect on the
control (ATC) like the example in Figure 2. More
details are in Appendix A.1.

We also collect data descriptions like the pur-
poses and formats of the data sheets from the re-
sources, and provide them along with questions to
models.

Statistics. We provide the dataset statistics in Ta-
ble 1, and the number of questions collected from
each source in Appendix Table 6. The questions
we collect cover a wide range of concepts, and
we illustrate some of them in Figure 3. We also
summarize the topics and question examples in Ap-
pendix Table 8. Most questions in QRDATA are
based on a single data sheet, while 4% of questions
are based on multiple data sheets.

To check whether our dataset has already been
memorized by models in training, we apply the pre-
training data detection method Min-K% Prob (Shi
et al., 2023) on GPT models and Llama-2, and con-
firm that our dataset is unlikely to appear in their
pretraining corpora.

QRTEXT. To separate the challenge of quanti-
tative reasoning from data analysis and analyze
whether models master the quantitative reasoning
skills, we create an auxiliary benchmark for com-
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parison called Quantitative Reasoning with Text.
Questions in QRTEXT can be answered without

data, with an example shown in Appendix Figure 4.
We collect questions from OpenIntro Statistics and
two text-based causal reasoning datasets CLAD-
DER (Jin et al., 2023a) and CORR2CAUSE (Jin
et al., 2023b). QRTEXT contains 290 questions,
100 for statistical reasoning and 190 for causal rea-
soning. For ease of model comparison, the ratio of
statistical/causal questions of QRTEXT is similar to
QRDATA. Details of QRTEXT question collection
are in Appendix A.2.

Evaluation Metric. We report the accuracy by
comparing the final answer generated by mod-
els with the gold answer. As models may en-
counter measurement errors in numerical questions
(e.g., different causal effect estimation methods
will yield minor differences in results), we consider
any result within ±3% of the gold answer to be
correct.

3 Methods

We develop several zero-shot reasoning methods
as our baselines. By comparing these methods, we
aim to find a good solution to the task of quantita-
tive reasoning with data.

Table Question Answering (Table QA). The task
of table QA asks models to answer a question based
on tables. To evaluate if our benchmark can be
solved by existing table QA methods, we experi-
ment with a competitive Table QA method (Zhang
et al., 2023). It constructs a table instruction tuning
dataset TableInstruct, and finetunes models on
this dataset.

Chain-of-Thought (CoT). CoT prompting enables
models to conduct complex natural language rea-
soning through intermediate reasoning steps. We
feed the content of data sheets to models and
prompt models to respond to a quantitative
question using the provided data ...
Let’s think step by step. If the data sheet
is too large, we truncate it to fit the length limit.
To obtain the final answer from the model output,
we employ ChatGPT for answer extraction follow-
ing Chen et al. (2023a).3

3To assess the reliability of answer extraction with Chat-
GPT, we randomly sample 50 CoT outputs from all models,
and manually verify the extracted answers. ChatGPT achieves
an accuracy of 98%, demonstrating its proficiency in answer
extraction.

Program-of-Thoughts (PoT). PoT prompting asks
models to generate a Python code program, and
uses an external computer to execute the code. The
output of the code is regarded as the answer. In
contrast to TableLlama and CoT prompting, PoT
processes the data sheet with code and gets rid of
the length limit of data. It also enables models to
call data analysis packages for computation.

ReAct-style Prompting. ReAct is a prevalent
prompting paradigm for agent reasoning. It com-
bines reasoning and acting in language models for
task solving. To address our task, we restrict the
action space to Python code execution, and ask
models to generate thoughts and actions. Differ-
ent from aforementioned methods that only allow
one-turn generation, ReAct supports multi-turn rea-
soning. When a piece of code is generated, we
execute it and feed the output back to models as
an observation. Based on the observation, models
will either generate new thoughts and actions, or
decide to predict the final answer.

Code Interpreter Assistants. GPT models can be
used as agents (called assistants), and a code inter-
preter tool is built-in, which could execute Python
code in a sandbox to interpret the data. Similar to
ReAct-style prompting, code interpreter assistants
allow multi-turn code generation and execution,
and end with a text-formed answer.

Details of prompt design and prompt examples
are in Appendix A.3.

4 Experiments

4.1 Models

We experiment with the CoT, PoT, and ReAct-style
prompting methods on the following models:

General-Purpose LLMs. We select Llama-2-
chat, Gemini-Pro, and GPT-4 as representatives of
general-purpose LLMs. They exhibit strong abil-
ities to follow instructions (Touvron et al., 2023;
Team et al., 2023; OpenAI, 2023).

Code LLMs. CodeLlama-instruct (Roziere et al.,
2023) is initialized on Llama-2, finetuned on a
code-heavy dataset, and instruction tuned on a
code-related instruction dataset. Deepseek-coder-
instruct (Guo et al., 2024) is pretrained on a project-
level code corpus from scratch and instruction
tuned to follow instructions. Both of them perform
well among open-source code models on several
code benchmarks.
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Model Size Overall Acc. Multiple Choice / Numerical Statistical / Causal

Random 23.0 38.1 / 0.0 15.0 / 27.2
Table Question Answering

TableLlama (Zhang et al., 2023) 7B 9.5 14.9 / 1.2 3.5 / 12.6
Chain of Thought Prompting

Llama-2-chat (Touvron et al., 2023) 7B 22.1 35.1 / 2.5 20.4 / 23.0
AgentLM (Zeng et al., 2023) 7B 24.3 40.0 / 0.0 19.0 / 27.1
WizardMath (Luo et al., 2023) 7B 25.1 40.0 / 2.5 18.3 / 28.6
CodeLlama-instruct (Roziere et al., 2023) 7B 19.2 31.0 / 1.2 14.1 / 21.9
Deepseek-coder-instruct (Guo et al., 2024) 6.7B 18.7 30.2 / 1.2 15.5 / 20.4
Gemini-Pro (Team et al., 2023) - 31.9 46.8 / 9.2 25.4 / 35.3
GPT-4 (OpenAI, 2023) - 36.5 57.3 / 4.9 24.6 / 42.8

Program of Thoughts Prompting
Llama-2-chat 7B 3.7 6.1 / 0.0 7.8 / 1.5
AgentLM 7B 3.2 4.4 / 1.2 8.5 / 0.4
WizardMath 7B 16.8 16.5 / 17.2 31.7 / 8.9
CodeLlama-instruct 7B 17.3 24.2 / 6.7 19.7 / 16.0
Deepseek-coder-instruct 6.7B 37.0 40.7 / 31.3 45.8 / 32.3
Gemini-Pro - 26.8 27.8 / 25.2 39.4 / 20.1
GPT-4 - 49.1 46.0 / 54.0 72.5 / 36.8

ReAct-style Prompting
Llama-2-chat 7B 11.4 18.5 / 0.6 4.2 / 15.2
AgentLM 7B 10.7 16.9 / 1.2 5.6 / 13.4
WizardMath 7B 18.7 21.0 / 15.3 19.7 / 18.2
CodeLlama-instruct 7B 15.8 22.2 / 6.1 16.2 / 15.6
Deepseek-coder-instruct 6.7B 27.3 29.4 / 23.9 38.7 / 21.2
Gemini-Pro - 38.9 47.6 / 25.8 41.5 / 37.5
GPT-4 - 57.4 59.2 / 54.6 69.0 / 51.3

Code Interpreter Assistants
GPT-3.5 Turbo - 41.4 42.3 / 39.9 60.6 / 31.2
GPT-4 - 57.9 56.9 / 59.5 78.9 / 46.8

Human (subset) 76.0 71.9 / 83.4 88.8 / 68.8

Table 2: Performance of models on QRDATA. Numbers are accuracies in percentages (%). The best results are in
bold. For models evaluated with multiple reasoning methods, the model-level best results are underlined.

LLM for Mathematical Reasoning. Wizard-
Math (Luo et al., 2023) is finetuned on Llama-2, en-
hancing the mathematical reasoning abilities with
reinforcement learning. It outperforms many larger
models on mathematical reasoning benchmarks.

LLM for Agent Reasoning. AgentLM (Zeng et al.,
2023) is instruction-tuned based on Llama-2 to en-
hance the agent capabilities. It uses a combination
of instructions from general domains and instruc-
tions of interaction trajectories.

For a fair comparison, we use the size of 7B for
all the open-source models.4 We use the two latest
GPT models GPT-3.5 Turbo and GPT-45 for code
interpreter assistants. More implementation details
are in Appendix A.4.

We select TableLlama (Zhang et al., 2023)
as a representative table QA model. It is fine-
tuned on Llama-2-7B (Touvron et al., 2023) with
TableInstruct, using LongLoRA (Chen et al.,
2023b) to extend the context length. It ex-
hibits strong generalization ability across table QA

4The size of Deepseek-coder-instruct is 6.7B.
5The specific versions are gpt-3.5-turbo-1106 and

gpt-4-1106-preview.

datasets.
As a reference for assessment, we also report

the random baseline and the human performance.
The random baseline is calculated by randomly
choosing from the multiple choices, and all the
numerical questions are counted as incorrect.

The human performance is evaluated by asking
three graduate students who have taken quantita-
tive reasoning courses to answer a random sample
of 50 questions from QRDATA. Each question is
answered by at least two students, and the aver-
age accuracy is reported. The students are allowed
to use a Python executor, and search for concepts
rather than specific questions on the Internet. 6

4.2 Main Results

To investigate which reasoning methods and mod-
els better solve our task, we summarize the per-
formance of different models paired with different
reasoning methods in Table 2. GPT-4 with the code
interpreter assistant achieves the best performance,

6The majority of human errors are in causal discovery
questions (71%), because state-of-the-art causal discovery
algorithms cannot fully resolve this task (Vowels et al., 2022).
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and Deepseek-coder-instruct with PoT prompting
is the best among open-source models. The best
model is 18% worse than human, showing that
QRDATA is challenging for LLMs.

Natural Language Reasoning. CoT works best
for several open-source models like Llama-2-chat
and WizardMath, but the results are close to or
even worse than random, as data-based quantita-
tive reasoning requires heavy calculations that are
beyond natural language reasoning. The table QA
model TableLlama also underperforms across both
statistical and causal tasks.

Models can hardly answer numerical questions
with CoT, with a maximum accuracy of less than
10%. A limitation of CoT and other natural lan-
guage reasoning methods is that in many cases,
we cannot feed the whole data sheets into the in-
put, hindering models from performing accurate
calculations. We further compare CoT and PoT
prompting on a subset of QRDATA where the full
data sheets can be fed into the base model, and find
that CoT does not exceed PoT on this subset. The
accuracy of CoT prompting on numerical questions
is below 20% across all models, suggesting these
models struggle with performing precise calcula-
tions on data sheets using CoT.

Program-based Reasoning. PoT best suits
Deepseek-coder-instruct, but to our surprise, an-
other code LLM CodeLlama-instruct does not per-
form well with PoT. The gap in coding abilities can
also be seen from the execution success rate, which
is 89% for Deepseek-coder-instruct and 73% for
CodeLlama-instruct.

Although the overall performance of several non-
code LLMs drops with PoT compared to CoT, the
accuracy of numerical questions improves with the
help of code execution. This exhibits the potential
for performance improvement through the hybrid
of CoT and PoT rationales (Yue et al., 2023).

Agent Reasoning. Closed-source LLMs like GPT-
4 and Gemini-Pro perform best with agent reason-
ing. GPT-4 performance with ReAct-style prompt-
ing is close to with the code interpreter assistant,
exhibiting that our ReAct-style prompts success-
fully activate the model abilities.

Smaller open-source models can hardly follow
the complex ReAct-style instructions, which lim-
its their performance. Although AgentLM is fine-
tuned for agent reasoning, it cannot generalize
well to the quantitative reasoning task. On the

other hand, open-source models except code LLMs
perform better with ReAct-style prompting than
PoT, because multi-turn code execution gives them
chances to fix the generated code, raising the aver-
age execution success rate from 25.5% to 35.6%.
We also manually review 50 randomly sampled
ReAct outputs of these models, and find that in
10% of the cases, the initially generated code is
non-executable, and is fixed in the following steps.
This suggests that the iterative, multi-turn nature of
agent reasoning can contribute to fixing the gener-
ated code.

LLMs with Enhanced Abilities. We compare
three models finetuned on Llama-2 for enhanced
abilities of code, math, and agent reasoning with
the general-purpose LLM Llama-2-chat. AgentLM
and WizardMath only gain marginal improve-
ment, and CodeLlama-instruct even underperforms
Llama-2-chat. This may be due to the limited capa-
bility of the base model.

On the other hand, Deepseek-coder-instruct,
which masters in code generation, outperforms
all other models with similar sizes by more than
10%. We further evaluate Deepseek-coder-instruct-
33B to see if it could approach the performance
of closed-source LLMs, but it gets an overall ac-
curacy of 31.9% with PoT and 27.0% with ReAct-
style prompting, even lower than the 6.7B model.
Although coding ability is important in solving
quantitative questions with data, the performance
of code LLMs is still limited compared to larger
general-purpose LLMs like GPT-4.

Statistical Reasoning vs. Causal Reasoning. Sta-
tistical reasoning focuses on identifying patterns
in data, whereas causal reasoning goes a step fur-
ther to find causal relationships beyond correlation.
For all models evaluated, the gap between model
performance and the random baseline is larger for
statistical questions than causal questions, show-
ing that models obtain better statistical reasoning
abilities than causal reasoning abilities. Even the
best-performed model GPT-4 only answers 51% of
causal questions correctly, demonstrating the large
room for improvement in causal reasoning.

5 Analysis

We go deeper into the primary difficulties models
face in addressing the task of quantitative reasoning
with data. This may provide insights into how to de-
sign methods to better solve our task. We also pro-
vide an error analysis of GPT-4 in Appendix A.6.
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Model Overall Acc. Statistical / Causal

Random 23.7 20.8 / 25.3
Chain of Thought Prompting

Llama-2-chat 28.6 33.0 / 26.3
AgentLM 26.6 28.0 / 25.8
WizardMath 36.6 46.0 / 31.6
CodeLlama-i 26.2 26.0 / 26.3
Deepseek-coder-i 23.1 18.0 / 25.8
Gemini-Pro 37.9 51.0 / 31.1
GPT-4 52.1 76.0 / 39.5

Program of Thoughts Prompting
Llama-2-chat 21.7 12.0 / 26.8
AgentLM 22.4 16.0 / 25.8
WizardMath 34.1 38.0 / 32.1
CodeLlama-i 27.2 26.0 / 27.9
Deepseek-coder-i 39.0 47.0 / 34.7
Gemini-Pro 43.1 56.0 / 36.3
GPT-4 59.0 86.0 / 44.7

ReAct-style Prompting
Llama-2-chat 3.4 9.0 / 0.5
AgentLM 11.0 5.0 / 14.2
WizardMath 19.7 28.0 / 15.3
CodeLlama-i 4.8 13.0 / 0.5
Deepseek-coder-i 29.0 42.0 / 22.1
Gemini-Pro 35.2 52.0 / 26.3
GPT-4 57.2 86.0 / 42.1

Code Interpreter Assistants
GPT-3.5 Turbo 47.2 65.0 / 37.9
GPT-4 59.7 89.0 / 44.2

Table 3: Performance of models on QRTEXT. Numbers
are accuracies in percentages (%). Best results are in
bold, and model-level best results are underlined. The
suffix -i indicates -instruct.

Model Acc. w/ data Acc. w/o data

Random 35.7 35.7
GPT-3.5 Turbo 35.1 25.3
Gemini-Pro 45.4 48.8
GPT-4 50.7 60.0

Table 4: Performance of models on multiple-choice
causal questions of QRDATA with (w/) and without
(w/o) access to the data. Better results are in bold.

5.1 Difficulty of Data Analysis

We evaluate models7 on our auxiliary benchmark
QRTEXT, and compare the performance on QR-
TEXT and QRDATA to quantify the difficulty of
data analysis. As shown in Table 3, GPT-4 achieves
the best accuracy of 59.7% on QRTEXT, and
Deepseek-coder-instruct gets the best accuracy of
39.0% among open-source LLMs.

The single-turn reasoning methods, CoT and
PoT prompting, work best for all models except
GPT-4 on QRTEXT. For GPT-4, the performance
gap between the code interpreter assistant and PoT

7We do not experiment with TableLlama as the questions
do not involve tables.

is merely 0.7%, compared to 8.8% on QRDATA.
These demonstrate that single-turn reasoning is al-
most adequate for quantitative reasoning with text,
while multi-turn reasoning is more necessary for
quantitative reasoning with data.

All models perform better on QRTEXT than QR-
DATA from 1.8% to 11.5%, and the gap is larger for
smaller models. If we control the knowledge and
skills required by restricting questions to the same
source (OpenIntro Statistics), models perform 6%
better on average. These provide evidence that
most models have difficulty in data analysis.

5.2 Difficulty of Causal Reasoning

We observe the performance gap between statisti-
cal reasoning and causal reasoning on QRDATA,
and the gap remains on QRTEXT. GPT-4 achieves
89% accuracy in statistical questions on QRTEXT,
but only about half the accuracy in causal ques-
tions. This exhibits the unique difficulty of causal
reasoning regardless of data analysis.

Table 5 provides a case where GPT-4 with the
code interpreter assistant mis-predicts a causal
question from QRDATA. When asked to predict the
causal relation between two variables L L1 radicu-
lopathy and R L5 radiculopathy, GPT-4 proposes
a wrong plan for calculating the conditional prob-
abilities in Step 2. As correlation does not imply
causation, although GPT-4 successfully executes
the plan, it makes a wrong prediction.

Easier Said than Done. The unsatisfactory perfor-
mance on causal questions appears to differ from
the findings of some previous papers (Willig et al.,
2022; Kıcıman et al., 2023), which show that LLMs
are capable of causal reasoning in tasks like causal
discovery without data. To figure out the reason
for the inconsistency, we conduct an experiment
to evaluate if the provided data interfered with the
models. Specifically, we evaluate the best three
models on multiple-choice causal questions of QR-
DATA without giving them the data8, and compare
their performance with the original setting. We use
the best reasoning method for each model: ReAct-
style prompting for Gemini-Pro, and code inter-
preter assistants for GPT-3.5 Turbo and GPT-4.

As shown in Table 4, two out of three models
perform better without data access, revealing that
it is easier for these LLMs to speculate causal re-

8Note that this setting is different with QRTEXT. Without
data access, questions in QRDATA are not self-contained.
Models need to predict the answers with their commonsense.
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Question Which cause-and-effect relationship is more likely? Please answer with A, B, or C.
A. R L5 radiculopathy causes L L1 radiculopathy B. L L1 radiculopathy causes R L5 radiculopathy
C. No causal relationship exists

Gold Answer C

GPT-4 Prediction with Data Access
Step 1: # Display the first few records to understand the data structure

Code Interpreter data.head()

Step 2: I will examine the data for the following patterns:
- If patients with “R L5 radiculopathy” also frequently have “L L1 radiculopathy” and not the other
way around, it may suggest that A is more likely.
- Conversely, if patients with “L L1 radiculopathy” also frequently have “R L5 radiculopathy” and not
the other way around, it may suggest that B is more likely.
- If there is no clear pattern or both conditions occur independently, it may suggest that C is more likely.

Step 3: # Probability of L L1 given R L5

Code Interpreter P_L_L1_given_R_L5 = co_occurrence_count / R_L5_count if R_L5_count else 0

# Probability of R L5 given L L1

P_R_L5_given_L_L1 = co_occurrence_count / L_L1_count if L_L1_count else 0

P_L_L1_given_R_L5, P_R_L5_given_L_L1

Step 4: Based on these conditional probabilities, it is more likely that “L L1 radiculopathy” causes ‘R L5
radiculopathy” over the other proposed causal direction. Final answer: B.

GPT-4 Prediction without Data Access
Prediction Given both ‘R L5’ and ‘L L1’ radiculopathies are on different sides of the body and different spinal

levels, it’s not common for one to cause the other according to standard medical understanding. It is
more likely that they occur independently due to separate causes.
It’s likely that if both conditions are present in a patient, they arose independently or due to a systemic
issue affecting the spine broadly, rather than one causing the other. Final answer: C.

Table 5: An example of GPT-4 prediction on QRDATA. GPT-4 correctly predicts the answer without data access,
but predicts wrongly when the data is provided. The outputs are abridged and the full outputs are in Appendix A.5.

lations than to conduct causal reasoning with data.
The strong causal reasoning abilities exhibited by
models in previous works come from their internal
knowledge, but models can hardly use their internal
knowledge to analyze the data provided.

In the case of Table 5, in the absence of data
access, GPT-4 correctly predicts that there is
no causal relationship between the two variables.
However, when the data is provided, it is misled to
calculate the conditional probabilities.

6 Related Work

6.1 Data-related Benchmarks

Table Question Answering. Table QA (Pasupat
and Liang, 2015; Zhong et al., 2017) asks models to
answer questions about information from given ta-
bles. It evaluates models’ abilities to parse queries,
look up information from tables, and integrate the
retrieved information to reach an answer. Datasets
like Spider (Yu et al., 2018) and SEDE (Hazoom
et al., 2021) focus more on the semantic parsing
part and design complex questions that need com-
positional generalization over SQL queries. Some
datasets present the challenges of retrieving infor-
mation from hierarchical tables (Cheng et al., 2022;

Zhao et al., 2022) or a fusion of textual and tabular
data (Chen et al., 2020; Zhu et al., 2021). Datasets
like FinQA (Chen et al., 2021) and TABMWP (Lu
et al., 2022b) require numerical reasoning to fig-
ure out the answer, but they mainly focus on basic
arithmetic, while our benchmark requires more ad-
vanced quantitative reasoning skills.

Furthermore, although some benchmarks require
multi-hop reasoning, they can be solved in a sin-
gle turn, whereas our benchmark needs multi-turn
reasoning between the model and data.

Code Generation. Code generation tasks require
models to produce code to meet certain intents. Re-
cent benchmarks like DS-1000 (Lai et al., 2023)
and ExeDS (Huang et al., 2022) explore LLMs’
abilities to generate data science code, like train-
ing models using machine learning packages and
making visualizations. KnowledgeMATH (Zhao
et al., 2023) and BizBench (Koncel-Kedziorski
et al., 2023) evaluate if models could generate code
for financial reasoning with tables. To our knowl-
edge, none of them focus on advanced quantitative
reasoning. Only a concurrent dataset DAEval (Hu
et al., 2024) involves correlation analysis as a com-
ponent of question concepts, and none of them
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include causal reasoning questions.

6.2 Quantitative Reasoning Abilities

There is a growing interest in exploring language
models’ abilities of quantitative reasoning. Var-
ious benchmarks focus on mathematical reason-
ing (Hendrycks et al., 2021; Cobbe et al., 2021),
and recent works broaden the analysis to the field
of science (Lu et al., 2022a; Chen et al., 2023a).

Another line of work focuses on the specific as-
pect of causal reasoning of LLMs. Bhagavatula
et al. (2019); Qin et al. (2019); Liu et al. (2023) ex-
plore the ability of commonsense causal reasoning
like abductive reasoning and counterfactual reason-
ing. Willig et al. (2022); Gao et al. (2023); Kıcıman
et al. (2023) analyze the mastery of causal knowl-
edge like cause-effect pairs. Jin et al. (2023a,b)
evaluate the utilization of causal inference skills.

In this work, we extend the research to quanti-
tative reasoning with data, which poses new chal-
lenges for LLMs.

7 Conclusion

We propose QRDATA, a benchmark of advanced
quantitative reasoning with data, to explore LLMs’
statistical and causal reasoning abilities with real-
world data. We carefully construct the bench-
mark with questions from teaching and research
materials, and compare natural language reason-
ing, program-based reasoning, and agent reason-
ing among a wide range of models. Experimen-
tal results reveal that models have difficulties in
data analysis and causal reasoning. Even though
powerful LLMs like GPT-4 have acquired causal
knowledge, they can hardly integrate them with the
provided data. By proposing this benchmark, we
hope to draw attention to the data-based quantita-
tive reasoning ability. We call for more specialized
methods to enhance the ability, like training models
in the agent reasoning style with data as input, and
equipping models with more quantitative reasoning
knowledge.

Limitations

Scope of the Benchmark. We collect questions
related to two primary aspects of advanced quan-
titative reasoning: statistical reasoning and causal
reasoning in this benchmark. We focus on the ex-
plicit utilization of these reasoning abilities, more
specifically, statistical/causal reasoning with data.
And our benchmark is limited to English questions

and data. We look forward to future benchmarks
on a broader domain and other languages.

Models and Reasoning Methods. The field of
LLM research is developing quickly. We exper-
iment with representative models and reasoning
methods in this paper, but we acknowledge that this
does not cover all models and frameworks. Meth-
ods of constructing training data and finetuning
open-source models like Lumos (Yin et al., 2023)
can also be explored to enhance the effectiveness
of models.

Ethics Statement

Intellectual Property. We follow the permission
of licenses during the data collection process. And
the collected data should not be used commercially.

Potential Risks. Our evaluation reveals that cur-
rent LLMs are imperfect in conducting quantitative
reasoning with data. We suggest readers not trust
solutions provided by LLMs.
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A Appendix

A.1 Question Collection of QRDATA

We provide the number of questions collected from
different sources in Table 6. Table 8 summarizes
the topics covered in QRDATA, and examples of
questions related to these topics.

Causal Discovery. We collect both pairwise
causal discovery and full graph causal discovery
questions from the Neuropathic pain diagnosis
dataset following Kıcıman et al. (2023).

We sample 50 causal relations like L1 radicu-
lopathy → IBS from the gold causal graph, and
generate pairwise causal discovery questions ask-
ing models to predict the direction of the causal
relation. The questions are in the form of Which
cause-and-effect relationship is more likely? A. R
L1 radiculopathy causes IBS B. IBS causes R L1
radiculopathy.

In full graph causal discovery, there are three
possible relations between two variables A and B:
A → B, B → A, and no causal relation exists. We
sample 25 variable pairs that have causal relations
in the causal graph and 25 variable pairs that do
not have causal relations, and form 50 questions
in the form of Which cause-and-effect relationship
is more likely? A. headache causes groin pain B.
groin pain causes headache C. No causal relation-
ship exists.

For the Flow cytometry and Arctic sea ice
datasets, we only collect the more challenging full
graph causal discovery questions. As the causal
graph of Arctic sea ice contains double-sided edges,
we ask models to predict from four possible choices
like Which cause-and-effect relationship is more
likely? A. Residual_cloud_cover causes Resid-
ual_longwave B. Residual_longwave causes Resid-
ual_cloud_cover C. The causal relation is double-
sided between Residual_cloud_cover and Resid-
ual_longwave D. No causal relationship exists.

Causal Estimation. We collect numerical ques-
tions of estimating average treatment effect (ATE),
average treatment effect on the treated (ATT), and
average treatment effect on the control (ATC) from
the IHDP dataset. As all the outcomes and coun-
terfactual outcomes are simulated using real co-
variates, we calculate the values of these estimates
as the gold answers. In the Jobs dataset, all the
treatments were from randomized experiments, so
we can calculate the true ATT values. We collect
questions of estimating ATT from the dataset.

Source Question

OpenIntro Statistics 112
Quantitative Social Science 35
Causal Inference for the Brave and True 24
Flow Cytometry 50
IHDP 30
Jobs 10
Neuropathic Pain Diagnosis 100
Arctic Sea Ice 50
Overall 411

Table 6: Count of questions from different sources of
QRDATA.

Failure Reason Percentage (%)

Data Analysis 34%
Knowledge Recall 44%
Equation Formulation 16%
Calculation 6%

Table 7: Error analysis of GPT-4 with the code inter-
preter assistant on QRDATA.

A.2 Question Collection of QRTEXT

QRTEXT contains 290 questions in total, 140 mul-
tiple choice questions and 150 numerical questions.
We collect 100 statistical reasoning questions from
OpenIntro Statistics, 94 causal reasoning questions
from CLADDER, and 96 causal reasoning questions
from CORR2CAUSE. Figure 4 exhibits an example
question of QRTEXT.

The OpenIntro Statistics questions are collected
from exercises with solutions from the textbook.
CORR2CAUSE contains causal discovery questions
of determining the causal relationship between the
variables given correlational statements. We ran-
domly sample CORR2CAUSE questions from the
original test set.

CLADDER contains causal questions where the
conditions are described in natural language. It
classifies questions into three rungs: associational
(rung 1), interventional (rung 2), and counterfactual
(rung 3). We only consider questions of rungs 2
and 3 because these are related to causal reasoning.
We randomly sample causal estimation questions
querying Average Treatment Effect (ATE), Effect
of the Treatment on the Treated (ETT), Natural
Direct Effect (NDE), and Natural Indirect Effect
(NIE), and transform the original yes-or-no ques-
tions into numerical questions using the provided
metadata. This is to balance the ratio of multiple
choice questions and numerical questions, control-
ling the random performance to be close to QR-
DATA.
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Imagine a self-contained, hypothetical world with only the following conditions, and 
without any unmentioned factors or causal relationships: Obesity has a direct effect 
on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. 
Diabetes has a direct effect on lifespan. Smoking is unobserved.
For normal weight people, the probability of long lifespan is 66%. For obese people, 
the probability of long lifespan is 56%.

Data Description Question

What is the average treatment effect from obesity to 
lifespan? 
Please answer with a positive number if the effect is 
positive, a negative number otherwise, and round to 
the nearest hundredth.

Correct Reasoning Steps:

1. Build a causal model based on the data description

3. Derive the estimand of average causal effect

ATE = E[Y | do(T = 1)] - E[Y | do(T = 0)]
    = P(Y=1|T=1) - P(Y=1|T=0)

ATE = 0.56 – 0.66 = -0.10

Final Answer: -0.10

4. Solve the estimand 

T

D Y

S

T: Obesity
S: Smoking (unobserved)

No confounding variable for the causal relation from 
Obesity to Lifespan

2. Identify confounding variables

D: Diabetes
Y: Lifespan

Figure 4: An example question of QRTEXT and correct reasoning steps. The question is converted from CLADDER.

A.3 Prompt Design

Table 9 shows an example prompt for Chain-of-
Thought reasoning. In real prompts, we feed all the
content of the data sheets until it meets the length
limit of 3500 tokens. We shuffle the data to avoid
the bias towards values in the front. After Chain-of-
Thought reasoning, we use GPT-3.5 Turbo for an-
swer extraction, and the prompt template is shown
in Table 10.

Table 11 shows an example prompt for Program-
of-Thoughts reasoning. We shuffle the data and
provide the first ten lines in the prompt. An exam-
ple prompt for ReAct-style reasoning is in Table 12,
and an example prompt for code interpreter assis-
tants is in Table 13. When the question is based on
multiple data sheets, we demonstrate the rows of
these data sheets respectively in the prompts.

A.4 Implementation Details

We conduct model inference with temperature 0
and maximum new tokens 512. We limit the maxi-
mum reasoning steps to 10 in ReAct-style prompt-
ing. Experiments are conducted on NVIDIA A800
GPUs. It takes five minutes to evaluate a 7B model
on QRDATA with CoT/PoT prompting on a single
GPU, and one hour to evaluate a 7B model with
ReAct-style prompting.

A.5 Case Study

Table 14 demonstrates the full output of GPT-4
on the example case from QRDATA, and Table 15
demonstrates the full output of GPT-4 without ac-
cess to the data.

A.6 Error Analysis

To have a quantitative view of model failures, we
conduct an error analysis for the best-performed

model GPT-4 with the code interpreter assistant
on QRDATA. We randomly sample 50 incorrect
predicted instances, and annotate their main reason
for mis-prediction. As shown in Table 7, 34% of
the mis-predictions originate from data analysis.
The model may fail to retrieve the correct columns
according to the instruction of questions, or misin-
terpret the data values. 44% of the errors occur in
knowledge recall, like choosing a wrong hypoth-
esis test, or using statistical methods to address
a causal question. Even if the model recalls the
correct knowledge to solve the question, it formu-
lates wrong equations in 16% of the cases. And
6% of errors occur in the calculation. This is also
the main reason for errors when humans conduct
the task, because state-of-the-art causal methods
cannot perfectly reach the correct answer.
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Topic Description Example

Probability Calculating the likelihood of events happening. What is the probability a randomly selected per-
son who was not inoculated died from small-
pox?

Distribution Understanding how data points are spread out. Is it reasonable to model the proportion of US
adults who support expanding wind turbines
using a normal distribution?

Estimation Approximating parameters based on samples
drawn from the population, and quantifying
the uncertainty of estimates.

Use a Poisson distribution to approximate the
data. What is the event rate of the Poisson
distribution?

Hypothesis Test-
ing

Using statistical tests to assess the validity of
hypotheses.

Given the hypothesis that the proportion of col-
lege graduates who support off-shore drilling
in California is equal to that of non-college
graduates, will you accept or reject the hypoth-
esis with a significance level of 5%?

Prediction Using statistical models to predict future values
based on existing data trends.

Fit a linear regression model using the Demo-
cratic margin in the two-party vote share as
the response variable and the perceived compe-
tence for Democratic candidates as the predic-
tor. What is the estimated slope of the model?

(a) Topics of statistical reasoning.

Topic Description Example

Confounding Recognizing confounders that might influence
the observed relationship between two vari-
ables. For example, a variable that causes both
the treatment and the outcome is a confounder.

We are estimating the causal effect of the new
drug on the number of days the patient stays
in the hospital, and we already controlled for
the severity. Should we also control for the
’hospital’ variable?

Causal Discovery Inferring the causal relations from the data. For
example, distinguishing between correlation
and causation and determining the causal di-
rection between two variables.

Which cause-and-effect relationship is more
likely? A. R L5 radiculopathy causes L L1
radiculopathy B. L L1 radiculopathy causes
R L5 radiculopathy C. No causal relationship
exists

Causal Effect Esti-
mation

Estimating the causal effect between two vari-
ables using methods like propensity score
matching and doubly robust estimation.

What is the average treatment effect of the
growth mindset on the achievement score?
Please conduct a doubly robust estimation and
use logistic regression to estimate the propen-
sity score.

Instrumental Vari-
ables

Addressing confounding bias with instrumen-
tal variables. An instrumental variable causes
the treatment and is only correlated with the
outcome through the treatment.

What is the average additional percentage wage
increase associated with each additional year of
education based on the instrumental variable
of whether the individual is born in the last
quarter (q4)?

Panel Data Applying methods like difference-in-
differences and synthetic control to estimate
the causal effect in panel data. These methods
differ from those used to estimate causal
effects in a single period.

What is the average increase in bank deposits
per customer in Porto Alegre after the billboard
intervention, as estimated by the difference-in-
differences approach?

(b) Topics of causal reasoning.

Table 8: Topics covered in QRDATA and examples of questions related to these topics.
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Data Description:
Public health has improved and evolved, but has the public’s knowledge changed with it? This data set rosling_responses.csv
contains sample responses for two survey questions posed by Hans Rosling during lectures to a wide array of college-educated
audiences.
rosling_responses:
| | question | response | prob_random_correct |
| 0 | children_in_2100 | correct | 0.333333 |
| 1 | children_in_2100 | incorrect | 0.333333 |
| 2 | children_in_2100 | correct | 0.333333 |
| 3 | children_with_1_or_more_vaccination | incorrect | 0.333333 |
| 4 | children_in_2100 | incorrect | 0.333333 |
...
Task:
You are a data analyst and good at quantitative reasoning. You are required to respond to a quantitative question using the
provided data. The description and the table are listed above. Please analyze the table to answer the question. Do not write
any code in your answer. Ensure that your final answer is positioned at the very end of your output, adhering to the format
‘Final answer: [answer]’. The final answer should be a number or a short phrase and should be written in a new line.
Question:
Can we reject the notion that the performance of college-educated adults was different than random guessing in the
children_with_1_or_more_vaccination question with 95% confidence? Please answer with “yes” or “no”.
Response:
Let’s think step by step.

Table 9: Example prompt for Chain-of-Thought reasoning. In real prompts, we feed all the content of the data
sheets until it meets the length limit.

Extract the final answer from the given solution as a numeric value or a short phrase for the question. If you cannot extract an
answer, return "None".
You should either return "None" or the final answer without any additional words.
Question: {question}
Solution: {answer}
Final Answer:

Table 10: Prompt template for answer extraction after Chain-of-Thought reasoning. {question} is the question from
the benchmark, and {answer} is the answer generated by models.
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You are a data analyst and good at quantitative reasoning. You are required to respond to a quantitative question using the
provided data. The description and the question can be found below. Please analyze the first 10 rows of the table and write
python code to analyze the whole table. You can use any python library. The returned value of the program is supposed to be
the answer. The format of the code should be
```python
def solution():

# import libraries if needed
# load data
# write code to get the answer
# return answer

```
Data Description:
Public health has improved and evolved, but has the public’s knowledge changed with it? This data set rosling_responses.csv
contains sample responses for two survey questions posed by Hans Rosling during lectures to a wide array of college-educated
audiences.
First 10 rows of the data:
rosling_responses:
| | question | response | prob_random_correct |
| 0 | children_in_2100 | correct | 0.333333 |
| 1 | children_in_2100 | incorrect | 0.333333 |
| 2 | children_in_2100 | correct | 0.333333 |
| 3 | children_with_1_or_more_vaccination | incorrect | 0.333333 |
| 4 | children_in_2100 | incorrect | 0.333333 |
| 5 | children_in_2100 | incorrect | 0.333333 |
| 6 | children_in_2100 | correct | 0.333333 |
| 7 | children_in_2100 | incorrect | 0.333333 |
| 8 | children_in_2100 | incorrect | 0.333333 |
| 9 | children_in_2100 | incorrect | 0.333333 |
Question:
Can we reject the notion that the performance of college-educated adults was different than random guessing in the
children_with_1_or_more_vaccination question with 95% confidence? Please answer with “yes” or “no”.
Response:
```python

Table 11: Example prompt for Program-of-Thoughts reasoning.
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Data Description:
Public health has improved and evolved, but has the public’s knowledge changed with it? This data set rosling_responses.csv
contains sample responses for two survey questions posed by Hans Rosling during lectures to a wide array of college-educated
audiences.
You are working with a pandas dataframe in Python. The name of the dataframe is ‘df’.
You should use the tools below to answer the question posed of you:
python_repl_ast: A Python shell. Use this to execute python commands. Input should be a valid python command. When
using this tool, sometimes output is abbreviated - make sure it does not look abbreviated before using it in your answer.

Use the following format:

Question: the input question you must answer
Thought: you should always think about what to do
Action: the action to take, should be python_repl_ast
Action Input: the input to the action, should be the code to execute
Observation: the result of the action
... (this Thought/Action/Action Input/Observation can repeat N times)
Thought: I now know the final answer
Final Answer: the final answer to the original input question, just provide the answer WITHOUT any other words

Note that you should import the libraries if needed.
DO NOT create any plotting.
For all outputs in code, THE print() function MUST be called.
If you use Action in this step, stop after generating the Action Input and await the execution outcome from python_repl_ast.
If you output the Final Answer in this step, do not use Action.

Here is an example of using the python_repl_ast:
Action: python_repl_ast
Action Input:
import pandas as pd
print(df.head())

This is the result:
| | question | response | prob_random_correct |
| 0 | children_with_1_or_more_vaccination | correct | 0.333333 |
| 1 | children_with_1_or_more_vaccination | correct | 0.333333 |
| 2 | children_with_1_or_more_vaccination | incorrect | 0.333333 |
| 3 | children_with_1_or_more_vaccination | incorrect | 0.333333 |
| 4 | children_with_1_or_more_vaccination | incorrect | 0.333333 |

Begin!
Question:
Can we reject the notion that the performance of college-educated adults was different than random guessing in the
children_with_1_or_more_vaccination question with 95% confidence? Please answer with “yes” or “no”.

Table 12: Example prompt for ReAct-style reasoning.
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Assistant Instruction You are a data analyst and good at quantitative reasoning. You are required to respond to a
quantitative question using the provided data. The description and the question can be found below.
Please just start answering and don’t ask me any questions. Put your output in one message. Ensure
that your final answer is positioned at the very end of your output, adhering to the format ’Final
answer: [answer]

User Data Description:
Public health has improved and evolved, but has the public’s knowledge changed with it? This
data set rosling_responses.csv contains sample responses for two survey questions posed by Hans
Rosling during lectures to a wide array of college-educated audiences.
Question:
Can we reject the notion that the performance of college-educated adults was different than random
guessing in the children_with_1_or_more_vaccination question with 95% confidence? Please
answer with “yes” or “no”.

Table 13: Example prompt for the code interpreter assistants.
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Data Description The neuropathic pain diagnosis mainly consists of symptom diagnosis, pattern diagnosis, and patho-
physiological diagnosis. The csv file Neuropathic_11.csv contains neuropathic pain diagnosis records
in the form of tables of which the row represents different patients and the column represents different
diagnostic labels.

Question Which cause-and-effect relationship is more likely?
A. R L5 radiculopathy causes L L1 radiculopathy B. L L1 radiculopathy causes R L5 radiculopathy
C. No causal relationship exists
Please answer with A, B, or C.

Gold Answer C

GPT-4 Prediction with Data Access
Step 1: import pandas as pd

Code Interpreter # Reading the dataset

file_path = ‘/mnt/data/Neuropathic_11.csv’

data = pd.read_csv(file_path)

# Display the first few records to understand the data structure

data.head()

Step 2: Let’s proceed with analyzing the relevant columns to identify if there are any cause-and-effect relation-
ships between the “R L5 radiculopathy” and “L L1 radiculopathy” conditions.
I will start by filtering these two columns from the dataset and then conducting an analysis to identify
the likelihood of either of the radiculopathies causing the other. I will examine the data for the following
patterns:
- If patients with “R L5 radiculopathy” also frequently have “L L1 radiculopathy” and not the other
way around, it may suggest that A is more likely.
- Conversely, if patients with “L L1 radiculopathy” also frequently have “R L5 radiculopathy” and not
the other way around, it may suggest that B is more likely.
- If there is no clear pattern or both conditions occur independently, it may suggest that C is more likely.
To do this analysis, I will compute conditional probabilities:
- P(L L1 | R L5)
- P(R L5 | L L1)
Then I will compare these probabilities to make an inference regarding the most likely cause-and-effect
relationship.

Step 3: # Extract the relevant columns

Code Interpreter R_L5_col = ‘R L5 radiculopathy’

L_L1_col = ‘L L1 radiculopathy’

# Filter the dataset for these two columns

radiculopathy_data = data_corrected[[R_L5_col, L_L1_col]]

# Calculate the occurrence of each condition and their co-occurrence

R_L5_count = radiculopathy_data[R_L5_col].sum()

L_L1_count = radiculopathy_data[L_L1_col].sum()

co_occurrence_count = radiculopathy_data[(radiculopathy_data[R_L5_col] == 1) &
(radiculopathy_data[L_L1_col] == 1)].shape[0]

# Calculate the conditional probabilities

# Probability of L L1 given R L5

P_L_L1_given_R_L5 = co_occurrence_count / R_L5_count if R_L5_count else 0

# Probability of R L5 given L L1

P_R_L5_given_L_L1 = co_occurrence_count / L_L1_count if L_L1_count else 0

P_L_L1_given_R_L5, P_R_L5_given_L_L1

Step 4: The conditional probabilities calculated are as follows:
- P(L L1 | R L5) ≈ 0.0075
- P(R L5 | L L1) ≈ 0.4122
These probabilities suggest that the occurrence of “L L1 radiculopathy” does not significantly increase
when “R L5 radiculopathy” is present, given that P(L L1 | R L5) is quite low. On the other hand, the
occurrence of “R L5 radiculopathy” is notably higher when “L L1 radiculopathy” is present, as P(R L5
| L L1) is much higher.
Therefore, based on these conditional probabilities, it is more likely that “L L1 radiculopathy” causes
‘R L5 radiculopathy” over the other proposed causal direction.
Final answer: B

Table 14: Full outputs of GPT-4 on the example case from QRDATA.
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GPT-4 Prediction without Data Access
Prediction To address which cause-and-effect relationship is more likely between ‘R L5 radiculopathy’ and ‘L L1

radiculopathy’, we would generally look for statistical relationships in the data that may imply causality.
Specifically, we would examine the frequency with which one condition appears before the other. If ‘R L5
radiculopathy’ generally appears before ‘L L1 radiculopathy’, it would lend support to the idea that A is more
likely. Conversely, if ‘L L1 radiculopathy’ appears before ‘R L5 radiculopathy’, we might lean towards B.
However, without access to the actual data, we can only reason based on general medical knowledge and
the understanding of how radiculopathy typically presents. Radiculopathy is a condition resulting from a
compressed nerve in the spine that can cause pain, numbness, or weakness in various parts of the body.
Typically, this condition is localized and not known to cause another radiculopathy on the opposite side and a
different vertebrae level of the body.
Given both ‘R L5’ and ‘L L1’ radiculopathies are on different sides of the body and different spinal levels, it’s
not common for one to cause the other according to standard medical understanding. It is more likely that they
occur independently due to separate causes.
However, unilateral radiculopathy doesn’t generally cause contralateral radiculopathy at a different spinal level.
This is because the nerve root compression that leads to radiculopathy is typically localized, and it would be
unusual for such an issue on one side of the spine to directly cause a similar issue on the opposite side at a
different level. Therefore, it’s likely that if both conditions are present in a patient, they arose independently or
due to a systemic issue affecting the spine broadly, rather than one causing the other.
Therefore, based on a qualitative argument and standard medical understanding, the answer is most likely that
there is no causal relationship between the two conditions, which corresponds to option C.
Final answer: C.

Table 15: Full outputs of GPT-4 on the example case from QRDATA when it does not have access to the data.
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